Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация статистических

    С точки зрения возможности появления твердой макрофазы важно не только количество образующейся дисперсной фазы, но и особенно размеры образующихся частиц. При кристаллизации размеры кристаллов определяются прежде всего скоростью образования центров кристаллизации. Статистическая вероятность возникновения центров кристаллизации, представляющих собой достаточно крупные группировки молекул, вблизи температуры насыщения очень мала. Кристаллические зародыши начинают появляться лишь по достижению в результате переохлаждения определенного пересыщения раствора. Связь между скоростью образования центров кристаллизации и переохлаждением системы выражается зависимостью /31/ [c.50]


    Кристаллизация статистических сополимеров...... [c.6]

    Кристаллизация статистических сополимеров за счет нерегулярности их строения затруднена по сравнению с каждым из. гомополимеров, В итоге точка плавления понижена, а температура перехода в стеклообразное состояние может иметь нормальное значение, лежащее между температурами стеклования гомополимеров. В результате значения возрастают. [c.131]

    Соединения включения образуются в виде двух адсорбционное диастереоизомерных энантиоморфов , один из которых будет преобладать в осадке при кристаллизации, в зависимости от характера кристаллов перво> о центра кристаллизации. Статистически с равной вероятностью будут выпадать как один, так и другой энантиоморф . [c.190]

    Конденсационные статистические и блоксополимеры отличаются по свойствам. Свойства блоксополимеров зависят от массовой доли и расположения различных повторяющихся звеньев в сополимере. Это позволяет регулировать свойства блоксополимеров способность к кристаллизации, эластичность, температуру стеклования, плавления и др. Для статистического сополимера такой зависимости свойств не наблюдается [3, с. 123]. [c.173]

    Предлагаемая читателю монография представляет восьмую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Семь предыдущих монографий 1. Основы стратегии, 1976 г. 2. Топологический принцип формализации, 1979 г. 3. Статистические методы идентификации объектов химической технологии, 1982 г. 4. Процессы массовой кристаллизации из растворов и газовой фазы, 1983 г. 5. Процессы измельчения и смешения сыпучих материалов, 1985 г. 6. Применение метода нечетких множеств, 1986 г. 7. Энтропийный и вариационный методы неравновесной термодинамики в задачах анализа химических и биохимических систем, 1987 г.) посвящены отдельным вопросам теории системного анализа химико-технологических процессов и его практического применения для решения конкретных задач моделирования, расчета, проектирования и оптимизации технологических процессов, протекающих в гетерогенных средах в условиях сложной неоднородной гидродинамической обстановки. [c.3]

    Такой подход особенно эффективен при моделировании физикохимических процессов в полидисперсных средах с массовым взаимодействием составляющих в области малых параметров (реакторные гетерофазные процессы, кристаллизация, экстракция, абсорбция, ректификация, многие биохимические процессы и т. п.). Заметим, что при моделировании процессов в области больших параметров (давлений, скоростей, температур) могут быть использованы методы статистических теорий механики суспензий [14—16]. [c.15]


    Каждый уровень рассмотренной иерархической структуры процесса кристаллизации характеризуется соответствующей формой математического описания. Основу описания явлений первого и второго уровней составляют феноменологические и статистические методы физико-химической кинетики и химической термодинамики (см. гл. 3). [c.12]

    Методы фазового пространства и статистических ансамблей для описания стохастических свойств процессов массовой кристаллизации [c.131]

    Анализ промежуточной кинетики представляет известные трудности, так как в этом случае пересыщение у поверхности кристалла устанавливается из соотношения между сопротивлениями внешнего диффузионного переноса и процесса собственно кристаллизации подведенного к поверхности вещества. В статистической теории образования двумерных кристаллов выводится следующая зависимость скорости роста от пересыщения в кинетической области процессов  [c.176]

    Рассмотрим статистическую теорию образования зародышей. Эта теория, развитая Б. В. Дерягиным, более строго выводит формулы для вероятности образования зародышей, нежели чем феноменологические теории образования зародышей независимо от фазового перехода — будь то кристаллизация или кавитация и кипение. В изложении будем пользоваться рассмотрением, проведенным Дерягиным [82, 83]. [c.283]

    В заключение параграфа рассмотрим статистические задачи, возникающие при определении параметров кристаллизации. Задача исследования кинетики кристаллизации сводится к установлению вида функций, входящих в математическую модель процесса кристаллизации, и определению численных значений их параметров. Из предыдущего параграфа можно было увидеть, что чаще всего искомая зависимость представлена в виде нелинейных дифференциальных уравнений вида [c.320]

    При плавлении кристаллических полимеров наблюдается последовательное изменение координационного и ориентационного порядков. Структура полимеров в твердом состоянии, характеризующаяся лишь дальним ориентационным порядком, относится к так называемой паракристаллической модификации. В пространственно упорядоченные области может входить не вся макромолекула целиком, а некоторая ее часть (рис. 3.10). Полимерная цепь последовательно проходит участки высокой упорядоченности (кристаллиты) и аморфные области. В отличие от низкомолекулярных веществ, где кристаллическая и аморфная фазы разделены четкой поверхностью раздела, в полимерах такая поверхность раздела отсутствует. Кристаллические области статистически распределены в аморфной массе. С увеличением гибкости регулярно построенных макромолекул облегчается кристаллизация полимера. [c.142]

    Наша книга не претендует на охват всех разделов физики н механики полимеров. В трех ее частях представлены наиболее важные сведения о строении и свойствах полимеров. В первой рассмотрены строение, физические состояния, кристаллизация и стеклование как основные фазовые и релаксационные переходы, статистическая и молекулярная физика макромолекул и полимерных сеток, а также некоторые вопросы термодинамики механических свойств полимеров. Во второй рассмотрены механические, электрические, магнитные и оптические свойства, относящиеся к релаксационным явлениям в полимерах. В третьей представлены важнейшие тепловые и механические свойства, связанные с прочностью и разрушением, а также с трением и износом полимеров. [c.8]

    Важный вид несовершенств в кристалле — линейные дефекты, или дислокации. Плотность дислокаций зависит от условий образования кристалла. Для металлов число дислокаций, проходящих через единицу площади, не менее 10 см для германия, кремния гь 10 см- , а при особых условиях их удается снизить до 10 см-2. 3 отличие от точечных дефектов, дислокации не являются статистически равновесными образованиями в равновесном кристалле они должны отсутствовать, поскольку образование их связано с очень значительным возрастанием энергии, а энтропийный выигрыш при этом невелик. Однако в процессе кристаллизации дислокации всегда возникают. Механические напряжения вызывают движение дислокаций, причем этот процесс сопровождается появлением в кристалле точечных дефектов. [c.193]

    Вещества находятся в кристаллическом состоянии при температурах от О К до некоторого значения зависящего от давления (однако, чтобы заметно изменить Тцл, нужны весьма высокие давления). Температура плавления для различных веществ меняется в широких пределах в зависимости от характера взаимодействий в системе. Единственное вещество, которое при атмосферном давлении остается жидким вплоть до абсолютного нуля, — гелий, особые свойства которого находят объяснение в свете квантовой статистической теории. Кристаллизация гелия происходит только при высоком давлении (при р = 2,5 МПа Г р ет = 1,5 К). [c.310]


    Несмотря на несомненные аналогии, не следует, однако, забывать что упорядоченность в жидкостях и кристаллах — принципиально различного характера. Смазанность ближнего порядка в жидкостях, статистический характер его имеют важные следствия, в частности отсутствие дальнего порядка. Если для кристалла координационное число 2 и радиусы Г1, Га,. .. координационных Сфер строго заданы, то для жидкости аналогичные величины являются лишь некоторыми усредненными характеристиками, испытывающими значительные флуктуации. Показано, например, что средние флуктуации координационных чисел в жидких Аг, Хе, Hg составляют более 20% для первой координационной сферы и около 50% — для второй. Сами усредненные характеристики ближней упорядоченности (в частности, координационное число г) сильно зависят от температуры. Таким образом, называть структуру жидкости квазикристаллической можно лишь условно, в особенности если температура жидкости заметно выше температуры кристаллизации. [c.359]

    Все предложенные до настоящего времени теории зарождения и роста НК и пленок игнорируют реальное состояние поверхности раздела, участие во многих случаях химических реакций в процессе кристаллизации из газовой фазы, следствием которых является наличие слоя хемосорбированных молекул на поверхности раздела. При наличии хемосорбции непосредственный обмен между подложкой и средой практически отсутствует и хемосорбционный слой в известном смысле можно считать промежуточной двумерной фазой . Рост кристалла в этом случае, по-видимому, происходит в результате актов химического распада молекул хемосорбционного слоя, механизм которых совершенно не изучен. Особая трудность возникает при обсуждении возможных механизмов роста эпитаксиальных пленок сложных соединений при жидкофазном осаждении в связи с тем, что молекулярная форма нахождения большинства этих соединений в растворах и расплавах в настоящее время неизвестна. Поэтому единой достаточно удовлетворительной теории зарождения и роста НК и пленок при газофазном осаждении пока не существует. Необходимо дальнейшее накопление надежных экспериментальных данных о реальной структуре (атомной и электронной) поверхностей раздела, о явлении хемосорбции, о так называемой закомплексованности и других определяющих явлениях. Важным также в теории гетерогенного зародышеобразования пленок является установление соотношения между процессами статистического зародышеобразования на чистых подложках и на активных центрах. Имеются сведения (Л. С. Палатник и др. 1972 г.) об образовании и длительном существовании в тонких пленках термодинамически неравновесных фаз. Поэтому пределы применимости к тонкопленочным системам (приборы микроэлектроники, оптические покрытия и др.) диаграмм состояний, разработанных для систем массивных материалов, требуют подробного анализа и обсуждения. [c.485]

    Предлагаемая читателю монография представляет шестую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Три первые монографии (Основы стратегии. М. Наука, 1976 Топологический принцип формализации. М. Наука, 1979 Статистические методы идентификации объектов химической технологии. М. Наука, 1982) посвящены общим вопросам теории системного анализа в химии и химической технологии. В четвертой и пятой монографиях (Процессы массовой кристаллизации из растворов и газовой фазы. М. Наука, 1983 Процессы измельчения и смешения сыпучих материалов. М. Наука, 1985) рассмотрены вопросы применения стратегии системного анализа для решения практических задач расчета и оптимизации конкретных процессов химической технологии, отличающихся повышенной сложностью внутренней структуры. [c.3]

    Теория образования новой дисперсной фазы зародилась в исследованиях Гиббса (1878 г.) по термодинамике поверхностных явлений и получила развитие в двадцатых годах нашего столетия (школа Фольмера) в экспериментальных и теоретических исследованиях конденсации пересыщенного пара. Взгляды Фольмера на образование зародышей в пересыщенном паре детально рассмотрены в гл. XI, посвященной аэрозолям. Здесь же лишь укажем, что растворимость или давление насыщенного пара малых частиц любой фазы, как это следует из термодинамики, больше, чем у крупных частиц (закон В. Томсона). Иначе говоря, увеличение дисперсности фазы повышает ее растворимость в окружающей среде, или способность вещества к выходу из данной фазы. Поэтому раствор, насыщенный относительно крупных кристаллов, является еще ненасыщенным относительно мелких кристаллов того же вещества. В таких условиях самопроизвольное образование достаточно крупных кристаллических зародышей мало вероятно, а очень мелкие зародыши, возникающие в результате флуктуаций, це могут вызвать кристаллизацию, так как по отношению к ним раствор не является пересыщенным. Очевидно, зародыши ново"й фазы могут образовываться лишь при очень высоких степенях пересыщения, когда возникновение сравнительно больших зародышей статистически более вероятно. [c.225]

    Вопрос осложняется в тех случаях, когда частицы в коллоидных системах находятся как бы на грани возникновения или исчезновения фазы, например, в случае критических и самопроизвольных эмульсий (стр. 155), случайных статистических роев и ассоциаций больших молекул, растворов мыл и детергентов (стр. 120), явлений кристаллизации в полимерах (стр. 232) и др. Каргин и Слонимский указывают на возможность расхождения в этих случаях структурных и термодинамических критериев фазового состояния, проявления гомогенности по одним свойствам и гетерогенности — по другим. Однако эти интересные вопросы еще являются предметом научного обсуждения. [c.17]

    Некоторые интересные проблемы возникают при анализе кристаллизации статистических сополимеров. Малое число длинных последовательностей кристаллизующихся звеньев затрудняет многократное прохождение одной и той же цепи через кристаллит. Неограниченный рост кристаллита в поперечном направлении, для которого необходимо участие звеньев из других цепей, может быть сильно заторможен, вследствие только что обсужденных трудностей расположения цепей в переходной и аморфной зонах. Введение некристаллизующихся хаотически распределенных вдоль цепи звеньев может подавить развитие пластинчатой морфологии, характерной для отправных гомопо- [c.292]

    Процесс образования сферолитных структур включает несколько стадий. Первые две — это образование зародышей кристаллизации, статистически разбросанных по объему образца, и радиальный рост независимых дискретных фибриллярных или пластинчатых кристаллических структур (первичная кристаллизация), происходящий с одинаковой скоростью новеем направлениям. Затем, встречаясь друг с другом, растущие сферолиты продолжают прорастать в еще нёзакристаллизованные области, заполняя весь объем материала. При этом их границы искажаются, и сферолит принимает форму многогранника, а не сферы. После завершения радиального роста сферолитов наступает заключительная стадия кристаллизации (так называемая вторичная кристаллизация), в течение которой происходит усовершенствование кристаллической структуры сферолита и дальнейшая кристаллизация расплава, оставшегося до этого незакристаллизованным между структурными элементами сферрлита. [c.92]

    Температура плавления кристаллизующихся углеводородов имеет тенденцию к повышению с увеличением молекулярного веса, усилением поляризуемости и симметричности молекул. Повышение температуры плавления с увеличением молекулярного веса закономерно для углеводородов одного гомологического ряда и однотипной структуры. Температура плавления кристаллизующихся углеводородов с молекулами различной структуры зависит в основном от строения молекул. Углеводороды с несимметричной, разветвленной структурой характеризуются низкой температурой кристаллизации, а в некоторых случаях вообще неспособны кристаллизоваться. Симметричность молекул и простота их строения способствуют образованию кристаллических структур и повышению температуры плавления углеводородов. Ван-Нес и Ван-Вестен [8] считают, что разветвление молекул оказывает решающее влияние на температуру плавления углеводородов, и отмечают общее правило, что наиболее симметричные молекулы имеют наиболее высокую температуру плавления. Это правило указанные авторы объясняют тем, что чем более симметрична молекула, тем больше имеется способов построить из нее кристаллическую решетку, что согласно статистическим положениям приводит к более высокой температуре плавления. Правило молекулярного веса, указывающее, что температура плавления углеводородов возрастает с их молекулярным весом, может быть подавлено правилом симметрии. [c.40]

    Силоксановые каучуки кристаллизуются при более низких температурах, чем углеводородные, но скорость и глубина кристаллизации у них выше из-за высокой подвижности полимерных цепей. ПДМС быстро кристаллизуется - при температурах ниже —50 °С (с максимальной скоростью при —80 °С) и плавится при температурах выше —46 °С. Способность к кристаллизации снижается при замещении части метильных групп другими, причехч при одинаковом содержании модифицирующих групп (фенильных, этильных, пропильных и др.) скорость кристаллизации минимальна при их статистическом распределении и максимальна у блоксополимеров. Кристаллизация резко замедляется при введении в цепь уже 8—10% (мол.) статистически распределенных модифицирующих звеньев. Совсем не кристаллизуется метил (3,3,3-трифторпро-пил)силоксановый каучук. Введение в силоксановую цепь ариле-новых или карбораниленовых групп при их регулярном расположении повышает степень кристалличности и 7пл> а нерегулярно построенные сополимеры обычно аморфны. Как стеклование, так и кристаллизация силоксановых блоксополимеров при достаточной длине блоков происходит раздельно в каждом блоке при соответствующих гомополимерам температурах. Кристаллизация более высокоплавкого блока может не иметь места или происходит при температуре ниже обычной, если его длина мала [3, с. 19—20]. [c.484]

    Основу описания явлений четвертого уровня иерархической структуры процесса кристаллизации составляют методы статистической теории механики суспензий термогидромеханические модели, основанные на представлениях о взаимопроникающих многоскоростных континуумах модели, построенные на основе математических методов кинетической теории газов. [c.12]

    Возникновение дальнего порядка во взаимном расположении макромолекул, т. е. способность к кристаллизации, определяется регулярностью сфоения полимерных цепей. Известно, что в макромолекуле элементарные звенья и заместители могут располагаться в определенной последовательности и быть определенным образом ориентированы в пространстве (изо-тактические, синдиотактические и другие типы полимеров, имеющих регулярную первичную структуру). Если же присоединение носит статистический характер (наряду с присоединением по типу голова к хвосту присоединение голова к голове или хвост к хвосту ), а заместители не имеют преимущественной ориентации в пространстве, то такие полимеры имеют нерегулярное строение и относятся к группе атактических. Полимеры этого типа могут находиться только в аморфном состоянии. [c.142]

    Из полученных уравнений следует, что в системе с концентрационным хаосом в критическом состоянии существует распределение радиусов корреляций по закону ехр -и параметров порядка по закону ехр(-1 ). Это означает, что в таких системах и.меет место пересечение критических областей ФП отдельных компонентов. Кроме того, с -ществует дополнительная статистическая коррелированность и дополнительное расширение спектров времен релаксаций компонентов. Отсюда следует качественно новый эффект - пространственно-временное совмещение фазовых переходов. Например, процесс стеклования еще не закончился, а началась кристаллизация. Отсюда вытекает неизбежная полиморфность многокомпонентных систем с концентрационным хаосом, т е. их значительное структурное разнообразие. В отдельных фракциях при небольшо.м отклонении от среднего значения распределение радиусы корреляции и параметры порядка 28 [c.28]

    Если в стеклообразной совокупности цепей нет регулярного упорядочения или коллоидной структуры, то говорят об аморфном состоянии. Не так давно природа неупорядоченного или аморфного состояния твердых полимеров вызывала оживленную дискуссию и тш ательно исследовалась. Примерно до 1960 г. преобладало представление о том, что в таких изотропных, некристаллических полимерах, как большинство каучуков, стеклообразных полимеров (ПС ПВХ, ПММА, ПК) или частично кристаллических полимеров (ПХТФЭ, ПТФЭ, ПЭТФ), цепные молекулы имеют случайное распределение и что модель статистического клубка, или спагетти , правильно отражает структуры этих полимеров. В последующие годы в связи с развитием рентгенографии аморфных полимеров все большее признание приобретала концепция ближнего порядка цепных молекул. Эта концепция со всей очевидностью следует из сравнения сегментального объема и плотности аморфной фазы, из электронно-микроскопических наблюдений структурных элементов, калориметрических исследований, закономерности кинетики кристаллизации и изучения ориентации полимерного клубка. После 1970 г. в дополнение к световому и малоугловому [c.26]

    Белхувер и Уотерман [28] указывают па возможность использования вязкости при графико-статистическом анализе смазочных масел. Шислер и соавторы [66] нашли, что для характеристики отдельных фракций, получаемых при фракционированной перегонке высокомолекулярных углеводородов, вязкость (с точностью 0,1%) является значительно более чувствительной константой, чем показатель преломления (с точностью до 0,0001), и часто приближается по чувствительности к температуре кристаллизации, определяемой с точностью 0,1 С. Шмидт и соавторы [69] нашли, что температурный коэффициент вязкости сильно зависит от тонкого изменения строения углеводородов. Широкое распространение получил метод Штаудингера определения молекулярного веса высокомолекулярных полимеров па основании определения вязкости растворов в низкомолекуляршлх растворителях. [c.101]

    Гиббс и ДиМарцио предсказали переход при некоторой температуре Го, прибегнув к физически обоснованному математическому трюку, в результате которого удалось показать вырождение при Т = То статистической суммы, т. е. превращение ее в единицу. Но чтобы соответствующая внутримолекулярная перегруппировка гош- и транс-ротамеров могла произойти, нужна подвижность. А она практически исчезает задолго до Го — при релаксационной температуре стеклования. Иными словами — и это сразу ставит все на место — релаксационное стеклование равным образом препятствует по чисто кинетическим причинам как переходу первого рода (если он возможен)—кристаллизации, так и переходу второго рода. То, что один из них происходит выше, а другой ниже Г , ничего не меняет. [c.104]

    Сополимеризация. Введение в молекулу полимера второго мономера является важным способом регулирования степени кристалличности или даже аморфизации полимера. Нескольких процентов второго мономера достаточно, чтобы предотвратить кристаллизацию. Можно сказать, что статистические сополимеры всегда являются аморфными полимерами. Так, при сополимеризации этилена н пропилена получают аморфный сополимер — этиленпропиленовый каучук, являющийся сейчас крупнотоннажным каучуком, применяемым в резиновой промышленности. Введение в молекулу полимера долей процента или немногих процентов второго мономера может снизить степень кристалличности до желаемого уровня. Если в результате сополимеризации возникает блок-сополимер, то при достаточной длине блоков может возникнуть кристаллическая структура, образованная теми блоками, которые количественно преобладают. Второй блок либо не образует кристаллическую решетку, либо образует ее высокодефектиой. Такие блок-сополимеры применяются как добавки для улучшения свойств полимеров или их смесей. Так, блок-сополимер этилена и пропилена может применяться для повышения стойкости к удару или морозостойкости полипропилена, а также для улучшения деформируемости сплавов полиэтилена и полипропилена. [c.183]

    Еще в 1932 г. Мильс в связи с обсуждением проблемы возникновения первых оптически активных органических веществ обратил внимание на то, что рацемичность — понятие статистическое. В действительности, чем меньше число образующихся молекул с асимметрическим атомом углерода, тем больше вероятность того, что соотношение L/D не будет равно единице. Модельным доказательством справедливости этого являются результаты опытов по кристаллизации хлората натрия, проведенных еще в 1898 г. Киппингом и Поупом. Это вещество может образовывать право- или левоориентированные кристаллы, причем лишь в двух опытах из 46 образовывался действительно рацемический конгломерат (50% кристаллов правой и 50% кристаллов левой формы), в остальных же 44 опытах доля (- -)-кристаллов составляла от 24 до 77%. Средняя же доля (- -)-кристаллов во всех 46 опытах составила 50,08 + 0,11%, т. е. точно отвечала рацемическому соотношению. Таким образом, при образовании малого числа молекул, вошедших впоследствии в состав живой материи, вполне можно было ожидать перевеса одной из антиподных форм с последующим закреплением и усилением этого перевеса в процессе дальнейших химических и биохимических превращений. [c.658]

    В теоретических исследованиях Фольмера, Лэнгмюра, Онзагера, Дерягина, Овербека и Фрэнса, получивших дальнейшее развитие в работах Мартынова, это коллоидно-химическое равновесие трактуется на основе более общих представлений теории равновесия гетерогенных систем. Действительно, с термодинами-ко-статистических позиций, коллоидные частицы можно рассматривать как псевдомолекулы, совокупность которых составляет псевдо-газ — идеальный раствор, а скоагулированные агрегаты, в которых частицы сохраняют свою индивидуальность, находясь в ином силовом поле, — как конденсированную фазу. Аналогия становится еще более убедительной, если учесть, что многие коагуляты представляют собой регулярные периодические структуры псевдо-кристаллы , обладающие дальним порядком (см. далее, рис. 109—111). Таким образом, равновесие в системе золь — агрегат рассматривается как равновесие псевдомолекулы — псевдокристалл, где коагуляция сопоставляется с кристаллизацией, а пептизация — с растворением. В общем случае равновесие определяется равенством химических потенциалов, а именно [c.264]


Смотреть страницы где упоминается термин Кристаллизация статистических: [c.118]    [c.204]    [c.161]    [c.19]    [c.186]    [c.4]    [c.222]    [c.275]    [c.225]    [c.188]    [c.184]    [c.132]    [c.112]   
Кристаллизация полимеров (1966) -- [ c.292 ]




ПОИСК







© 2024 chem21.info Реклама на сайте