Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия распределение, корреляция

    В результате давление, производимое кинетической энергией электронов и идущее от центральной области связи вдоль нее, ослабевает, а это и является действующей причиной натекания извне зарядовой плотности, т. е. действие ядерного насоса отсюда сжатие облака и снижение потенциальной энергии . Происходит корреляция в движении электронов и новое распределение их вдоль связевой оси. Можно указать на три типа корреляции а—часть электронной плотности переходит направо, а другая — налево и потому корреляцию называют право-левой р — часть электронной плотности движется к ядру, а другая от ядра (корреляция ( внутрь—наружу ) у — часть электронной плотности меняет угловое распределение— корреляция угловая . [c.160]


    Статические корреляции, основанные на распределении, энергии. . Статические корреляции для образования водородных связей. . Статические корреляции между константами диссоциации. ... Статические Корреляции между константами гидратации. ... [c.11]

    Энергия корреляции появляется потому, что вычисления производят, пользуясь волновой функцией т ), соответствующей распределению электрона, не зависящему от наличия в атоме второго электрона. В действительности же электроны стремятся до известной степени отдалиться друг от друга, и это стремление должно сказываться в виде понижения энергии атома, что делает его более стабильным. Это обозначает повыщение работы ионизации. Разность А называется энергией электронной корреляции. [c.42]

    В табл. 4.3 приведены полученные из рассчитанных распределений значения средней внутренней энергии ( ,>, средней колебательной энергии (Е ), коэффициента корреляции между ними Ки/ ,,. а также средняя доля колебательной энергии во внутренней энергии молекулы для всех рассматриваемых температур. Из таблицы видно, что параметры энергетических распределений молекул Н2 практически не зависят от температуры, доля колебательной энергии составляет примерно 85% внутренней знергии образующихся в результате рекомбинации молекул водорода. [c.104]

    Приведенные рассуждения включают ряд допущений, в действительности поведение растворов часто значительно сложнее. Например, конечный раствор представляет собой систему с совершенно случайным распределением частиц, при рассмотрении которой была исключена возможность существования в растворе некоторой упорядоченной структуры. Если наличие упорядоченной структуры вносит свой вклад в образование раствора, то изменение энтропии будет иметь меньшее положительное значение, которое трудно поддается анализу. Тем не менее корреляция положительных отклонений от поведения идеальных растворов и ограниченной растворимости с энергиями притяжения между однородными частицами является достаточно хорошим первым приближением. [c.192]

    В этом разделе мы рассмотрим причины реакционной способности электронно-возбужденных состояний, связанные с особенностями распределения электронов в возбужденных частицах. Как мы уже видели в разд. 5.2, столкновительная передача энергии может быть эффективной только в адиабатических процессах, протекающих по непрерывной потенциальной поверхности, которая связывает реагенты с продуктами. Говорят, что в этом случае реагенты и продукты коррелируют. Наиболее важны правила корреляции электронного спина. Так как квантовое число S является достаточным для описания систем, то общий электронный спин сохраняется. Такое утверждение не согласуется с представлениями о том, что триплетное состояние сенсибилизатора, подобного бензофенону, возбуждает триплет акцептора, хотя энергетика системы также может определять преимущественное образование триплета по сравнению с синглетом (см. разд. 5.6). Аналогичные доводы применимы к сохранению спина в таких реакциях, как присоединение, отщепление или обмен, в которых происходят химические изменения. По этому правилу нельзя сказать, будет ли протекать реакция, а только можно сказать, пе запрещена ли она законами квантовой механики. Адиабатической реакции могут препятствовать другие факторы, такие, как высокая энергия активации или чрезмерные геометрические искажения. При дальнейшем изложении материала в этом разделе всегда будут иметься в виду правила, разрешающие реакцию, но не определяющие ее вероятность [c.155]


    Поскольку строение жидкостей определяется короткодействующими силами, ясно, что и корреляция, т. е. взаимосвязь положений молекул, также должна зависеть, в основном, от короткодействующих сил химического типа. Эти силы определяют вероятные положения молекул первой координационной сферы. Теми же силами устанавливаются вероятные положения молекул второй координационной сферы по отношению к молекулам первой координационной сферы и т. д. Таким образом корреляция, по существу, есть статистическое описание ассоциации и комплексообразования. Функции, описывающие корреляцию молекул и атомов, имеют статистическую природу. Поэтому связь между радиальной функцией распределения Я Р, Т) и межмолекулярными взаимодействиями, а также строением ассоциатов и комплексов, сложна и неоднозначна. В рамках суперпозиционного приближения аналитическое выражение связи между радиальной функцией распределения атомов и потенциальной энергией межатомного взаимодействия было найдено рядом авторов. Наиболее последовательный и математически совершенный вариант теории был развит Н. Н. Боголюбовым [20]. Анализ интегрального уравнения Боголюбова и вычисления радиальной функции распределения с помощью этого уравнения выполнены И. 3. Фишером [21. Расчет радиальной функции распределения атомов для некоторых простых видов эмпирических функций потенциальной энергии может быть осуществлен с помощью ЭВМ. [c.122]

    Заключая краткое обсуждение различных подходов к оценке реакционной способности ароматических соединений при электрофильном замещении, можно отметить, что они непосредственно связаны с механизмом реакции и соответствуют различным моделям переходного состояния. Предположение, что на ориентацию атакующего реагента непосредственно влияет распределение электронной плотности, означает, что переходное состояние очень близко к исходному и что ориентация в значительной степени определяется электростатическими силами. Корреляция реакционной способности с граничной я-электронной плотностью предполагает взаимодействие с переносом заряда между реагентом и ароматической молекулой, в которой ароматический характер в значительной мере сохранен. Наконец, корреляция реакционной способности со стабильностью а-комплекса и энергией локализации означает, что переходное состояние не имеет ароматического характера и этим сильно отличается от исходного. Имеющиеся экспериментальные данные показывают, что в большинстве случаев реализуется третья модель переходного состояния, и анализ реакционной способности, выполненный на ее основе, дает наиболее надежные результаты. [c.41]

    С момента своего возникновения квантовая химия была связана главным образом с изучением электронного строения молекул, т.е. электронного распределения в стационарных состояниях, а также состава входящих в волновую функцию молекулярных орбиталей, взаимного расположения уровней энергии занятых и виртуальных орбиталей и т.п. Были предприняты многочисленные попытки интерпретировать такие понятия классической теории, как валентность, химическая связь, кратность химической связи и др. Одновременно были введены и многие новые понятия, такие как гибридизация, а- и л-связи, трехцентровые связи и т.д., часть из которых прочно вошла в язык современной химической науки, тогда как другие оказались менее удачными и сейчас уже хорошо забыты. К тому же и содержание большинства понятий, возникающих внутри квантовой химии, заметно трансформировалось с течением времени. В квантовой химии было введено большое число различных корреляций между экспериментально наблюдаемыми для вещества и вычисляемыми для отдельных молекул величинами. Сама по себе химия является в существенной степени корреляционной наукой, базирующейся прежде всего на установлении соответствия между свойствами соединений и их строением и последующем предсказании требуемой информации для других соединений. По этой причине богатейший набор информации о строении, в том числе электронном строении соединений, предоставляемый квантовой химией, оказался как нельзя кстати для дальнейшего активного развития химической науки. Так, на основе квантовохимических представлений была развита качественная теория реакционной способности молекул, были сформулированы правила сохранения орбитальной симметрии, сыгравшие важную роль при исследовании и интерпретации реакций химических соединений. [c.4]

    Корреляция коэффициентов распределения веществ при экстракции Ри (VI) и и (VI) и энергии водородной связи экстрагента с водой [c.125]

    Изучено распределение интенсивности спектральных линий натрия по радиусу дугового разряда для различных соединений натрия, и найдена корреляция между энергией связи галогенидов натрия и изменением числа свободных атомов в более холодных частях стол- [c.98]


    Попытки установить соответствие между испытаниями на разрыв и раздир не дали положительных результатов. Различие возникает из-за фактического существования дефектов структуры, их случайного распределения по форме и размерам в объеме материала. Более того, отмечается повышенная чувствительность сопротивления раздиру к рецептурным и технологическим факторам (степени вулканизации, пластикации каучука, нарушениям в режиме смешения и т.д.). Корреляция между характеристической энергией раздира Я и удельной [c.538]

    Ван-Хов [6] подчеркивает, что обобщенное бинарное пространственно-временное распределение С (г, ) является функцией, связывающей угловые и энергетические зависимости рассеяния нейтронов ядрами твердого тела или жидкости с величинами, характеризующими молекулярную динамику и структуру вещества. Эта функция является естественным обобщением бинарной функции (г), учитывающей статические корреляции, которая используется для количественного описания связи интенсивности рассеянных рентгеновских лучей [4, 5] с молекулярной структурой (когда перенос энергии при рассеянии незначителен по сравнению с энергией рассеиваемых фотонов). В сложных системах, таких, как жидкости или газы, где в отличие от твердых тел положение атомов все время изменяется, эти функции особенно полезны, когда интересуются "усредненными" и "наиболее вероятными" конфигурациями, координацией и движением молекул. В этом разделе представлены количественные соотношения между такими коррелятивными функциями и сечениями рассеяния нейтронов и рентгеновских лучей. Полные выводы этих соотношений не приводятся, так как их можно найти в соответствующей литературе [5,7-18] . Примеры коррелятивных [c.206]

    Важно отметить, что методы МО и ВС применительно к со пряженным и ароматическим молекулам приводят к удивительно согласующимся результатам. Это относится к энергии резонанса, длинам связей и распределениям зарядов. В методе МО почти полностью пренебрегается электронной корреляцией (раздел 6.4), а в методе ВС значение ее сильно преувеличено согласие получаемых результатов свидетельствует об их правильности . В то же время имеется ряд примеров, показывающих, что результаты, полученные двумя методами, не всегда согласуются между собой, причем трудно сказать, кото-рый из методов лучше. Так, например, существует незначитель ное различие в результатах расчетов длин связей в больших молекулах, что имеет второстепенное значение, а также более важные расхождения, как в интерпретации ультрафиолетовых спектров. [c.293]

    Часто химические реакции протекают настолько медленно, что распределение реагирующих частиц по энергиям близко к равновесному и исходные частицы и продукты реакции равномерно распределены в пространстве, т. е. нет корреляции во взаимном расположении реагирующих частиц. Однако при очепь быстрых реакциях от таких равновесных распределений реагирующих частиц могут наблюдаться отклонения. [c.97]

    При исследовании корреляции в качестве замещаемых групп были выбраны хлор и бром, чтобы при переходе от одного растворителя к другому колебательная энергия и функция распределения всегда изменялись одинаковым образом. Корреляцию можно распространить на органические сульфонаты, фториды или тиосульфаты при условии замены стандартного соединения сульфонатом, фторидом или тиоцианатом. [c.188]

    При статистико-механическом рассмотрении реакций электронного обмена Маркус для облегчения расчетов вводит представление об эквивалентном равновесном распределении . При расчете вклада среды в свободную энергию активации среду рассматривают как непрерывный диэлектрик. В последнее время Маркус обобщил статистико-механическое рассмотрение эта обобщенная теория, увеличивает возможности теоретического предсказания корреляций между экспериментальными данными. В дополнение к указанным выше трем общим предположениям и к классическому описанию движения ядер Маркус вводит еще три допущения 1) неполное диэлектрическое насыщение среды за пределами внутренних координационных сфер 2) силы, возникающие при изменении координат внутренней координационной сферы, линейно зависят от смещения 3) флуктуации координат в пределах внутренней сферы активированного комплекса и вне ее практически независимы. [c.301]

    При качественной интерпретации соотношения между химическими сдвигами энергий связи электронов оболочки и распределением заряда в молекулах возникло много фальсификаций. В гл. 3 упоминалось, что с помошью метода молекулярных орбиталей можно рассчитать формальный заряд (8) на атоме в молекуле. Напомним, что формальный заряд определяется как электронная плотность на атоме в молекуле минус электронная плотность на свободном атоме. Из рис. 16.15 следует, что можно коррелировать формальный заряд на атоме азота в молекуле (полученный с помощью итерационных расчетов по расширенному методу Хюккеля) с наблюдаемыми энергиями связи 1. -электронов азота для ряда азотсодержащих соединений. Отметим, что для корреляции со сдвигом в энергиях фотоионизационных переходов электронов оболочки используют заряд основного состояния атома, который определяют произвольным образом. Наблюдаемый успех либо случаен, либо обусловлен тем, что члены, такие, как энергии электронной релаксации, сохраняют постоянное значение. [c.347]

    Вследствие распределения свободной энергии фазовых переходов компонентов и фракций системы по бернулевскому статистическому закону имеет место соответствующее распределение корреляционных радиусов и параметров порядка. В результате этого фазовые переходы имеют размыгый характер. В случае нормального распределения состава системы по свободным энергиям фазовых переходов, в критическом состоянии устанавливается распределение радиусов корреляций по закону ехр(-К ) и параметров порядка по закону ехр(-т] ). Это означает, что в системах с концентрационным хаосом имеет место пространственно-временное пересечение корреляционных радиусов отдельных компонентов [c.38]

    Распределение заряда определяется состаиом и энергиями заселенных МО молекул, а также возможностью изменения их заселенности за счет переноса электронов на вакантные МО. Это и показано на рис. 4.47 соответствующими стрелками, соединяющими заселенные МО двух молекул и возможные возбуждения электронов с заселенных на вакантные МО. Дисперсионный вклад связан с корреляцией движения электронов и обязательно включает взаимодействия заселенных и вакантных МО обеих молекулярных систем. Эти два вклада по своей природе отрицательны и способствуют притяжению молекул. между собой. [c.155]

    Для оценки равновесного коэффициента распределения часто используются следующие эмпирические закономерности 1) тетраэдрический радиус лпюгих примесей в германии и кремнии при температуре плавления полупроводника изменяется симбатно с изменением коэффициента распределения. Эта зависимость определяется типом вхождения примеси в решетку основного вещества и характером образующихся связей 2) зависимость между кд и стандартными энтальпиями сублимации примесей при температуре плавления основой корреляции служит зависимость между энергией атомов в простом веществе и твердом растворе его в полупроводниковом материале. [c.61]

    Наиболее важными свойствами, определяющими активность лекарственных препаратов, являются три физико-химических свойства липофильность, электронное распределение и форма молекул. Все они связаны с топологической структурой молекул, хотя этот факт, по-видимому, в значительной мере недооценивался. Тем не менее эти свойства были изучены с помощью соотношений линейности свободных энергий (ЛСЭ) [68] и количественных корреляций структура — активность (ККСА) [69]. Подробное обсуждение природы и действия этих двух методов можно найти в книге Зайделя и Шапера [70]. Первый метод основан на предположении, что всякий раз, когда функциональная группа присоединена к одному и тому же центру в молекуле, к полной реакционной способности молекулы будет добавлена или вычтена из нее фиксированная величина. Во втором методе делается предположение, что разнообразные роли, выполняемые функциональной группой в активной структуре, могут быть разделены. Статистика, основанная на множественной [c.201]

    При иерархич построении квазигомогенного приближения производят операцию осреднения (сглаживания) флуктуаций порядка предыдущего (мелкомасштабного) структурного уровня Для этого необходимо, чтобы характерный масштаб / предыдущего уровня был много меньше харак терного масштаба L последующего уровня и система содержала на уровне L макроскопически большое число неоднородностей масштаба / Кроме того, должен существовать промежут размер X I X L) такой, чтобы параметры ф после осреднения по объему (или пов-сти Х ) прел ставлялись уже не флуктуирующими, а регулярными ф-ция ми пространств координат с характерным масштабом изменения L Масштаб X значительно превышает характерное расстояние, на к-ром взаимодействуют флуктуации масштаба/-т наз радиус корреляции Область осреднения размера X наз элементарным физ объемом (или макроточкой) Напр, для процесса хим абсорбции газа жидкостью в двухфазном реакторе барботажного типа / соответствует масштабу газового пузыря, а L-размеру реактора Осреднение концентрации компонентов в каждой фазе проводят по элементарному объему Х , содержащему достаточно большое число пузырей, но значительно уступающему объему реактора Линейный размер X выбирается с учетом интенсивности локального гидродинамич перемешивания Объем Х рассматривается как макроточка с эффективными (т е усредненными по времени наблюдения) значениями коэффициентов массоотдачи, уд тепловыделения, распределения в-в между фазами и т п, к-рые необходимы для составления кинетич ур-ний отдельньи стадий Ур-ния баланса массы и энергии затем составляют с учетом перемешивания в масштабе всего реактора [c.633]

    Наиб, существ, недостаток М. о. м.-то, что они ие учитывают электронной корреляции, т. е. взаимной согласованности пространств, распределения электронов в многоэлектронной мол. системе. Без учета электронной корреляции получается, что даже качеств, рассмотрение может дать неправильные результаты для мн. возбужденных состояний молекул, в частности при достаточно близко расположенных по энергии двух или большего числа электронных состояний для определенных геом. конфигураций ядер. При решении подобных задач приходится отказываться от молекулярно-орбитальной картины и переходить к более сложному описанию, напр, с помощью конфигурационного взаимодействия метода или др. неэмпирических методов квантовой химии. [c.123]

    Ограничения П. л. т. относятся преж,це всего к анализу возбуждешых состояний комплексов (особенно в случае средних и слабых полей лигандов). В этих сл) чаях для получения надежных данных о распределении электронов в комплексах следует учитывать не только расположение и порядок одноэлектронных уровней энергии, но и корреляц. эффекты, обусловленные межэлектронным отталкиванием. При анализе комплексов, образованных тяжелыми металлами, необходим учет спин-орбитального взаимодействия и нек-рых др. эффектов. [c.65]

    Для описания неравновесных процессов в жидкостях одночастичная ф-ция распределения ф1 не раскрывает специфики явлений и требуется рассмотрение двухчастичной ф-ции распределения <р2- Однако для достаточно медленных процессов и в случаях, когда масштабы пространств, неоднородностей значительно меньше масштаба корреляции между частицами жидкости, можно использовать локально равновесную одночастичную ф-цию распределения с т-рой, хим. потенциалами и гидродинамич. скоростью, к-рые соответствуют рассматриваемому малому объему жидкости. К ней можно найти поправку, пропорциональную градиентам т-ры, гидродинамич. скорости и хим. потенциалам компонентов, и вычислить потоки импульсов, энергии и в-ва, а также обосновать ур-ния Навье-Стокса, теплопроводности и диффузии.,В зтом случае коэф. переноса оказываются пропорциональными пространственно-временньа< корреляц. ф-циям потоков энергии, импульса и в-ва каждого компонента. [c.420]

    Метод РСА позволяет устанавливать стереохим. и кристаллохим. закономерности строения хим. соединений разл. классов, корреляции между структурными характеристиками в-ва и его физ.-хим. св-вами, получать исходные данные для углубленной разработки теории хим. связи и изучения хим. р-ций, анализировать тепловые колебания атомов в кристаллах, исследовать распределение электронной плотности в кристаллах. Использование автоматич. дифрактометров и ЭВМ расширило круг задач, решаемых с помощью РСА в химии, в частности позволило использовать структурные данные для оценки параметров, входящих в выражения для волновых ф-ций и энергий мол. систем. [c.446]

    Пример, для трансляционной диффузии, систем с анизотропной диффузией или пониженной размерностью. Неоднородное распределение связано с пространственной неоднородностью, например с неоднородностью энергий активации в различных точках гетерогенной системы. Используя для описания неоднородного распределения тс логарифмически-нор-мальный закон, Г. Резинг [573] из экспериментальных значений и Гг вычислил функции распределения времен релаксации воды в цеолитах и некоторых других гетерогенных объектах. Однако ширина полученных распределений, по-видимому, является завышенной [591, 598], так как наблюдаемые зависимости Г1(тс) и Гг(тс) можно отчасти объяснить и эффектами кросс-релаксации, а также при учете явлений, связанных с однородным расп]ределением времен корреляции. [c.234]

    Экспериментальные исследования мономоле1оглярных реакций при фотоактивации сводятся к следующим задачам идентифицировать продукты реакции определить время жизни т возбужденной частицы (константа скорости мономолекулярной реакции равна 1/х) измерить распределение энергии по электронным, колебательным, вращательным и поступательным степеням свободы установить корреляцию между скоростью разлета продуктов и вращательными угловыми моментами продуктов. Такие экспериментальные исследования необходимы для анализа механизма и развития теоретических моделей мономолекулярных реакций при фотоактивации. [c.142]

    Второй источник парноц корреляции зарядов связан с самим их электростатическим взаимодействием. Он всего сильнее выражен и легче всего рассчитывается теоретически тогда, когда заряды имеют полную возможность перемещаться вдоль поверхности раздела, что имеет место при нелока-лизованной адсорбции ионов, иЛи в том случае, когда энергия связи при локализованной адсорбции невелика и для расчета вероятности заполнения адсорбционных центров можно воспользоваться распределением Больцмана. Расчеты такого рода были проведены авторами в ряде работ [49—51], суть которых сводится к следующему. [c.177]

    Соотношение Каданова (10.7) является более тонким (и даже может потребовать некоторых небольших поправок при (1 = 3). Мы можем, однако, получить известное представление о его природе с помощью следующей процедуры. Вблизи т становится более реалистичным выбрать в качестве элементарных единиц не индивидуальные атомные моменты, а последовательные области размера Внутри каждой такой области корреляции сильны, так что единственной независимой переменной оказывается полный момент этой области. Вычисляя затем функцию распределения и свободную энергию ЛF для этих полных моментов, естественно предположить экстенсивность ДF, т.е. ее пропорциональность числу скоррелированных областей на единицу объема, которое равно (в (I измерениях) [c.302]

    Просчеты в каналах анализатора из-за конечного времени регистрации ( мертвого времени ) также могут приводить к искажениям истинного спектра. Следует отметить, что во многих случаях, например при измерении амплитудного спектра постоянной интенсивности между измеряемыми величинами, отсутствует корреляция во времени. В этих случаях распределение потерянных событий (так же, как и зарегистрированных) отличается от измеряемого только нормирующим множителем. Следовательно, влияние просчетов можно )Д1есть, умножив значения всех отсчетов в каналах на нормирующий множитель, постоянный для всех каналов. Такой множитель можно получить, например, делением полного числа событий, поступивших на вход анализатора (в пределах регистрируемого диапазона энергий), на суммарное число событий, зарегистрированных всеми канатами анализатора. [c.98]

    РАСТВОРОВ ТЕОРИЯ, связывает св-ва р-ра со св-вами молекул или макросвойствами чистых компонентов. Строгое решение первой задачи возможно методами статистич. физики жидкого состояния путем вычисления статистич. суммы р-ра, т. е. практически — интегрированием ф-ции распределения Гиббса, зависящей от энергии взаимодействия всех молекул, по всем возможным их координатам. Такие расчеты весьма сложны. В настоящее время применяется метод корреляц. ф-ций, позволяющий в принципе выразить радиальную ф-цию распределения через потен- [c.493]

    Термодинамическая теория флуктуаций неприменима, если условие аддитивности энергий теряет силу. Например, в критической области энергия образования флуктуаций очень мала. Поэтому даже малые взаимодействия между и остальной частью системы приводят к большим отклонениям от состояния равновесия. В этих условиях изменения термодинамических потенциалов флуктуирующих областей определяются не только отклонениями числа молекул N. плотности р, температуры I и других переменных от их равновесных значений, но и градиентами этих переменных. Иначе говоря, в критической области приходится вводить величины, характеризующие взаимодействие между dN и остальной частью системы. Так как в критической области корреляция флуктуаций в соседних элементах объема значительна, то хаотическое распределение флуктуаций более не имеет места. Происходит известное упорядочение в распределении флуктуаций в пространстве. [c.136]


Смотреть страницы где упоминается термин Энергия распределение, корреляция: [c.234]    [c.178]    [c.183]    [c.493]    [c.366]    [c.378]    [c.434]    [c.4]    [c.500]    [c.79]    [c.548]    [c.185]    [c.175]    [c.114]    [c.126]   
Равновесие и кинетика реакций в растворах (1975) -- [ c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Распределение по энергиям

Энергия корреляции



© 2025 chem21.info Реклама на сайте