Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная теория в органической представления

    В данном учебном пособии сконцентрирован, систематизирован и подан с единых теоретических позиций основной материал, относящийся к каждой теме. Для аргументации высказанных положений широко использованы современные представления электронной теории органической химии и основные физико-химические характеристики органических веществ (ди-польные моменты, межатомные расстояния, энергии диссоциации связей, константы кислотности и др.). [c.5]


    Еще классическая электронная теория органической химии сформировала представление о том, что влияние строения на реакционную способность соединения может быть определено как совокупность независимо действующих электронных и пространственных эффектов. Мерой реакционной способности соединения служат величины свободной энергии реакции или активации. [c.158]

    В истории электронных теорий органической химии теория резонанса заняла промежуточное положение между качественной теорией электронных смещений и количественными методами квантовой химии, в первую очередь методом валентных связей. Здесь надо сразу заметить, что теорией резонанса называли в разное и даже в одно и то же время отнюдь не одинаковые теоретические представления. У Полинга первоначально теория резонанса как бы но сути явилась продолжением взглядов Льюиса, поскольку резонирующие электронные структуры у Полинга представляют собой подобие электронных таутомеров Льюиса. С другой стороны, у Уэланда, как и у большинства сторонников теории резонанса, резонирующие структуры — это, так сказать, модели реально, как правило, неосуществимого распределения электронов в молекуле. В этом отношении они подобны тем двум предельным состояниям, которые согласно теории мезомерии Ингольда в результате взаимного возмущения дают мезомерное состояние, отвечающее распределению электронов в реальной частице. Таким образом, в этом варианте теория резонанса отличается от теории мезомерии в основном лишь тем, что в ней реальное электронное строение частицы может быть представлено как промежуточное не только между двумя, но и между большим числом предельных состояний резонансных структур , выражаемых сходными с обычными структурными формулами, иногда оснащенными знаками + и — (у Ингольда — стрелками). При объяснении химических свойств принимается, что каждая из мыслимых [c.69]

    В истории качественных электронных теорий органической химии можно наметить три периода. Первый период — возникновение понятия о ковалентной связи и разработка на основе этого понятия первых ковалентных теорий строения и свойств органических молекул этот период длился с конца 1900-х до начала 20-х годов. На следующее десятилетие падает второй период, когда, по сути дела, была разработана теория электронных смещений. Для третьего периода, начавшегося в 30-х годах н продолжающегося до настоящего времени, характерно не столько введение фундаментально новых идей, сколько распространение теории электронных смещений на новые классы соединений и реакций, а также, как мы уже упоминали, ассимиляция представлений квантовой химии. В на- [c.55]


    Для аргументации высказываемых в книге положений привлекаются современные представления электронной теории органической химии и основные физико-химические характеристики органических веществ (дипольные моменты, межатомные расстояния, энергии связи, константы кислотности). [c.6]

    Однако судьба теории Нефа, как и других аналогичных теорий, пытавшихся решить основной вопрос химии не на основе новых, достаточно обоснованных представлений о природе валентности и кратных связей, а исходя из каких-либо общих, скорее методологических, чем естественнонаучных принципов [44, стр. 167], была предрешена появлением электронных теорий органической химии. [c.57]

    Особенно тщательно исследован период с конца 50-х до середины 60-х годов XIX в., т. е. время возникновения классической теории химического строения, так как в освещении именно этого периода в историко-химической литературе имеется наибольшая путаница. Период, непосредственно предшествовавший переходу к электронным представлениям, так же как и самый этот переход, будет рассмотрен в следующей монографии автора, посвященной истории электронных теорий органической химии. [c.6]

    Современная электронная теория молекул и применение к ней квантовой механики разработаны совершенно недостаточно. Практически невозможно получить какие-либо количественные результаты непосредственно из теории. Даже в качественном отношении современная электронная теория органической химии является скорее собранием более или менее вероятных постулатов поведения электронов в частице, собранием постулатов, опирающихся в сущности на химические опытные правила реакционной способности, чем подлинной теорией, основанной на логическом развитии электронных и квантовых понятий. Мы имеем здесь дело скорее с новым обобщенным языком, на котором излагаются правила реакционной способности. Квантово-механические и электронные представления вряд ли можно в настоящее время рассматривать как основную базу для дальнейшего развития учения о реакционной способности. Такие преждевременные попытки могут приводить к спекуляциям, подчас весьма сомнительным, а иногда и просто неверным. [c.324]

    Второй этап, начавшийся с исследований Фишера, работ, по созданию кинетики ферментативных реакций и работ по выделению и очистке ферментных препаратов, продолжался до начала 50-х годов. Этот этап характеризовался созданием основных представлений о природе ферментов, созданием первых представлений о механизме их действия, развитием основ ферментативной кинетики. Его начало было связано с широким внедрением в биологическую химию достижений органической и физической химии. Переход к следующему эта- пу характеризовался распространением электронных теорий органической химии для объяснения ферментативных процессов. Реальный переход к современному этапу был обусловлен, однако, бурным ростом экспериментальной техники, начавшимся в послевоенные годы. [c.183]

    Она (электронная теория. — В. П.) ничего не предсказывает того, чего нельзя предположить и без этой гипотезы, и, во всяком случае, на основе предсказаний электронных гипотез не было сделано ни одного сколько-нибудь выдающегося открытия, а делаемые открытия лишь позднее объясняются электронными теориями. Пока эта гипотеза все же еще пересказ фактов органической химии на язык электронных представлений. Стремление к этому психологически весьма понятно ввиду общей уверенности в огромном значении электронной теории строения атомов для будущего химии  [c.39]

    Минуло еще 75 лет успешного развития стереохимии. Она обогатилась электронными и квантовохимическими представлениями. Созданы конформационный анализ и динамическая стереохимия. Плодотворно развивается учение о пространственном строении органических радикалов, ионов и переходных комплексов. Богатый теоретический и экспериментальный материал по изучению пространственного строения соединений нашел широкое практическое применение. Ничто из того, что было получено стереохимией XX в., не поколебало основных понятий классической теории Вант-Гоффа. Они и сейчас, как устои, держат мост, который соединяет прошлое и настоящее, настоящее и будущее стереохимии. [c.238]

    В преподавании органической химии в настоящее время обучение строится на основе современной теории строения, которая слагается из трех теорий бутлеровской теории химического строения и двух дополняющих и развивающих ее теорий — электронной теории и теории пространственного строения. Это обусловлено введением в курс органической химии сложных понятий, связанных с квантовомеханическими и стереохимическими представлениями, часть которых приобретена учащимися еще в курсе неорганической химии. [c.243]

    Учебное пособие для студентов старших курсов, а также аспирантов химических вузов, специализирующихся в области органической химии и химии гетероциклических соединений. В нем рассмотрены основные гетероциклические системы с привлечением современных представлений электронной теории. Весьма це 1ны разделы книги, в которых даны сведения о развитии новых подходов к синтезу гетероциклов. В конце каждого раздела приведены интересные задачи, помогающие лучше усвоить материал. [c.4]


    Однако, по мнению докладчика, кроме этих двух важных классов в органическом катализе существует особенно богато представленный реакциями класс процессов, в промежуточных состояниях которых образуются не ионные, а ковалентные связи с неподеленной парой электронов. Сюда входят реакции гидро- и дегидрогенизации, гидрогенолиза, дегидроциклизации, дейтерообмена, ряд разделов дегидратации и многие другие реакции. Выделение такого класса не противоречит электронной теории катализа в более общем понимании, поскольку ковалентные связи состоят из спаренных электронов. Здесь характерны свои катализаторы. Мультиплетная теория разработана особенно подробно именно для этого класса реакций. [c.10]

    Основные научные работы посвящены развитию электронных представлений в органической химии. В начале своей научной деятельности изучал физико-химические свойства органических соединений — их ионизацию, растворимость, цвет. Затем посвятил себя изучению (с 1919) электронного строения химических соединений. Занимался выяснением структуры различных типов комплексных соединений. Объяснил (1923) координационную связь в рамках представлений электронной теории валентности выдвинул (1925) понятие хелатов и хелатных колец для характеристики молекул соединений, содержащих внутренние водородные связи. По совету П. И. В. Дебая занимался (с 1928) определением дипольных моментов молекул с целью выяснения корреляции между их величинами и свойствами веществ. Автор книг Органическая химия азота  [c.462]

    Принцип ЛСЭ в основе уравнения Гаммета и других соотношений этого типа должен соблюдаться независимо от вида реакционных серий. Тот факт, что наиболее удобная его формализация была получена для производных бензола, объясняется не какой-либо их исключительностью, а достаточной синтетической доступностью и тем общим интересом, который они представляют для теории органической химии. Развитие этой теории все более требует доказательств того, что сформированные на базе исследования особенностей химического поведения и физических свойств бензольных соединений представления о типах электронных эффектов и их взаимосвязи со строением не теряют своей силы и общности при перенесении на другие объекты, в первую очередь на многоядерные и гетероциклические системы. [c.234]

    Теории, пытающиеся рассматривать строение органических соединений с точки зрения электронной структуры атомов, появились в ряде стран, начиная с 1915 г., параллельно с разработкой вопросов, касающихся строения атомов, развиваемых на основе периодического закона Д. И. Менделеева. Первое рассмотрение всей органической химии с точки зрения электронной теории было осуществлено в России А. М. Беркенгеймом, читавшим в 1916 г. лекции по курсу Основы электронно й химии органических соединений на Московских высших женских курсах. В этот же период появились представления о двух типах связей—ионной, или электровалентной, и атомной, или ковалентной. [c.43]

    Современные электронные теории органической химии оказались в высшей степени полезными для целого ряда разделов химии, поскольку с их помощью удалось связать реакционную способность соединений с их химическим строением. Наиболее успешно эти теории были использованы для объяснения относительной силы органических кислот и оснований. По определению Аррениуса, кислотами являются соединения, которые в растворе дают ионы водорода Н+, в то время как основания образуют ионы гидроксила 0Н. Эти определения были вполне правильными до тех пор, пока речь шла только о реакциях, идущих в водных растворах. Поскольку представления о кислотах и основаниях оказались весьма полезными для практики, были предприняты попытки сделать их более общими. Так, Брёнстед определил кислоты как вещества, способные отдавать протоны, т. е. как доноры протонов, а основания — как акцепторы протонов. Рассмотрим в качестве примера первую ионизацию серной кислоты в водном растворе как кислотноосновной процесс  [c.71]

    Современную синтетическую и теоретическую органическую химию отличает широкое применение физических методов, которые облегчают выяснение структуры соединения и исследование механизма реакции. Современная органическая химия вооружена множеством специфических приемов для введения определенных групп в органические соединения, эффективными методами для разделения смесей и очистки веществ. Стабильной теоретической базой органической химии являются электронная теория и представления квантовой химии. В настоящее время можно синтезировать почти любое сложное органическое соединение, теоретически можно предсказать существование новых необычных соединений. Синтезированы природные соединения с очень сложной структурой алкалоиды стрихнин и морфин, зеленый пигмент растений хлорофилл, витамин В12 (Р. Вудворд), полипептиды с более чем 30 остатками аминокислот например, гормон инсулин человека, состоящий из 51 остатка аминокислот (П. Зибер), рибонуклеиновые кислоты, состоящие из 50 и более нуклеозидов (Г. Корана). [c.12]

    Катрицкий и Лаговская, желая подчеркнуть типичные особенности гетероциклических соединений, начинают изложение с шестичленных гетероциклов, обобщая реакции гетероциклизации, с общих позиций объясняя реакции замещения у сходных структур. В соответствии с этим пятизвенные гетероциклы рассматриваются позже, а нетипичным системам, например гидрированным гетероциклам, приближающимся к ациклическому ряду, или аномально напряженным структурам с трех- или четырехзвенньши циклами уделено немного внимания. Главное —это ароматические системы в гетероциклическом ряду. При редактировании русского текста мы сделали незначительные купюры в тех местах, где авторы использовали формальные представления теории резонанса, но сохранили весь основной стержень теоретических представлений, базирующихся на современной электронной теории органической химии. [c.6]

    Здесь нет возможности и не ставится цель сколько-нибудь подробно охарактеризовать современные представления о непрерывной форме химической организации вещества. О ней здесь идет речь только потому, что противоположная ей форма — дискретная, т. е. свободдые атомы и молекулы относительно полно охарактеризованы во всех основных разделах химии. В самом деле, дискретной форме, главным образом молекулам, посвящены теория химического строения, класоическая и современная стереохимия, все электронные теории органической химии, значительная часть учения о комплексных соединениях и т. д., тогда как [c.197]

    Книга Гайнца Беккера Введение в электронную теорию органических реакций представляет собой четкое и ясное изложение электронных представлений о механизмах наиболее распространенных и важных реакций органических веществ, без изложения которых не обходится ни один курс органической химии, ни практика исследователя. В отличие от других книг теоретического направления, обычно ограничивающихся при изложении механизма реакций лишь графикой электронных смещений, книга Беккера, помимо очень удачной графики этого рода, вскрывает физико-химические, термодинамические и электронно-структурные факторы движущих сил реакций. Она вооружает читателя глубокими знаниями и возможностью предвидения. Первые три главы излагают общие теоретические основы проблемы химической связи, распределения электронной плотности в органических молекулах и основные положения кинетики и термодинамики органических реакций с освещением теории переходного состояния и элементарного акта реакции. Первая из этих глав, посвященная квантовомеханическим основам теории химической связи, написана в форме, доступной для химиков-органиков, обычно плохо владеющих высшей математикой. В этой главе некоторым сокращениям подверглось изложение представлений о модели атома Бора, имеющих лишь исторический интерес. В этой же главе излагаются основы квантовой механики, где Беккер подходит к уравнению Шредингера, используя аналогию с волновым уравнением. Эта аналогия имела определенное эвристическое значение при создании волновой механики. Однако она, естественно, не отражает важнейших особенностей уравнения Шредингера и вряд ли облегчает его -восприятие. Поэтому взамен этой аналогии мы изложили основы квантовой мех-лники в доступной форме, аналогично тому, как это Сделается в основных современных курсах квантовой химии. / [c.5]

    Уточнение возникающих проблем является необходимым ввиду того, что целый ряд представлений электронной теории органических реакций, основанных на статике формул, серьезно препятствует успехам, возможным в результате технического оазвития средств исследования. [c.61]

    Качественные представления об индукционном эффекте являются неотъемлемой частью классической электронной теории органической химии. Но это не означает, что к настоящему времени имеется полная ясность относительно природы этого явления. До сих пор в литературе обсуждаются и отстаиваются две гипотезы. Согласно первой из них, авторами которой являются Кирквуд и Вестгеймер [95], индукционный эффект возникает в результате электрического взаимодействия по типу диполь— диполь, диполь—заряд или заряд—заряд, В качестве взаимодействующих диполей принимаются полярные связи. Эта электростатическая теория берется за основу или обсуждается как один из возможных вариантов в ряде последних работ [45, 96—99]. I [c.89]

    Электронные теории органической химии имеют большую историю, начинающуюся вскоре после открытия электрона в 1897 г. Следует отметить, что вопреки общепринятой точке зрения, согласно которой автором этого открытия считают Томсона, первое определенное указание, основанное на экспериментальных данных, на существование электрона принадлежит Вихерту в Германии, и именно от Вихерта — через Нернста, а затем Абегга и Бодлендера — берут свое начало электронные представления в химии [73]. [c.56]

    Электронные теории органической химии возникли после того,. ка1ч электрон был открыт физиками и химики получили возможность, опираясь на это открытие, по-новому осмыслить понятия о химическом сродстве, валентности и химической связи. Наиболее благоприятная почва для восприятия новых идей имелась в физической ХИЛП1И, что было связано с успехом теории электролитической диссоциации Аррениуса, и в неорганической химии, в которой под влиянием успеха координационной теории Вернера происходила решительная переоценка старых взглядов на строение молекул. Лишь после принятия в физической и неорганической химии электронных представлений были сделаны попытки решить при их помощи назревшие проблемы также и в органической химии, в которой электрохимические представления были решительно отброшены — и, казалось бы, навсегда — свыше 50 лет назад. [c.7]

    В настоящей главе мы и рассмотрим эти предпосылки, но предварительно для полноты картины начнем с краткого исторического очерка возникновения электронных представлений в физике, физической и неорганической хи>лни. Сделать это тем более целесообразно, что первые электронные теории органической химии тесно связаны со взглядами, развитьпш физиками и химикалш-неорганиками. [c.7]

    В разд. 9.13 рассматривалось влияние заместителей, которое обусловлено поляризацией я-электронов в соседней сопряженной системе. Однако уже давно было отмечено, что возможны эффекты и другого характера, поскольку заместитель может влиять на реакцию в центрах, изолированных от него промежуточными насыщенными атомами, через которые эффекты сопряжения передаваться не могут. На заре электронной теории органической химии Лапворт и Робинзон [26] указали на два возможных эффекта такого типа — эффект поля, в котором заряженный или дипольный заместитель влияет на реакцию, протекающую в удаленном от заместителя положении вследствие непосредственного электростатического воздействия через пространство, и индуктивный эффект (который мы будем называть 0-индуктивным эффектом для того, чтобы отличить его от я-индуктивного эффекта, рассмотренного в разд. 9.13.1), в котором а-связи поляризуются. последовательно по такому же механизму, как в я-индуктивном эффекте. Основная идея здесь состоит в том, что если данный атом углерода образует полярную связь с каким-либо заместителем, то возникающий результирующий заряд на атоме углерода изменяет его электроотрицательность. Это в свою очередь приводит к поляризации а-связи, соединяющей данный атом с соседним атомом углерода. Последовательная поляризация такого типа может приводить к распространению влияния вдоль цепи атомов углерода. В то время, когда эти представления были выдвинуты, не были известны какие-либо факты и не было теоретических оснований, которые позволяли бы предпочесть один из этих механизмов. Поскольку оба они в равной мере согласовывались с существо-вавщими в то время экспериментальными данными, естественно, что высказывались предположения о наличии обоих эффектов. Однако Лапворт и Робинзон решили предпочесть а-индук-тивный эффект эффекту поля, и с тех пор, почти до настоящего времени, именно такую точку зрения разделяет большинство химиков-органиков. [c.519]

    Квантовая химия представляет такой раздел науки, где исчезает традиционное разделение между физикой и химией. Тем не менее на данном этапе развития и преобразования методов химической науки сохранилось еще некоторое раз.тхичие задач и интересов физики и химии. Поэтому для полноты представления о характере книги следует подчеркнуть, что она написана химиками, и в первую очередь для химиков. Так, авторами не рассматриваются методы точных последовательных теоретических расчетов, связанных с весьма актуальной проблемой учета электронной корреляции. Основное внимание уделяется простому методу Хюккеля, который позволяет сравнительно легко получить ответы на интересующие химика вопросы. Интересам химиков отвечает также обсуждение понятий и представлений электронной теории органической химии и соотношения этой полуэмпирической теории с квантовохимическими методами. С другой стороны, для физика, специализирующегося в области квантовой химии, данная в книге оценка места и значения электронной теории в современной науке представляется спорной. [c.6]

    Принцип донорно-акцеиторного механизма в электронной теории органических соединений противопоставляется другим современным представлениям, в которых гетеролитические реакции понимаются как бимолекулярные ионные процессы [3,4], где широко допускаются карбоний-(или карбопий-) ионы, а тримолекуляриые комплексы трактуются как частный и по существу не имеюпщй значения случай. [c.750]

    Крупнейшие открытия физики и химии конца XIX и начала XX в. в области строения материи оказали мощное влияние па развитие всех отраслей естествознания. В органической химии ото прежде всего прояв-лось в дальнейшем внедрении новых физических методов исследования (спектроскопия, реитгепографня, позже электронография, масс-спектро-скопия). Создание планетарной модели строения атома с некоторым запозданием отразилось и на теоретических представлениях химиков-органиков. Причиной более позднего проникновения в органическую химию электронных представлений является сложность объектов органической химии. Для органической химии большое значение имела гипотеза октет-ного строения электронных оболочек атомов в молекулах, выдвинутая Льюисом в 1913 г. [90—92]. В России пионером электронной теории органических соединений был А. М. Беркенгейм, который в 1917 г. выпустил специальную монографию Основы электронной химии органических соединений [93]. Крупной заслугой Беркенгейма является толкование многих эмпирических правил химического поведения и реакционной способности органических соединений с точки зрения электронных представлений начала XX столетия. [c.36]

    Достижения квантовой химии в настоящее время используются для интерпретации многих химических реакций. Однако современное состояние этой теории таково, что за исключением простейших молекул или ионов (Н ,Н2 , Н2), расчеты могут быть проведены только приближенно, и то лишь при использовании сложного математического аппарата. Чем точнее эти расчеты, тем дальше они, в большинстве случаев, от простых химических формул из них исчезают элементы наглядности, полученные результаты трудно поддаются физической интерпретации и уже не могут быть использованы химиками в их повседневной работе по расщеплению и синтезу сложных органических веществ. Поэтому был создан ряд вспомогательных, так называемых качественных электронных теорий химической связи (Вейтц, Робинсон, Ингольд, Арндт, Полинг, Слейтер, Хюккель, Мулликен и др.), которые нашли широкое распространение и дают плодотворные результаты в построении феноменологической органической химии. Впрочем, необходимо всегда знать границы применения этих приблил<.еиных представлений, и они будут часто указываться в настоящей книге. Наконец, следует отметить, что согласно квантовой механике, невозможно создать точную и вместе с тем наглядную теорию материи, так как любая такая теория неизбежно окажется лишь oгpaничeIiнo правильной. [c.24]

    Кратко остановимся на попытках истолкования природы явления хемосорбции органических соединений в области высоких анодных цотенциалов. В ранних работах, относящихся к периоду открытия этого явления, считали, что оно связано с наличием в молекуле органического соединения валентно-ненасыщенных групп. Большая роль придавалась л-электронному взаимодействию органических молекул с поверхностью (образование поверхностных соединений типа я- комплексов). Хотя эти представления хорошо объясняли, например, высокую адсорбируемость диенов с легко поляризуемой системой сопряженных п-связей, при трактовке причин адсорбируемости при высоких анодных потенциалах таких соединений, как алифатические спирты, встретились трудности. Явление хемосорбцни при высоких анодных потенциалах пытались истолковать на основе лигандной теории хемосорбции. Полагали, что хемосорбированные органические частицы, как и другие адсорбирующиеся компоненты раствора, включаются в полусферу комплекса, в котором центральной электронно-акцеп-торной частицей является ион Р1" +. Это объясняло конкурентный характер адсорбции, но нередко вступало в противоречие с ожидаемыми корреляциями между склонностью органических веществ к ком плексообразованию с платиновыми ионами и их адсорбируемостью в области высоких анодных шотенциалов. [c.122]

    Уже доэлектронные теории химической связи выдвинули представление о том, что ее механизм должен включать две противоположных характеристики дискретность, отражающую целочисленную валентность атомов и непрерывность, проявляющуюся в остаточном сродстве, взаимном влиянии удаленных атомов, ароматичности. Первые электронные теории в химии, рассматривавшие электрон в виде заряженного шарика, искали объяснение дискретности связи в дискретности заряда и массы самого элект1юна, а объяснение непрерывности химического взаимодействия искали в механических сдвигах, перемещениях электрона. Квантовая механика показала, что отмёченный подход принципиально ошибочен, что самому электрону органически присущи свойства дискретности и непрерывности. Основатели квантовой механики Бор, Шрёдингер, Гейзенберг установили [c.31]

    Разработка структурных теорий твердого тела. Проблемой но мер 1 структурной химии применительно к неорганическим соединениям является разработка структурных теорий твердого тела. Эти теории уже сейчас начинают создаваться на принципиально иной основе по сравнению со структурными теориями органических соединений. Последние базируются на представлениях о молекулах как замкнутых системах с сильными локализованными межатомными связями, на представлениях о взаимном влиянии атомов, которое изменяет в некоторых — в общем незначительных — пределах энергию попарных межатомных связей. Даже квантово-механические теории строения органических молекул с их основным понятием неразличимости обобщенных электронов приходят к необходимости устанавливать ква1ггово-меха нические аналоги классическим поня- [c.98]

    Те абитуриенты, которые получили среднее обра(зсзание незадолго до поступления в вуз (в средней школе, ПТУ или техникуме), довольно хорошо знакомы с материалом органической химии — последним по времени изучения. Поэтому авторы пособия сочли возможным конспективно изложить сведения об основных классах органических соединений, их взаимосвязи, механизмах и важнейших типах превращений. Основой изложения являются теория химического строения органических соединений А. М. Бутлерова, электронные и стереохимические представления. По мнению авторов, настоящее краткое конспективное изложение материала химии, данное в определенной системе, позволит учащимся и абитуриентам овладеть вопросами программы не только на репродуктивном, но и на творческом уровне. [c.4]

    ЭЛЕКТРОННЫЕ ТЕОРИИ в органической химии, комплекс теор. концепций, основанный на классич, теории строения и базирующийся на представлении о парной связи между атомами как дублета электронов, входящего в октет-ную систему обоих атомов. Напр., связь С—С в этапе (ф-ла I) изображается как пара электронов, принадлежащая обоим атомам в результате этого происходит дозаполнение электронных оболочек Н Н обоих атомов С до октета. Образование связи Н -С С Н может происходить как путем обобществле- и и ния двух неспаренпых электронов, принадле-жащих разным атомам (К -Ь К- <= К К), так I и в результате передачи пары электронов одним из атомов в общее пользование с другим, электронодефицитным атомом (Х+ -Ь V 5 X У). [c.701]

    Наша эпоха поражает стремительностью роста научных и технических достижений. На протяжении жизни одного поколения человечество совершило гигантский скачок — от первых планетарных моделей атома до атомных электростанций и ледоколов, от дерзновенных расчетов Циолковского до полетов советских космонавтов. Развитие химической теории, и в частности развитие наших знаний о природе химической связи и закономерностях химических реакций, также отражает этот бурный прогресс науки. Еще 25—30 лет назад можно было слышать утверждения, что электронные обозначения при атомах и связях в химических формулах не стоят даже тех чернил, которые затрачены на их написание . Позднее скептики несколько изменили свое отношение к электронной теории в органической химии, иронически называя ее теорией, которая может все объяснить, но ничего не может предсказать . Теперь эти иронические высказывания уже забыты, электронные представления в органической химии завоевали всеобш.ее признание, их изучают и ими пользуются в повседневной практике. И хотя эта теория еще не совершила своего прыжка в космос , хотя еще не созданы те кибернетические способы управления химическими реакциями, о которых полушутя-полусерьезно пишет в своем предисловии к французскому изданию этой книги проф. Дюфресс, никто уже не сомневается в ее возможностях и Б ее будущем. Хорошей иллюстрацией этого может служить сам факт издания этой книги как первого тома многотомного французского издания, предназначенного быть практическим руководством для химиков-синтетиков. [c.5]

    Таким образом, при гидрогенизации необходимо учитывать взаимное влияние электронов — электронов сопряженных л-связей и неспаренных электронов свободной валентности. Следует думать, что в развитии мультиплетной теории электронная теория будет играть все большую роль. В частности, для выяснения влияния внеиндексных заместителей будут очень полезны электронные представления современной органической химии. Сдвиг электронов влияет на потенциальные кривые и, следовательно, на энергии связей — основные величины, служащие для энергетических расчетов по мультиплетной теории. [c.190]

    Развитие электронной теории строения молекул и атомов сопровождалось попытками объяснить теоретически явление сопряжения. Первая успешная концепция была выдвинута почти одновременно Робин соном [1] и Ингольдом [49] с их сотрудниками. Это привело к появлению теории реакционноспособности органических веществ, охватывающей большой материал [50, 92]. Представления Робинсона и Ингольда основывались на теории Бора — Льюиса, согласно которой связи между атомами образуются за счет обобществления пар электронов, и на гипотезе об элек-тромерной поляризации связи в ходе реакции. Согласно этой гипотезе, развитой Лапвортом и Робинсоном, связь вообще, а двойная связь в особенности, может претерпевать поляризацию в ходе реакции таким образом, что оба электрона связи смещаются к [c.7]

    Предсказание реакционной способности — одна из наиболее фундаментальных проблем органической химии. На разных ступенях иерархии теоретических подходов она решается по-разному от интуитивных предсказаний, основанных на структурной теории, дополненной представлениями об электронных эффектах , до современных и очень сложных неэмпирических квантовомеханических расчетов поверхностей потенциальной энергии реакций. Количественные предсказания базируются либо на эмпирическом подходе, используюш,ем корреляционные уравнения типа уравнения Брёнстеда или Гаммета на основе так называемого принципа линейности свободных энергий , либо на квантовомеханической основе с использованием индексов реакционной способности, метода возмущений, орбитальных корреляций и т. д. [c.5]

    Теория строения в органической химии возникла и развивалась на основе представления о тетраэдрическом строении углеродного атома. Она получила мощный стимул для своего развития в электронной теории валентности, основные положения которой рассматривались в гл. 5. Теперь можно выражать строение большого числа органических соединений с помощью простых схем, описывающих связи-, они легко могут быть преобразованы в трехмерные модели, отвечающие разнообразию молекулярных свойств. Однако существует большое число соединений, для которых обычная структурная теория не-дает исчерпывающего описания, поскольку используемые структуры не отражают в достаточной мере действительного строения молекул. В ряду таких соединений особое место занимают ароматические углеводороды, или арены, и в частности бензол СбНб, который заслуживает наибольшего внимания. Несмотря на то что эти соединения напоминают полиены в том отношении, что они содержат меньше 2п 2) п атомов водорода на атом углерода, их химическая устойчивость приближается к устойчивости алканов. [c.207]

    С развитием электронных представлений в органической химии для бензола и его гомологов Кермак и Робинсон предложили формулы с трехэлектронными связями. Однако в дальнейшем Робинсон пришел к выводу, что в бензоле шесть электронов образуют стабильную систему, которая может быть яазъаяа ароматическим секстетом [74]. Это представление перевело на язык электронной теории предположение, высказанное несколько ранее Бамбергером, о том, что для возникновения ароматической группировки требуется шесть валентностей, находящихся в особом состоянии [75]. [c.120]


Смотреть страницы где упоминается термин Электронная теория в органической представления: [c.327]    [c.56]    [c.401]    [c.477]    [c.433]    [c.7]   
Курс теоретических основ органической химии (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Теория электронная

Теория электронов

Электронные представления



© 2025 chem21.info Реклама на сайте