Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы теории электронных спектров молекул

    ОСНОВЫ ТЕОРИИ ЭЛЕКТРОННЫХ СПЕКТРОВ МОЛЕКУЛ [c.295]

    Основы теории электронных спектров молекул  [c.274]

    Сложность связи частот и интенсивностей колебательного спектра с внутренними параметрами молекул (см. главу II) затрудняет установление по спектру тех частей молекул адсорбата, которые осуществляют основное специфическое взаимодействие с поверхностью. Поэтому наиболее полная информация о механизме взаимодействий может быть получена при анализе спектров ряда адсорбированных молекул с постепенным усложнением их строения, содержащих при этом определенную функциональную группу, способную к специфическому взаимодействию с поверхностью. При этом наибольший интерес представляет анализ характеристических колебаний. С целью определения типа структурного элемента молекулы, участвующего в локальном специфическом взаимодействии с соответствующим структурным элементом поверхности, и установления изменения электронной структуры молекулы при адсорбции целесообразно производить анализ спектра этих структурных элементов на основе теории колебательных спектров (см. главу II). К настоящему времени уже накоплен материал, который делает возможным установление некоторых закономерностей в изменении спектра при адсорбции и исследование связи этих изменений с характером возмущения молекул и механизмом адсорбции. [c.220]


    Однако для теории ультрафиолетовых и видимых спектров было недостаточно одного указания на то, что это электронные спектры. Необходима была более глубокая теория. Основой для такой теории стала гипотеза Бора (1913), которая, как он суммировал ее суть в 1916 г., сводится к предположению о том, что атомная система может сколь-нибудь долго существовать лишь в виде определенной последовательности состояний, которые соответствуют прерывному ряду значений энергии системы, причем каждое изменение энергии, связанное с поглощением или испусканием электромагнитного излучения, должно иметь место при переходе между такими стационарными состояниями [54, с. 123]. Конечно, даже переход от этой гипотезы Бора и его истолкования спектрального поведения атома водорода к общей теории электронных спектров атомов произошел не сразу, тем более это относится к электронным спектрам молекул. Основы этой теории, а именно понимание того, что образование электронных молекулярных спектров связано одновременно с изменением вращательного, колебательного и электронного квантовых чисел, были, однако, уже совершенно ясны в 1926 г, [55, с. 168] и были подготовлены, в частности, успешной разработкой теории вращательно-колебательных спектров в инфракрасной области. [c.235]

    В монографии рассмотрены энергетические состояния двухатомных и простейших многоатомных (главным образом трехатомных) молекул, а также переходы между ними. Классификация состояний и вывод правил отбора для переходов проведены на основе теории групп, необходимые сведения о которой также включены в книгу. Изложены методы анализа колебательной и вращательной структуры электронных спектров, в том числе использование изотопного замещения для этих целей. Показано, как из экспериментальных спектров могут быть определены молекулярные постоянные, углы между связями и др. [c.320]

    В основе теории колебательных спектров лежит представление о молекуле как о системе материальных точек (атомных ядер), совершающих малые колебания около положения равновесия. Как правило, методами комбинационного рассеяния света изучается строение молекул в основном электронном состоянии, поэтому в дальнейшем будет подразумеваться, что речь идет именно о таких состояниях. [c.139]

    Рассмотрение симметрии молекул играет большую роль при характеристике электронных спектров простых многоатомных молекул (скажем, формальдегида и бензола) и оказывается полезным для классификации полос поглощения ароматических углеводородов. Так, например, Коулсон [62], использовав концепции МО и молекулярной симметрии, легко объяснил происхождение а-, р- и р-полос (и четвертой р -полосы) нафталина и установил поляризацию каждой из них. Полоса р описывается в одноэлектронном приближении (как уже рассматривалось ранее), но а- и р-полосы нельзя так описать, и приходится говорить о возбужденном состоянии, для которого возбуждение уже не мон ет быть представлено в виде одноэлектронного приближения . Это явление может наблюдаться как в спектрах молекул, так и в спектрах атомов и носит название конфигурационного взаимодействия. Но, как заметил Коулсон, такое взаимодействие оказывается наиболее существенным в сопряженных я-системах. Подход Коулсона является той основой, на которой можно развить различные аспекты теории электронных спектров почти для всех видов углеводородов с л-электронами [62]. [c.203]


    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]

    В-третьих, существует важная промежуточная область, когда взаимодействие носит преимущественно локальный и направленный характер, но химическая индивидуальность молекулы еще сохраняется или легко может быть восстановлена при нагревании, адсорбции вытеснителя и т. п. Сюда относится водородная связь, зх-комплексы и в предельном случае — взаимодействие с переносом заряда. Целесообразно назвать эти взаимодействия специфическими молекулярными, вкладывая в этот термин отмеченный ранее смысл (см., например, [2]). Эти взаимодействия вызывают столь сильные и отчетливые изменения в энергиях и в инфракрасных и электронных спектрах адсорбционных систем (иногда вплоть до появления спектров ЭПР), что квантовая химия может объяснить уже найденные и предсказать новые корреляции между этими эксперимептальными величинами. Здесь важно исследование соотношения локальных и коллективных взаимодействий, изучение влияния акцепторных и допорных центров, природы адсорбции оптических изомеров. Надо попытаться развить молекулярно-статистическую теорию п здесь, основав ее на доступных спектроскопических данных, включая далекую ИК-область и ЯМР, на исследованиях теплоемкости и на хотя бы качественных указаниях квантовохимической теории. [c.105]

    Из рассмотрения материалов табл. 4.1 вытекает помимо всего прочего, что для установления структуры молекулы бензола методами колебательной спектроскопии потребовался только подсчет числа полос в инфракрасном спектре и спектре комбинационного рассеяния. Кстати, именно таким путем зачастую решается вопрос о характере координации атомов в комплексных соединениях, а также ионов в растворах. Между тем в самом общем случае при полном решении колебательной задачи в распоряжении исследователя оказывается весьма большая совокупность данных (частоты, форма колебаний, электрооптические параметры и т. д.), позволяющих определять не только строение и симметрию молекулы, но и судить о прочности связей, их взаимном влиянии, распределении электронной плотности и других важных характеристиках. Аналогичное положение имеет место и в других разделах спектроскопии. Так, при изучении и интерпретации электронных спектров органических, неорганических и комплексных соединений хорошие результаты дает проведение квантовохимических расчетов, расчетов на основе теории поля лигандов и т. д. По существу электронная спектроскопия является в настоящее время одним из основных экспериментальных методов, на которых базируется современная теоретическая химия. Совершенно особое значение имеет в связи с этим сочетание и совместное использование различных спектроскопических методов при решении структурных вопросов. Такой комплексный подход к проблеме открывает чрезвычайно широкие возможности и обеспечивает высокую надежность получаемой с его помощью информации о строении химических соединений. Укажем для примера, что при решении задач органической химии наилучшие результаты дает совместное использование методов инфракрасной спектроскопии, ядерного магнитного резонанса и электронной спектроскопии. [c.113]


    Вопросы о происхождении спектров поглощения органических соединений излагаются на основе элементарной теории молекулярных орбиталей в приближении МО ЛКАО чисто качественно. Несмотря на приближенность этого метода он позволяет с единой точки зрения рассмотреть электронные спектры поглощения органических соединений различных классов, выяснить роль структурных факторов, эффектов сопряжения и индукционных влияний в молекуле, влияние природы среды на спектры поглощения и т. д. При изложении материала автор широко использовал диаграммы молекулярных орбиталей. Они позво- ляют наглядно и достаточно правильно показать возможности метода молекулярных орбиталей для выяснения происхождения и природы электронных спектров поглощения органических соединений. [c.4]

    NHg) произведен анализ их колебательного спектра в адсорбированном состоянии на основе общей теории колебаний многоатомных молекул с проведением расчетов па электронно-вычислительной машине. [c.59]

    Исходя из всего изложенного в данном разделе, можно сделать следующее заключение. В условиях высокотемпературных (300—500° С) реакций распада МОС возможно образование возбужденных состояний молекул МОС и продуктов первичного их распада. Большинство вторичных реакций образующихся радикалов и лигандов, так же как влияние их строения на соотношение между реакциями, может быть трактовано с успехом на основе теории дезактивации и реакций возбужденных электронных состояний молекул. Поэтому для исследования процессов термораспада МОС при высоких температурах полезно привлекать данные электронных и колебательных спектров, данные расчета МО и результаты структурных и термодинамических исследований. [c.104]

    Для рассмотрения электронных состояний обычно используются концепции одноэлектронного приближения. И хотя это не самое последнее достижение теории, сделанное на основе из> чения спектров атомов и молекул, его вполне достаточно для разъяснения большинства положений об электронной конфигурации атома. Под последним термином подразумевают распределение электронов [c.39]

    Основой интерпретации спектров поглощения комплексов является теория кристаллического поля, которая рассматривает неорганические комплексы как соединения, в которых центральный ион находится в электрическом поле, создаваемом окружающими его молекулами, атомами или ионами-лигандами. Считается, что орбиты электронов центрального иона не смешиваются и не перекрываются с орбитами электронов лигандов и что роль лигандов сводится к созданию постоянного электрического поля, обладающего симметрией расположения их ядер и искажающего сферическую симметрию электронной оболочки центрального иона. Подробное качественное рассмотрение изменений электронной оболочки иона под влиянием электрических полей разной симметрии было произведено Бете [2]. [c.108]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Согласно электронной теории хемосорбции, молекулы одного и того же газа могут связываться с энергетически однородной поверхностью полупроводникового адсорбента различными типами связи, между которыми существуют переходы. На основе статистического метода Гиббса для систе.м с переменным числом частиц получены выражения для концентраций хемосорбированных частиц с каждым данным типом связи. Эти выражения содержат химический потенциал адсорбируемых частиц в газовой фазе, уровень Ферми для электронов адсорбента, энергии, соответствующие каждому типу связи и кратности вырождения состояний адсорбированных частиц. Найденные нами формулы дают возможность получить изотермы адсорбции в зависимости от объемных электронных свойств адсорбента (концентрация и природа примесей, структура энергетического спектра полупроводника) и свойств адсорбируемых молекул .  [c.59]

    Глава XIII. Основы теории электронных спектров молекул. ....295 [c.267]

    На основе К. х. разработана теория электронных спектров поглощения и люминесценции молекул, фотоэлектронных и рентгеноэлектронных спектров. Квантовая теория электрич и магн. св-в молекул способствовала внедрению в химию физ. методов исследования, в частности ЭПР, ЯМР и ЯКР, и значительно облегчила интерпретацию эксперим. результатов. Получено большое число расчетных данных по вероятностям электронных переходов, временам жизни возбужденных состояний и спектроскопич. постоянньпи молекул. [c.367]

    Платт развил теорию электронных спектров орто-конденсированных углеводородов, используя периметар-ную модель свободного электрона. При этом он использовал упрощающее предположение движение я-электронов происходит по периферии молекулы, последняя представляется в виде окружности с постоянной потенциальной энергией вдоль нее. Таким образом, нахождение вида волновых функций и энергии одноэлектронных я-орбита-лей сводится к задаче плоского ротатора. На основе этой теории Платт классифицировал электронные состояния по значению полного орбитального момента я-электронов Q (состояние с Q = О обозначается символом А, <3=1 — символом 5, (3 = 2 — символом С). Максимально возможная величина изменения Q при одноэлектронном переходе из Л-состояния обозначается символом Ь. В соответствии с этой классификацией электронные полосы орто-конденсированных углеводородов обозначаются как ..., где верхний индекс означает мультиплетность возбужденного состояния, а ниж- [c.64]

    Постулирование, а не объяснение стабильности определенных орбит не только не является недостатком теории, но представляет собой наиболее фундаментальную идею Бора — открытие, отражающее объективные закономерности природы микрочастиц. В несколько более общей форме (дискретность энергетического спектра связанных состояний) открытие Бора заложено и в уравнение Шрёдиигера и в коммутационные соотношения Гейзенберга современная квантовая (волновая) механика строится на этом открытии, а не объясняет его. Точно так же классическая небесная механика построена на основе закона всемирного тяготения Ньютона, не претендуя на объяснение этого закона. Отказ от первоначальной математической формулировки квантовых постулатов (теория Бора) исторически был связан с отсутствием согласия между теорией и эксп иментом для микрообъектов, отличающихся от водородоподобных систем. Сейчас известно, что теория Бора соответствует квазиклассическому приближению квантовой механики, условия применимости которого не выполняются для электронов в атомах и молекулах. — Прим. ред. [c.12]

    Сильно разветвленные изомеры, как, например, 2,2,3,3-тетраметилбутан не включены в таблицу. Из приведенных данных следует, что теория позволяет предсказать все возможные случаи образования интенсивных пиков однако если имеет место стерическое взаимодействие между связями, не являющимися соседними в том смысле, как это принято в рамках развиваемой теории, то полученные величины значительно выше ожидаемых. На этой основе можно понять причину эмпирического правила, согласно которому диссоциация npoji исходит в местах разветвления цепей, так как в выражениях для таких молекул в числителе появится высокая степень р. Если в расчеты включить электронную плотность для различных изомеров, предполагая, что удаляется наиболее слабо связанный электрон, как это было сделано Леннард-Джонсом и Холлом, то не наблюдается никакого соответствия с экспериментально полученными высотами пиков. Если допустить, что при энергиях электронов, используемых для получения масс-спектров, удаление любого электрона из молекулы равновероятно (поскольку разница в значениях энергетических уровней ничтожна по сравнению с энергией электронного пучка), то будет одинаковым и среднее распределение электронов по связям молекулярного иона, а диссоциация будет протекать так же, как и в нейтральной молекуле. Подобная гипотеза обеспечивает хорошее соответствие наблюдаемых и рассчитанных спектров. Вместе с тем это подтверждает неправомочность простого допущения об удалении электрона только с орбиты с наиболее высокой энергией. Значение работы Лестера состоит в том, что она указывает пути использования теории и позволяет производить полуколичественные вычисления, согласующиеся с эмпирическими правилами диссоциации больших и сложных органических молекул. Теория не была распространена на рассмотрение процессов диссоциации, протекающих в несколько стадий, а также не объясняет причины образования интенсивных пиков ионов (С3Н7), присутствующих в масс-спектрах всех алканов. [c.252]

    Наблюдавшиеся спектры (рис. 64) лучше всего могут быть объяснены на основе теории, предложенной Блайхолдером (19646). Согласно этой теории, центры на ребрах и углах граней поликри-сталлической поверхности металла — наиболее активные центры хемосорбции окиси углерода. Атомы металла в этих положениях имеют меньше соседей, чем атомы металла в плоскости граней кристаллитов. Б результате атомы мета.тла на углах криста.тлитов имеют больше -электронов, доступных для образования я-связи с адсорбированными молекулами окиси углерода, и поэтому л-характер и прочность связи металл — углерод возрастали. ] анее было показано, что частота валентного колебания связи углерод — кислород у карбонилов металла смещается к более низким значениям по мере увеличения вклада л-связи во взаимодействие между атомами металла и углерода. Окись углерода, ответственную за появление полосы поглощения карбонильной грунны нри самых низких частотах, считали поэтому адсорби- [c.259]

    Интерпретация электронного спектра ферроцена, являющегося молекулой с преобладающе ковалентным характером связи, на основе параметров ионной теории кристаллического поля (Оя, В1, Рг, Р4) не является убедитель- [c.412]

    Структура рентгеновского края поглощения на значительном его протяжении может быть наиболее достоверно объяснена на основе теории ближнего порядка, рассматривающей поглощение рентгеновских лучей в металлах (как и в молекулах) как атомный процесс и связывающей появление небольших флюктуаций вдали от границы края поглощения с определяющим влиянием ближайшего окружения поглощающего атома. Еще в большей мере это относится к структуре основного края поглощения, к области частот, соответствующих очень малым кинетическим энергиям вырванных из К-оболочки атомов фотоэлектронов. В этой областн возмущающее поле соседних атомов решетки относительно невелико, и особенности электронного строения изучаемого атома в соединении или сплаве приобретают решающее значение в ходе поглощения рентгеновских лучей. Ранее, при обсуждении структуры основного края поглощения атомов в молекулярных соединениях (стр. 129), вскользь указывалось на зависимость коэффициента поглощения от частоты в пределах истинного края поглощения, связанного с переводом электрона с К-уровня атома в область непрерывного спектра. Рассмотрим теперь этот воиросболее обстоятельно. [c.188]

    Как было показано в предыдущйх главах, многие особенности вращательного и колебательного движения молекул удается объяснить на основе классической теории взаимодействия света с веществом. В противоположность этому электронное движение и электронные спектры могут быть рассмотрены достаточно строго только в рамках квантовомеханических представлений. Согласно этим представлениям каждое состояние электронной оболочки молекулы характеризуется полными орбитальным Ь и спиновым 5 моментами количества движения. Ввиду наличия у двухатомной молекулы аксиальной симметрии, важное значение имеет проекция момента Е на выделенное направление, которая задается величиной соответствующего квантового орбитального числа Л. Электронные состояния молекул, которым отвечают значения Л=0, 1, 2, 3,. .., обозначаются соответственными символами 2, П, Л, Ф,. .. [c.65]

    Спектря поглощения в ультрафиолетовой и видимой областях УФ-спектры) обусловлены переходами между электронными состояниями молекулы, в связи с чем их также называют электронными спектрами поглощения. Каждое электронное состояние м олекулы характеризуется некоторым интервалом значений энергии, обусловленным колебательным движением молекулы. Поэтому каждому электронному переходу в спектре соответствует широкая полоса поглощения. При съемке. спектра в газовой фазе, как правило, удается выявить колебательную структуру электронного перехода (в таком случае полоса поглощения выглядит как система близко,расположенных узких полос), но при получении спектра в конденсированной фазе очень часто (но не всегда) тонкая структура, полосы полностью исчезает вследствие проявления межмолекулярных взаимодействий. Теория молекулярных орбиталей (МО), положенная в основу теоретической интерпретации электронных спектров, связгывает переход молекулы дз основного электронного состояния в возбужденное с переходом Галентного электрона с занятой МО на свободную МО. При этом трем типам существующих МО — о, я и п — соответствуют четыре типа электронных переходов а- о,  [c.50]

    Бозбужденных и сверхвозбужденных М расчет распределения электронной плотности управляющей разрывом связи в молекулярных ионах, — все это хотя и представляет некоторый интерес для теории масс-спектра, но все еще не имеет практической ценности, так как не объясняет даже известных закономерностей фрагментации не только сложных, но даже и простых молекул, не говоря уже об отсутствии в этих теориях всякой предсказательной силы. Пока существует единственный путь объяснения и предсказания масс-спектра — это путь физической органической химии, включающий основы термодинамики, физику процесса ионизации, общие принципы квазиравновесной теории и, наконец, огромный экспериментальный материал по изучению механизмов реакций в растворе. [c.215]

    НИИ и их измерение. Толмачев В. Н. Издательское объединение Вища школа , 1974, 160 с. I В книге изложены физические основы происхожде- ния электронных спектров поглощения органических 1 соединений с точки зрения элементарвой теории молекулярных рбиталей. Обсуждены характерные особенности электромагнитного излучения, а также атомных и молекулярных энергетических состояний и переходов между ними. Рассмотрено влияние строения, электронных и стерических э( ектов в молекулах органических соединений на их электронные спектры поглощения. [c.2]

    Атомы И молекулы — системы, построенные из микрочастиц — 51дер и электронов. В начале XX в. выяснилось, что классическая физика не в состоянии правильно описать состояние этих систем. Бор создал теорию атома, носящую его имя, сохранив планетарную модель атома Резерфорда и введя в нее новые идеи квантовой теории Планка — Эйн-щтейна. Поразительный успех теории Бора в описании атома водорода и объяснении его спектра не мог быть распространен на более сложные атомы из-за противоречивости между квантовыми и классическими представлениями, лежащими в ее основе. Однако теория Бора оставила глубокий след в физике. Новая физическая теория — квантовая механика возникла из работ де Бройля, Шредингера, Гейзенберга, Дирака и др. [c.7]

    Соединения, содержащие различные валентные формы одного и того же элемента. Различные соединения, содержащие атом одного и того же элемента в разных валентных состояниях, давно обращали на себя внимание. Многие из таких соединений интенсивно окрашены [87, 88]. Это наблюдение было основой одной из теорий, связывающих строение и окраску неорганических соединений. Выше (гл. 4) рассматривались соединения типа берлинской лазури или молибденовой сини или смесь FeO с ЕегОз и т. п. Окраску таких твердых соединений объясняют осцилляцией электрона между двумя атомами эле мента б одной молекуле. В растворе при Смешивании соединений одного элемента в разных валентных формах наблюдается часто образование довольно интенсивно окрашенных комплексов. Так, давно известно, что при смешивании бесцветного раствора Ti U со слабо-фиолетовым раствором Ti la (в среде 2 М раствора НС1) образуется растворимое интенсивно окрашенное красно-фиолетовое соединение. Изучение спектров поглощения подтверждает образование соединения. Интенсивная окраска объясняется тем, что оба атома энергетически равноценны, т. е. потенциал ионизации одного атома титана точно равен сродству к электрону другого атома титана. Поэтому энергия переноса электрона в таком соединении близка к нулю и полоса поглощения смещается к длинным волнам [89]. [c.364]

    Разбор спектров на основе анализа по теории групп и сравнение полученных при этом результатов со спектром комбинационного рассеяния [7, 8] позволяет установить, что колебание 450 с-И соответствует несимметричной компоненте расщепления дважды вырожденного колебания бензола и имеет симметрию Следовательно, полоса 0-0 + 450 см соответствует электронно-колебательному переходу симметрии А А А -В -В . Этот переход поляризован вдоль оси у молекулы. Как отмечалось выше, величину колебания vьB не удалось определить по спектрам поглощения паров [6], в спектре же кристалла это можно сделать чрезвычайно легко из-за различной поляризации полос, соответствующих полносимметричной и несимметричной компонентам расщепления. Третий тип поляризации, согласно анализу по теории групп для точечной группы может быть связан с переходами, поляризованными вдоль оси г молекулы. Из правил отбора следует, что такой электронно-колебательный переход возможен при возбуждении колебаний симметрии Ло. Чтобы решить вопрос о том, какое из колебаний (386 или 681 см ) имеет симметрию А.,, необходимо учесть, что сочетание колебаний симметрии Лз с колебаниями симметрии запрещено правилами отбора для электронных переходов. В спектре не обнаружена полоса 0-0 + 386 + 450 см- в то время как полоса 37 874 см- может быть интерпретирована как 0-0 + 681 + 450 см- (см. табл. 5. 3). Следовательно, электронноколебательному переходу А, - B2(A - - В -Ао), поляризованному вдоль оси 2 молекулы, по-видимому, может соответствовать переход 0-0 + 386 см- . В этом случае четвертый тип поляризации полос поглощения оказывается связанным с полосой 37 423 см (0-0-Ь 681 см ). Можно полагать, что для истолковании особой поляризации этого перехода необходимо учитывать реальную симметрию молекулы в кристалле, которая отлична от Со (см. [12] и подраздел 3, 4). [c.218]

    На рис. 10 представлен типичный десорбциоппый спектр водорода с вольфрама при малых степенях заполнения. Кривая отражает зависимость нормированной степени заполнения, вычисленной из изменения ионного тока при нагревании образца вспышкой. Эта кривая была проанализирована на основе уравнений (9а) и (96) результаты анализа представлены на рис. 11. Линейная зависимость в координатах уравнения для реакции второго порядка показывает, что лимитируюш ей стадией при десорбции водорода с вольфрама является реакция второго порядка этот факт убедительно свидетельствует в пользу того, что водород на поверхности адсорбирован в виде отдельных мобильных атомов. Энергия активации десорбции, определенная по графику для реакции второго порядка, составляет 35 ккал/моль. Фактор частоты, рассчитанный из уравнения (96), равен 2-10" м мoлeкyл " . Величина фактора частоты, рассчитанная согласно теории столкновений молекул как твердых шаров в двумерном пространстве и равная а пкТ/ тУ 3,6 -10 для водорода, достаточно хорошо согласуется с приведенным выше значением. Чтобы проверить правомерность этого метода, уравнение (8) интегрировали численно с применением электронно-вычислительных машин и получили значения для о, А-йГ и V. На рис. 10 рассчитанные точки (кружки) нанесены па эксперилгентально полученную кривую десорбции. [c.242]


Смотреть страницы где упоминается термин Основы теории электронных спектров молекул: [c.203]    [c.285]    [c.6]    [c.400]    [c.412]    [c.7]    [c.91]    [c.173]    [c.12]    [c.611]    [c.339]    [c.203]    [c.99]   
Смотреть главы в:

Физические методы исследования в химии 1987 -> Основы теории электронных спектров молекул




ПОИСК





Смотрите так же термины и статьи:

Спектры молекул

Спектры электронные

Теория электронная

Теория электронов

спектры теория



© 2025 chem21.info Реклама на сайте