Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес коллоида определение

    Исследование оптических свойств высокодисперсных систем имело исключительно большое значение не только для установления новых взглядов на природу коллоидных растворов, но и дало экспериментаторам методы для наблюдения за поведением коллоидов, определения их концентрации, размеров и форм частиц. Значение оптических методов также состоит в том, что они дали возможность проверить ранее имевшие гипотетический характер молекулярно-кинетические представления о строении веществ, распространить их на высокодисперсные системы,и подвести строго теоретическую базу под такие явления, как диффузия, броуновское движение, седиментация, коагуляция. Непосредственным результатом было неопровержимое доказательство реальности существования молекул. Наконец, оптические методы дали возможность экспериментально демонстрировать статистическую природу второго закона термодинамики, в частности в связи с броуновским движением. [c.314]


    Седиментация (в большинстве случаев в ультрацентрифуге) используется для определения мольной массы молекулярных коллоидов (макромолекул). В этих же целях применяют измерения осмотического давления, вязкости, коэффициента диффузии. [c.499]

    Гидрофобные коллоиды, частицы которых по своим размерам намного больше обычных молекул, очень неустойчивы. Поэтому максимально достижимая концентрация частиц в таких коллоидах сравнительно невелика. Например, в золях золота значение с не может быть выше чем 10 частиц в 1 см раствора, что при комнатной температуре кТ эрг), согласно уравнению (3.6), соответствует Р = 40 дин/см , или 4-10 атм. Столь малое осмотическое давление нельзя измерить ни непосредственно в осмотической ячейке, ни косвенно эбулиоскопическим или криоскопиче-ским методом. Последние два метода в данном случае неприменимы еще и потому, что кипячение или замораживание неустойчивых коллоидов приводит к их коагуляции. Таким образом, размер частиц гидрофобных коллоидов невозможно определить путем измерения осмотического давления. Зато этот метод широко применяется для определения молекулярной массы высокомолекулярных соединений (т. е. лиофильных систем), что обусловлено меньшим размером их молекул и большей устойчивостью их растворов по сравнению с гидрофобными коллоидами. Устойчивость раство- [c.43]

    Интенсивность / света, прошедп1его через какую-то однородную среду — жидкость или раствор, всегда меньше интенсивности падающего света /(,. Это объясняется явлением поглощения (абсорбции) света средой (см. гл. 15). Каждая среда в зависимости от своих физических и химических свойств избирательно поглощает определенную часть спектра падающего света. Установлено, что высокодисперсные золи также поглощают часть проходящего света и для них, как и для молекулярных растворов, справедлив закон Ламберта — Бера. Однако в дисперсных системах возможны отклонения от этого закона, так как интенсивность проходящего света уменьшается не только в результате его поглощения, но и за счет рассеяния света частицами дисперсной фазы. Вследствие этого для окрашенных коллоидов в уравнение Ламберта — Бера кроме коэффициента светопоглощения вводят коэффициент светорассеяния  [c.390]

    Молекулярные веса коллоидов (определенные из осмотического давления) [c.383]

    В методах химической конденсации вещество коллоида получается с помощью той или иной химической реакции и выделяется ири этом в коллоидном состоянии. Эти методы основаны большей частью на таких взаимодействиях в растворах, которые приводят к образованию вещества в условиях, когда оно нерастворимо. Образуясь первоначально в молекулярно-дисперсной форме, оно стремится выделиться из раствора в осадок. Необходимо так подобрать условия проведения реакции (концентрация реагирующих веществ, pH среды, последовательность операций, температура, перемешивание и пр.), чтобы процесс агрегации, т. е. соединения молекул в более крупные частицы, прекращался на определенной стадии во избежание слипания частиц. Обычно этому способствует применение растворов достаточно низкой концентрации и медленное смешение их. [c.530]


    Если по оптическим и молекулярно-кинетическим свойствам суспензии и золи с твердой дисперсной фазой резко различны, то по агрегативной устойчивости они имеют много общего. Как правило, частицы суспензий, равно как и частицы лиофобных коллоидов, имеют на поверхности двойной электрический слой или сольватную оболочку. Электрокинетический потенциал частиц суспензий можно определить с помощью макро- или микроэлектрофореза, причем он имеет величину того же порядка, что и -потен-циал частиц типичных золей. Под влиянием электролитов суспензии коагулируют, т. е. их частицы слипаются, образуя агрегаты, В определенных условиях в суспензиях, так же как и в золях, образуются пространственные коагуляционные структуры, способные к синерезису. Явления тиксотропии и реопексии при соблюдении соответствующих условий проявляются у суспензий почти всегда в большей степени, чем у лиофобных коллоидных систем. [c.367]

    Коллоидными электролитами мы будем называть полиэлектролиты, образующиеся в результате электролитической диссоциации ВМС, независимо от их физического состояния, а также близкие к ним по ряду свойств мицеллы или ассоциаты, возникающие в растворах ПАВ и несущие электрический заряд. Эти системы, называвшиеся ранее полуколлоидами (или семиколлоидами), можно также считать молекулярными коллоидами, но в несколько ином смысле этого термина, а именно, выражая этим определением существующее в растворах- равновесие между молекулами [c.321]

    В то время как определение характеристической вязкости гомеополярных растворов молекулярных коллоидов осуществляется легко и просто, растворы мицеллярных коллоидов и гетерополярных молекулярных коллоидов ведут себя совершенно иначе. [c.168]

    Второй эффект связан со спецификой полимеров о влиянии концентрации полимера в растворе на значение характеристической вязкости для гомеополярных линейных коллоидов упоминалось выше. Эти особенности, отмеченные Керном, могут объяснить многие описанные аномалии изменения вязкости в растворах гетерополярных молекулярных коллоидов. Такие аномалии вязкости характерны для веществ, в макромолекулах которых содержатся ионогенные группы. Это позволяет сделать определенные выводы о характере исследуемых веществ. [c.169]

    Измерение характеристической вязкости высокомолекулярных соединений в разбавленных растворах не является прямым методом определения молекулярного веса. Однако путем сопоставления полученных результатов с данными других методов можно легко установить степень полимеризации вытянутых макромолекул этот метод дает средневесовой молекулярный вес. По численным значениям, получаемым из уравнения (100), можно сделать заключение о форме макромолекул в растворе, причем чем лучше растворитель, тем более вытянуты макромолекулы. Путем определения зависимости вязкости от температуры и концентрации можно различать молекулярные и мицеллярные коллоиды, а также гомеополярные и гетерополярные молекулярные коллоиды. На возможность распознавания сферо- и линейных коллоидов уже указывалось. После соответ- [c.177]

    Все перечисленные особенности коллоидных растворов являются препятствием для применения к ним и таких методов, как криоскопия и эбулиоскопия. В отличие от лиофобных золей растворы высокомолекулярных веществ (т. е. лиофильные коллоиды) уже при сравнительно небольших концентрациях показывают измеримые величины осмотического давления. Это привело к разработке ряда методов определения молекулярной массы для веществ с М от 10 тыс. до 200—300 тыс, а в особых случаях до 1 млн., включая такие важные вещества, как белки, каучуки, полисахариды и т. д. [c.374]

    Некоторые коллоиды состоят из вполне определенных молекул с постоянной молекулярной массой и вполне определенной молекулярной формой, что позволяет им образовывать кристаллическую структуру. Белки имеют молекулярную массу от десяти до нескольких сот тысяч. [c.269]

    Помимо двух фаз—рассеянной и непрерывной,— в состав коллоида всегда входит еще третий компонент. Этот компонент обычно содержится в коллоиде в очень небольших количествах и сосредоточен на поверхности раздела между двумя фазами. Он образован ионными или молекулярными частицами, адсорбированными на поверхности раздела фаз, в частности, по той причине, что эта поверхность обладает определенной энергией. Форму энергии, присущую поверхности раздела фaз, принято называть поверхностной энергией. В следующем разделе мы подробнее познакомимся с этой особой формой энергии. [c.494]

    Лиофобные коллоиды являются термодинамически неустойчивыми системами, стабильность которых обусловлена наличием адсорбционных ионных или молекулярных слоев. Изменения состояния этих слоев, механизм образования и свойства которых были рассмотрены в главах четвертой и пятой, сопровождаются изменением устойчивости лиофобных коллоидов и при определенных условиях могут приводить к потере устойчивости внешне это проявляется в агрегации и выпадении частиц из раствора или в их коагуляции. Таким образом, теория коагуляции тесно связана с выяснением природы устойчивости и самого существования золей, что придает ей большое значение. Условия коагуляции золей весьма различны и зависят от природы стабилизующих слоев. Целесообразно, поэтому, рассмотреть эту проблему отдельно для золей с ионными и молекулярными адсорбционными слоями. [c.135]


    В. В. Марковникову принадлежат крупные заслуги в постановке и выяснении проблемы взаимного влияния атомов в органических соединениях. Хорошо известны сформулированные им правила присоединения, а также замещения водорода галогенами. Многие молодые ученые желали работать в его лаборатории, чтобы усовершенствовать свои знания под руководством В. В. Марковникова. Так, у него работал А. П. Сабанеев (1843— 1923), впоследствии профессор общей химии Московского университета. Ему принадлежит в частности исследование по определению молекулярной массы коллоидов. Среди учеников В. В. Марковникова в 80-х гг. следует назвать М. И. Коновалова (1858—1906), получившего известность своими работами по нитрованию парафиновых углеводородов. В 1893 г. в диссертации [c.200]

    Некоторые кислоты и основания с большой молекулярной массой при кислотно-основном титровании ведут себя как обратимые коллоиды, коагулирующие в пределах очень узких значений pH (точка коагуляции). Если к раствору соли малорастворимой в воде кислоты с большой молекулярной массой прибавить раствор сильной кислоты, то при определенном значении pH коагулирует нерастворимая кислота — появляется помутнение  [c.148]

    Вероятно, это представление может отражать в общих чертах картину образования частиц при полимеризации мономера с определенной степенью растворимости в воде в очень разбавленных системах. Однако по ряду причин оно не может быть распространено 1на все случаи образования полимерных КОЛЛоиДов. Так, захвату олигомерных радикалов частицами должен сопутствовать обрыв цепи в водной фазе. Конкуренция между этими двумя процессами будет зависеть от растворимости радикалов в воде и концентрации их в системе. Обрыв олигомерных радикалов в водном растворе приводит к образованию собственных поверхностноактивных веществ, поведение которых будет различным в зависимости от их молекулярной массы и поверхностной активности. Эта картина, естественно, усложняется в присутствии капель мономера, поддерживающих его постоянную концентрацию во вновь образующихся частицах. Кроме того, при рассмотрении механизма образования частиц в полимерных коллоидах нельзя пренебрегать реальными размерами частиц и расстояниями между ними, играющими важную роль для их устойчивости. [c.97]

    Количественное описание взаимодействия дисперсных частиц принципиально возможно па основе современного учения о поверхностных силах и сводится к определению потенциальной энергии частиц или, иначе, к установлению баланса действующих между ними сил. Эта задача на основе общей концепции расклинивающего давления тонких жидких слоев была сформулирована в 1937 г. Б. В. Дерягиным. Им был разработан метод расчета свободной энергии и сил, действующих между двумя заряженными поверхностями в растворах сильного электролита, и показано, что при определенных условиях возможно появление на кривой потенциальной энергии взаимодействия второй энергетической ямы на относительно далеком расстоянии от поверхности [1]. При учете молекулярных сил притяжения Ван-дер-Ваальса— Лондона и ионно-электростатических сил отталкивания установлены общие закономерности взаимодействия в низкоконцентрированных растворах электролитов двух пластин и с некоторыми ограничениями двух одинаковых шаров, и на этой основе разработана теория устойчивости и коагуляции коллоидов [1—6]. Последняя была распространена на взаимодействие трех плоских частиц [c.130]

    Модель, положенная в основу теории, представляет собою коллоидный раствор, oдepлiaщий первоначально сферические частицы одинакового размера со счетной (количественной) концентрацией фо При рассмотрении механизма взаимодействия двух частиц принимается простое допущение их объединение происходит тогда и только тогда, когда одна из них попадает в сферу действия другой (соприкасается с ней). Задача заключается в опреде--лении счетной концентрации фь фг, фз, . простых, вторичных, третичных частиц и т. д. в момент времени т. Задача о коагуляции коллоидов явилась первым прилон ением разработанной Смолуховским теории броуновского движения. Поэтому, исходя из эквивалентности броуновского движе- ния и молекулярной диффузии, он рассматривает решение уравнения нестационарной диффузии к поверхности сферы радиуса Я с граничными условиями г=Я с=0 г >Д с= = Со и начальным условием т=0, г>Д с=со, где г — радиальная координата с — концентрация. На основе этого решения получена формула для определения количества вещества, адсорбированного за время т поверхностью шара. Если упростить ситуацию и считать рассматриваемый процесс квазистационарным, то эта формула имеет вид М=АпОЯсох, где — коэффициент диффузии. [c.108]

    Исследователи обычно отмечают, что причина высокой вязкости силикатных растворов по своей природе отлична от растворов высокополимерных органических соединений. Способы определения средней молекулярной массы по величине характеристической вязкости не применимы к растворам щелочных силикатов. Концентрированные растворы с высоким силикатным модулем представляют собой системы, переходные к лиофильным коллоидам. При постоянном содержании щелочи (ЫагО) увеличение силикатного модуля системы ведет к возрастанию вязкости, но, пройдя через область неустойчивых состояний, где система склонна к гелеобразованию (4< <25), высокомодульные системы снова становятся подвижными, приобретая свойства коллоидного раствора с очень малой вязкостью. Айлер [2] придерживается мнения, что кремнеземные структуры, имеющие место в безводных стеклах, очень мало или вовсе не связаны с природой кремнезема в образующихся из них водных растворах. В современной технологии использования жидкого стекла [1] отмечается недостаточность стандартизации состава, т. е. концентрации и модуля Раствора для получения заданных технологических свойств. Это [c.47]

    A. И. Рабинович полагал, что основной путь разработки проблемы устойчивости гидрофобных коллоидов (по крайней мере, в ее химическом аспекте) лежит в установлении связи между закономерностями адсорбции ионов и коагуляцией [9]. Первый цикл работ В. А. Каргина и был посвящен этой проблеме. Этому предшествовала разработка электрохимической методики. Точное электрометрическое определение адсорбции во многих коллоидных растворах — трудная задача вследствие побочных процессов и реакций на электродах. Большое внимание было уделено подбору соответствующих электродов. В это исследование было вовлечено большое число типичных коллоидных систем золи гидрата окиси железа, сернистого мышьяка, вольфрамовой кислоты, двуокиси титана, пятиокиси ванадия, кремнекислоты, гидроокиси алюминия и др. Отдельные из этих работ могут служить образцами тонкого и продуманного эксперимента, проведенного после тщательной методической подготовки, отдельные этапы которой имеют и самостоятельное значение. Из последних отметим обнаруженную неэквивалентность обмена ионов и открытие молекулярной адсорбции. Была показана сложность адсорбционного процесса и возникновение побочных реакций в адсорбционном слое и дисперсной среде, в том числе при добавлении нейтральных электролитов. [c.83]

    Вариаминовый синий (хлоргидрат 4-метокси-4 -аминодифе-ниламина) окисляется ионами Аи(1П), образуя при избытке реагента молекулярное мерихиноидное соединение синего цвета. На окисление трех молей реагента расходуется два моляАи(1П), восстанавливающегося до металла. В качестве защитного коллоида вводят гуммиарабик. Продукт окисления имеет максимум светопоглощения при 580 нм. Окраска максимальна в присутствии 60-кратного избытка реагента при pH 1—5, чувствительность 0,2 мкг мл Аи. Для растворов соблюдается закон Бера при концентрации 20—80 мкг Аи в объеме 25 мл [370]. Реагент применяют для обнаружения [935], фотометрического определения [370] золота и как индикатор при титровании золота аскорбиновой кислотой [934]. [c.61]

    С исторической точки зрения интересно отметить и первые опыты по кристаллизации чистых белковых ферментов—уреазы и пепсина, осуществленные соответственно Самнером и Нортропом . Учитывая распространенную тогда теорию некристаллизуемости коллоидов, можно сказать, что это явилось важным аргументом в пользу их существования как слабых ассоциатов. Те коллоиды, которые можно было перевести в кристаллическое состояние, могли этому подвергаться только с потерей их коллоидной природы и возвращением к исходной низкомолекулярной форме. Белки и каучук тогда еще не были получены в кристаллическом состоянии. Поэтому считалось по аналогии, что эти вещества еще не выделены в истинной низкомолекулярной форме, в связи с чем предпринимались энергичные поиски таких истинных форм. Кристаллизация уреазы и пепсина, а впоследствии и многих других белков и тот факт, что масса ячейки такого кристалла всегда в целое число раз больше молекулярного веса, определенного в растворе, а не часть его—все это является наиболее важными доказательствами истинно высокомолекулярной природы таких веществ. [c.12]

    С увеличением длины нитевидных молекул отклонения от уравнения Гагена—Пуазейля становятся все более значительными, особенно для гетерополярных молекулярных коллоидов. Таким образом, создается необходимость экстраполировать полученные значения к нулевому градиенту скоростей Gf— 0, что осуш,ествить экспериментально сравнительно сложно. Шульц и Кантоу предложили для этого калибровать вискозиметр Оствальда таким образом, чтобы для растворов в определенном растворителе применять капилляры постоянного диаметра и тем самым обеспечить определенный, всегда одинаковый или примерно одинаковый градиент скоростей истечения. В этом случае необходимо только экстраполировать полученные результаты к нулевой концентрации полученные таким путем значения характеристической вязкости можно рассматривать как эталонные значения. Предложенные диаметры капилляров и получающиеся при этих определениях значения времени истечения чистого растворителя (0,5 мл) о приведены в табл. 45 (высота столба жидкости на 10% больше, чем длина капилляра). [c.166]

    Особый случай представляют определенные молекулярные коллоиды, например белки, которые содержат как слабокислотные СООН-группы, так и слабоосновные NHj-группы. Если раствор такого коллоида содержит основания, то коллоидная частица становится анионом, если же раствор содержит кислоту — то катионом. В первом случае коллоидная частица в процессе электрофореза перемещается к катоду, во втором — к аноду. При определенной промежуточной величине pH, называемой изоэлектрической точкой (см. стр. 447), ионизация кислотных и основных групп одинакова коллоидная частица становится амфоионом. В изоэлектрической точке коллоидная частица не движется в электрическом поле и растворимость коллоида минимальна. Обычно в изоэлектрической точке коллоид выпадает в осадок. [c.550]

    В современных мощных ультрацентрифугах оседают пе только кол.чоидные частицы гидрофобных коллоидов, но и молекулы белков и других высокомолекулярных соединений. Помимо очистки, метод ультрацентрифугирования широко применяется в настоящее время для определения среднего радиуса коллоидных частиц, а также для вычисления молекулярной массы высокомолекулярных соединений. Практически все выдающиеся достижения молекулярной биологии обязаны, этому методу. Следует отметить, что работа с ультрацентрифугой очень сложна и кропотлива, так как требует тщательного учета влияния многих побочных факторов. [c.294]

    Однако в связи с малой весовой концентрацией (менее 1,0% и большим молекулярным весом частиц коллоидов их количество в растворе настолько, мало, что осмотическое давлегие в растворах коллоидов очень низкое. Осмотическое давление в растворах белков и других высокомолекулярных соединений,концентрация которых достигает 10—12% и более, значительнее и оказывает существенное влияние на ряд процессов в организме. Часть осмотического давления крови, обусловленная высокомолекулярными соединениями, в основном белками, называется онкотическим давлением. Оно невелико, составляя в норме всего около 0,04 атм, и тем не менее играет определенную роль в биологических процессах. Общее осмотическое давление крови достигает 7,7 атм. Осмо- [c.192]

    При рассмотрении строения мицеллы было показано, что при взаимодействии лиофобных коллоидов с электролитами на поверхности ядра адсорбируются определенные ионы из раствора. Ядро с адсорбированными на нем ионами того или иного знака взаимодействует с окружающим раствором. При этом благодаря электростатическому притяжению ионы, обладающие знаком, противоположным по отношению к потенциалопределяю-щим ионам, стремятся расположиться к ним как можно ближе. В результате этого образуются два близко расположенных слоя ионов один на поверхности (потенциалобразующие ионы) и другой в растворе (противоионы). Такая система называется двойным электрическим слоем Гельмгольца (рис. 122). Следует помнить, что в целом эта система электроней-тральна. В представлении Гельмгольца двойной электрический слой по добен плоскому конденсатору, внутренняя обкладка которого находится в твердой фазе, а внешняя — расположена в жидкости параллельно твердой поверхности ядра на расстоянии молекулярного порядка. Общий термодинамический по- [c.319]

    Остановимся вкратце лишь на тех работах, которые ближе к тематике книги. Ряд вопросов теории устойчивости лиофобных коллоидов был рассмотрен Барбоем влияние на пороги коагуляции величины потенциала частиц, заряда побочных ионов и состава электролита [27]. Все эти расчеты основаны на анализе баланса сил молекулярного притяжения и ионно-электростатического отталкивания в системах, состоящих из плоских частиц с фиксированным потенциалом диффузного двойного слоя. Броуновское движение частиц при этом полностью игнорировалось. Напротив, кинетические аспекты устойчивости подробно рассматривались Глазманом и Клигман [28]. Глазман и Барбой с сотр. [29]йоказали, что такие явления, как аддитивность, антагонизм, синергизм, в действии смесей ионов могут быть в принципе объяснены с помощью модели взаимодействующих плоских частиц при определенных предположениях относительно ад- [c.269]

    Одним из первых, кто обратил внимание на особенности коллоидных растворов, был итальянский ученый Сельми. В середине прошлого столетия он исследовал коагуляцию и осаждение некоторых золей, которые назвал псевдорастворами , в отличие от истинных растворов. Однако эти исследования остались неизвестными современникам. К началу 60-х годов XIX века английский химик Грэм, подробно изучив ряд коллоидных растворов, установил важнейшие их свойства светорассеяние, замедленность диффузии частиц, диализ и коагуляцию. Он ввел название коллоид и другие коллоидно-химические термины, вследствие чего считается основоположником коллоидной химии. Однако Грэм дал неправильное объяснение коллоидного состояния. Он считал, что только определенные вещества образуют коллоидные растворы, и назвал их коллоидами, т. е. клееподобными (от греческого слова кшкка [колла] — клей). Остальные вещества, дающие молекулярные или ионные растворы, он назвал кристаллоидами и, исходя из этого, разделил все вещества в природе на два больших класса. Эти представления Грэма господствовали в науке до конца прошлого века. К этому времени накопились результаты многочисленных исследований коллоидных растворов, проведенные рядом ученых, из которых наибольший вклад внес русский ученый Веймарн. Они ясно показали, что одни и те же вещества могут образовывать коллоидные и обыкновенные растворы, т. е. коллоиды не являются какими-то определенными веществами, но все вещества могут быть в коллоидном состоянии. [c.15]

    Различия длины цепей полимера можно считать особенностью, заложен ной в свойствах высокомолекулярных коллоидов и зависящей от вида полимеризации, применявшейся для получения полимеров. Различия вида полимеризации у природного и синтетического каучука мсгут быть причиной резкого изменения свойств и поведения полимеров. Очень часто полимеризация не приводит к образованию определенного высокополимерного вещества, а скорее дает смесь продуктов полимеризации. Полистирол, например [82], состоит из смеси полимеров, имеющих одинаксвую структуру, но различающихся по длине цепи. Штаудингер называет эти полимеры полимер-гомологами [84].. Обнаружено, что склонность к полимеризации а-метилстирола значительно меньше, чем стирола, поэтому получаются более короткие цепи и происходит замыкание цикла, ксгда лишь несколько молекул оказываются связанными друг с другом. Таким образом получен гомологический ряд полимеров поли-метилстиролов от димера до октамера. Наличие циклов устансвлено насыщенным характером полученных продуктов и отсутствием концевых групп [88]. Полистиролы и полииндены аналогичны по молекулярной структуре, они состоят подобно метилстиролам из длинных цепей, конечные валентности которых насыщаются при образовании циклов [89]. [c.655]

    Каждый тип жидких кристаллов обладает своими собственными геометрическими и оптическими свойствами. На молекулярном уровне это означает, что каждый такой порядок обладает определенной группой симметрии [6]. Большая часть двоякопреломля-ющих биологических систем обнаруживает структуру, симметрия которой совпадает с различными хорошо известными мезоморфными фазами [7]. Таким образом, различные типы мезоморфных порядков широко распространены в живой природе. Мы не должны забывать также, что существуют и истинные трехмерные кристаллы [8]. Важность мезоморфных структур (в том числе и коллоидов) определяется их присутствием в мембранах клеток и клеточных органелл, в клеточных ядрах и хромосомах многих микроорганизмов, в миелиновых оболочках аксонов нервных клеток (особенно распространенных в белом веществе мозга позвоночных), а также в мышечных и скелетных тканях [3, 7, 9—1 ]. [c.277]

    Необходимо подчеркнуть те особенности процесса соосаждения сульфидов, которые выявляются при построении диаграмм. Мы имеем в виду образование микродисперсных систем, наличие которых обнаруживается на диаграммах. При определенных условиях соосаждение для сульфидов может протекать в чистом виде с образованием химических соединений или молекулярных твердых растворов без наложения второго процесса. Между тем в условиях большого избытка основного или второго компонента, слабой кислотности, малой растворимости второго компонента, при образовании химических соединений или молекулярных твердых растворов наблюдается коллоидо-дисперсное растворение одного сульфида в другом. Такие системы подчиняются закону распределения, и возникновение их тесным образом связано с переходом сульфидов из молекулярно-в коллоидо-дис-персное состояние. В первой стадии процесса при взаимодействии сульфида основного компонента с ионом второго компонента образуются химические соединения или молекулярные твердые растворы, которые в последующем превращении с избытком этого иона дают микродисперсные системы. [c.272]

    Можно считать, что классификация растворов, да1шая Оствальдом и основанная на различии размеров частиц растворенного вещества, в настоящее время является недостаточной. Несомненно, что все системы, содержащие частицы большого размера, независимо от их природы, будут обладать рядом общих свойств, и мы объединим их термином коллоиды лишь в этом смысле. Однако большинство свойств коллоидов, как то адсорбционные процессы, явления пептизации и коагуляции, оптические свойства и т. п., связывается с микрогетерогенностью коллоидных растворов и с определением коллоидных частиц как агрегатов, состоящих из большего или меньшего количества молекул и обладающих поверхностью раздела. К собственно коллоидным системам большинство исследователей относит именно системы, в которых частицы представляют собой подобные агрегаты в отличие от истинных растворов, содержащих вещество в молекулярной стенени дисперсности. При этом размеры молекул истинно-растворенного вещества, обладающего большим молекулярным весом (например, истинно-растворенные красители), могут иметь большие размеры, чем частицы тонко диспергированных коллоидов, как, например, золото или окись железа (15—20 А). Наконец в случае высокомолекулярных веществ мы имеем молекулы с молекулярным весом в несколько десятков и даже сотен тысяч, которые, по терминологии Оствальда, должны быть отнесены к коллоидным частицам. В то же время эти высокомолекулярные вещества могут присутствовать в растворе в виде отдельных молекул. Возникает вопрос, должны ли мы рассматривать растворы соединений с большим молекулярным весом как растворы коллоидные или же мы можем точнее передать их свойства, описывая их как истинные растворы Этот вопрос является одним из основных, хотя некоторые исследователи, как, например, Кройт [11, рассматривая коллоидные процессы, сознательно воздерживаются от обсуждения этого вопроса. [c.242]


Смотреть страницы где упоминается термин Молекулярный вес коллоида определение: [c.169]    [c.276]    [c.323]    [c.24]    [c.336]    [c.274]    [c.36]    [c.208]    [c.12]    [c.62]    [c.130]   
Физико-химия коллоидов (1948) -- [ c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоиды

Коллоиды молекулярные

Коллоиды определение

Молекулярный вес, определение



© 2025 chem21.info Реклама на сайте