Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты неорганические термическая

    Неорганические полимеры. Неорганических полимеров — множество. Отличительным и практически важным свойством многих неорганических полимеров является их термическая и химическая стойкость. Другой отличительной чертой многих неорганических полимеров является их твердость и хрупкость. Это обусловлено наличием пространственной кристаллической структуры и часто высокой долей ионной составляющей химической связи. Влияют [c.611]


    В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную хроматографию. В газовой хроматографии подвижной фазой является газ. Этот метод хроматографии служит для разделения летучих веществ, к которым обычно относятся вещества с молекулярной массой приблизительно до 300, и термически стойких соединений. В жидкостной хроматографии подвижной фазой служит жидкость. Она применяется для разделения нелетучих веществ с молекулярной массой от 300 до 1000—2000, неорганических ионов и термически нестойких соединений. Таким образом, газовая и жидкостная хроматография дополняют друг друга. [c.212]

    Сорбенты. Ионообменные материалы — важный класс неподвижных фаз, используемых в жидкостной хроматографии. Развивающийся хроматографический метод предъявляет к ионообменникам следующие основные требования высокая ионообменная емкость химическая стойкость при контактах с кислыми и щелочными растворами механическая прочность определенная степень набухания хорошие кинетические свойства при сорбции и десорбции ионов достаточная термическая и радиационная устойчивость селективность действия по отношению к отдельным ионам или группам ионов. Ионообменными свойствами обладают многие вещества. Их можно разделить на две большие группы неорганические и органические. Каждая из групп в свою очередь подразделяется на природные и синтетические. [c.79]

    Способность к ионному обмену многих неорганических веществ, главным образом алюмосиликатов, известна давно. Уже в конце прошлого столетия некоторые природные и синтетические алюмосиликаты нашли применение для умягчения воды, очистки сахарного сиропа от калия. Однако известные в то время неорганические иониты (глинистые минералы, синтетические алюмосиликаты — пермутиты) обладали низкой химической устойчивостью и небольшой обменной емкостью, ограничивших их применение. Появление синтетических ионообменных смол привело к длительному забвению неорганических ионитов. Однако развитие в послевоенные годы радиохимии и атомной энергетики потребовало создания радиационно и термически стойких ионообменных материалов, обладающих к тому же высокой селективностью. Этим требованиям не удовлетворяли имевшиеся в то время органические ионообменные смолы, и внимание исследователей разных стран вновь привлекли неорганические соединения. [c.670]


    Рассмотренные в данном параграфе примеры показывают, что учет поляризации ионов действительно может служить основой качественной теории неорганической химии, ие только позволяющей систематизировать фактический материал иа базе фундаментальных ионных параметров, но и обладающей — в качественном плане — значительной предсказательной силой. Например, при бесцветности иодида данного элемента мои ио ожидать, что бесцветны будут и другие его галогениды прн равенстве зарядов и близости радиусов хлорид 18-электронного катиона будет более легкоплавок и менее термически устойчив, чем хлорид 8-электронного катиона и т. д. Разумеется, возможны отдельные исключения, обусловленные неучетом тех или иных особенностей, но ведь исключения лишь подтверждают правило . [c.434]

    Из многочисленных путей образования короткоживущих радика--лов наиболее важными являются фотохимическое и термическое расщепление связей, окислительно-восстановительные реакции с переносом одного электрона (вызываемые неорганическими ионами) и электролиз. [c.280]

    Второй угол изображенного на рис. 3.1 треугольника занимают ионные жидкости. К числу последних относятся расплавленные соли, все чаще применяющиеся как растворители для осуществления как неорганических, так и органических реакций [3, 24—30, 112—114]. Высокая термическая устойчивость, хорошая электропроводность, низкая вязкость, широкий температурный диапазон существования жидкой фазы, низкое давление паров и связанная с этим возможность работы при высоких температурах, а также высокая растворяющая способность по отношению к солям и металлам делают расплавы солей чрезвычайно полезной реакционной средой. По изложенным выше причинам такие растворители все чаще применяют и в промышленности. Еще одно преимущество расплавов солей связано с их высокой теплопроводностью, позволяющей очень быстро рассеивать тепло, выделяющееся в результате реакции. [c.90]

    Вторую группу синтетических неорганических ионообменников образуют соли гетерополикислот, гидратированные оксиды (особенно четырехвалентных элементов) и нерастворимые соли поливалентных металлов. Эти ионообменники (главным образом катионообменники) начали применяться сравнительно недавно. Они характеризуются более высокой обменной емкостью, термической, радиационной и химической (в кислых средах) устойчивостью и в некоторых случаях высокой селективностью к определенным ионам. При pH > 8 большая часть ионообменников гидролитически разрушается. [c.39]

    Как известно, применяемые в настоящее время неорганические ионообменные сорбенты (окиси, гидроокиси и соли металлов, алюмосиликаты, силикагели, пермутиты, бентониты, глаукониты, цеолиты и т. д.) обладают высокоразвитой удельной поверхностью, способностью к химической, молекулярной сорбции и сорбции коллоидных частиц, повышенной радиационной и термической стойкостью. Они, как правило, слабо набухают в водных растворах, и ионный обмен происходит в основном на поверхности сорбента, так что кинетика обмена не осложняется процессами, связанными с диффузией ионов в фазе самого сорбента, как это имеет место в случае большинства ионообменных смол. С другой стороны, ионообменные смолы превосходят неорганические сорбенты по таким важным показателям, как величина емкости, основность или кислотность, химическая стабильность. Понятно, что определенный интерес представляет получение ионообменников, сочетающих в себе свойства ионообменных материалов как минеральной, так и органической природы. Этой цели можно достигнуть, используя принцип получения комбинированных минерально-полимерных продуктов путем газофазной привитой полимеризации, осуществляя на неорганических сорбентах полимеризацию мономеров, дающих полимеры, способные к ионному обмену (сами по себе или после введения соответствующих ионообменных групп путем необходимых химических превращений) [1]. [c.168]

    Для всех остальных неорганических и органических веществ различие в энергиях гетеро- и гомолитического разрыва связи составляет сотни кДж -моль , т.е. обычное термическое воздействие приводит к гомолитическому разрыву связи. Образование ионов в газовой фазе происходит лишь при воздействии квантов электромагнитного излучения, ускоренных электронов и других частиц высокой энергии. [c.23]

    Высказано предположение, что поведение дитиофосфатов металлов при повышенных температурах подчиняется общим закономерностям, установленным ранее для неорганических солей, согласно которым для солей металлов одной группы с одним и тем же кислородсодержащим атомом термическая стабильность возрастает с увеличением ионного радиуса. Повышение заряда на атоме металла снижает стабильность соли [1з]. [c.45]

    Даже в том случае, когда весь образец пропускается через ионизационную камеру во время съемки масс-спектра, лишь незначительный процент молекул подвергается ионизации, а большая часть пара откачивается насосами неизмененной. Таким образом, чувствительность может быть повышена применением большего ионизирующего электронного тока [ 174]. Другие типы ионных источников, как, например, источник с термической эмиссией, более эффективны, чем источники с бомбардировкой электронами. На них в ряде случаев может быть ионизирована большая часть исследуемого материала так, в случае анализа рубидия на непрерывно откачиваемых приборах для исследования достаточно 10 г образца. При анализе неорганических твердых образцов используется искровой источник [416]. Применение фотопластинки в качестве детектора позволяет понизить уровень обнаружения до 1-10 %, так как пластинку с большой выдержкой можно рассматривать как интегрирующее устройство. [c.190]


    Термическое разложение аммонийных солей оксикислот сложнее, чем большинства других неорганических солей. Можно указать много возможных продуктов окисления катиона. Разложение редко следует стехиометрическому уравнению из-за температурной зависимости состава продуктов окисления иона аммония. Соль часто возгоняется, плавится или взрывается при весьма низкой температуре, что усложняет кинетическую интерпретацию. [c.323]

    Признаки, характеризующие органические соединения, но имеющие относительное значение 1) неустойчивость химическая и термическая. Действительно, подавляющее большинство органических соединений разрушается при температурах 300—400 °С однако известны органические соединения, устойчивые при 500 °С и даже температуре красного каления (фтороуглероды) 2) сложность строения. Архитектура некоторых органических соединений, особенно природных, весьма сложна, а молекулярная масса достигает сотен тысяч 3) скорости многих реакций органических соединений значительно меньше скоростей ионных превращений неорганических соединений. Однако и в органической химии известно много ионных реакций, протекающих с большими скоростями 4) реакции органических соединений протекают часто не в одном, а в нескольких направлениях. Образуются смеси различных продуктов, что затрудняет выделение нужных веществ и одновременно дает возможность, изменяя скорости отдельных направлений, получать с наибольшими выходами главный продукт. [c.8]

    Важное практическое применение могут найти мембраны из неорганических ионитов в электрохимических процессах как твердые электролиты с униполярной ионной проводимостью и низким электрическим сопротивлением. Мембраны можно получать прессованием тонкодисперсных порошков неорганических ионитов, иногда — с последующей термической обработкой. Чаще всего т неорганических ионитов гетерогенные мембраны получают по методикам, разработанным для органических ионитов [288] вальцеванием или прессованием порошков ионита с полимерным связующим или отливом взвеси порошка ионита в растворе полимерного связующего [289]. [c.203]

    Интенсивно развивается синтез неорганических ионитов (нерастворимые окислы и гидроокиси многовалентных металлов, соли гетерополикислот и полифосфорных кислот) [23, 36]. Они применяются в ионообменном синтезе электролитов высокой чистоты, содержащих те же элементы, что и ионит, а также при получении и очистке радиоактивных соединений [37—39]. Неорганические иониты обладают термической устойчивостью, поэтому с их помощью возможны ионообменные синтезы в расплавах. [c.15]

    Бинарное соединение. Бесцветная жидкость (слой более 5 м толщиной окращен в голубой цвет), без вкуса и запаха. Молекула имеет строение дважды незавершенного тетраэдра [ 0Н2] (sp -гибридизация). Летучее вещество, термически устойчивое до 1000 °С. Твердая вода (лед) легко возгоняется. Природная вода по изотопному составу водорода в основном HgO с примесью Н НО, по изотопному составу кислорода в основном Н2 0 с примесью Нг О и Н2 О. В малой степени подвергается автоионизированию (автопротолизу) до Н+ или, точнее, до Н3О+ и ОН . Катион оксония Н3О+ имеет строение незавершенного тетраэдра [ 0(Н)з] (sp -гибридизация). В водном растворе ион НзО" — самая сильная кислота, ион ОН — самое сильное основание, вода — самая слабая кислота (по отношению к иону ОН ) и основание (по отношению к иону Н3О+). Жидкая вода ассоциирована за счет водородных связей до (НгО) (при комнатной температуре л = 4). Образует кристаллогидраты со многими солями, аквакомплексы — с катионами металлов. Реагирует с металлами, неметаллами, оксидами. Вызывает электролитическую диссоциацию кислот, оснований и солей, гидролизует многие бинарные соединения и соли. Подвергается электролизу в присутствии сильных электролитов. Почти универсальный жидкий растворитель неорганических веществ. Для химических целей природную воду очищают перегонкой (дистиллированная вода), для промышленных целей умягчают, устраняя временную и постоянную жесткость (см. 41 , 43 ), или полностью обессоливают, пропуская через иониты в кислотной Н -форме и щелочной ОН -форме (ионы солей осаждаются на ионитах, а ионы Н + и ОН переходят в воду и взаимно нейтрализуются). Питьевую воду обеззараживают хлорированием (старый способ — см. 67 ) или озонированием (современный, но дорогой способ озон не только окисляет вредные примеси подобно хлору, но и увеличивает содержание растворенного кислорода — см. 71 ). [c.153]

    Важным существенным преимуществом использования адсорбции в молекулярной хроматографии по сравнению с растворением в неподвижной жидкой фазе является, как было отмечено во введении, одностороннее воздействие поля молекулярных сил адсорбента на молекулы разделяемых компонентов [1, 2]. Кроме того, поскольку атомы или ионы в твердых адсорбентах связаны короткими химическими связями, концентрация на поверхности адсорбентов силовых центров, участвующих в межмо-лекулярном взаимодействии с молекулами компонентов, сравнительно высока. Так, на базисной грани графита она составляет 38 атомов углерода на 1 нм . То же относится к неорганическим солям и непористым или макропористым оксидам. При достаточной однородности поверхности это приводит к усилению межмолекулярных взаимодействий адсорбат —адсорбент и позволяет достичь большой селективности разделения. Высокая термостойкость многих неорганических адсорбентов обеспечивает отсутствие фона в детекторах, вызываемого летучестью или термической деструкцией неподвижной жидкой фазы в газожидкостной колонне, и позволяет использовать наивысшую чувствительность детектора при высоких температурах колонны. Однако высокая поверхностная концентрация силовых центров у таких адсорбентов, благодаря значительной энергии адсорбции, не позволяет хроматографировать вещества с большой молекулярной массой даже при самых высоких температурах (400— 450°С). В таких случаях следует снижать концентрацию силовых центров на поверхности адсорбента. [c.15]

    Метод, с помощью которого твердые либо жидкие образцы могут быть введены в систему напуска, нагретую приблизительно до 200° С, был описан Кольдекортом [60]. Менее летучие материалы могут быть введены в масс-спектрометры после нагревания в маленькой печи и испарения непосредственно в электронный пучок такая система применялась ири изучении качественного состава асфальтов [61]. Печка может находиться также и вне ионизационной камеры в этом случае работают с молекулярным пучком образца. Последняя система широко применялась для исследования металлов и других неорганических соединений и продуктов термического распада полимеров [62]. В работе [63] описана конструкция, обеспечиваюи ая непосредственный ввод анализируемого вещества в ионный источник. [c.39]

    Исследование получающихся при этом лантанидатов NaM O , SrM2 "04 и т. д. (в частности, оно проводилось на кафедре неорганической химии МГУ) — показало [10], что наиболее легко (быстро и в мягких условиях) образуются наиболее химически, а также термически устойчивые соединения тяжелых РЗЭ. Это и понятно — тяжелые РЗЭ(III) обладают амфотерностью в максимальной степени благодаря малому ионному радиусу. [c.74]

    Оксид алюминия является типичным представителем полярных неорганических гидрофильных сорбентов ионного типа. Оксид алюминия получают путем термического удаления влаги из гидратированного гидроксида алюминия. В зависимости от исхохшого материала и используемого процесса гидратации получают разные кристаллические формы оксида алюминия а, Р, у, 11. Они имеют разные удельные поверхности, размер пор и поверхностную энергию, чем и обусловлены различия их хроматографических свойств. Можно выделить несколько типов композиций смешанные составы - оксид и гидроксид алюминия, низкотемпературные (200-600 С) и сверхвысокотемпературные (1100 С) оксиды алюминия. Как правило, повышение температуры дегидратации способствует снижению удельной поверхности. Например, оксид алюминия с очень высокой температурой обработки обладает чрезвычайно низкой удельной поверхностью и вследствие этого не используется в хроматографии. [c.375]

    Комплексные ферроцианиды цинка, кобальта, никеля, молибдена, ванадия и вольфрама также проявляют высокую селективность к ионам цезня [19-24]. По аналогии с другими неорганическими ионообменниками их селективность повышается в ряду Li < Na < К < Rb s. Так как сродство к ионам s у некоторых неорганических ионообменников чрезвычайно велико, s очень трудно элюировать из обменника. В этом случае в качестве элюентов используют концентрированные растворы нитратов аммония, серебра или ртути(П). Если количественное элюирование цезия этими растворами невозможно, рекомендуется проводить химическое или термическое разложение обменника. Цезий не поглощается Th[Fe( N)g] и Zr[Fe( N)g] и лишь слабо сорбируется на (ThO)2[Fe( N)e]. [c.158]

    Применяют несколько видов коагуляции неорганическими солевыми электролитами, органическими и неорганическими кислотами, термической обработкой, добавлением веществ, образующих наполнители Например, при добавлении к культуральной жидкости раствора жидкого стекла (Na2Si03) и натрия моногидрофосфата, в результате взаимодействия с ионами кальция, находящимися в культуральной жидкости, образуется осадок наполнителей [c.335]

    Берлин [23] изучил реакции механо-химической деструкции, включая гетеролитическую деструкцию, приводящие к получению полимерных ионов в случае силикатов, стекла, асбеста, полевого шпата, слюды и других минералов. Полученные результаты он распространил на белки и полисахариды, участвующие в жизненных процессах. Муллинс и Уотсон [24] показали, что высокотемпературная деструкция натурального каучука в атмосфере кислорода также зависит от силы сдвига, и предположили, что приложение механической энергии при обычной термической бимолекулярной реакции окислительной деструкции ускоряет процесс. Каргин и Платэ [25] обнаружили возникновение активных центров при размоле неорганических кристаллических веществ, таких, как поваренная соль, кварц и графит. Почти не исследованной областью является резание и другие механические операции при обработке металлов некоторые уже полученные данные хорошо согласуются с представлениями о протекании механо-химических реакций [26]. [c.484]

    СЛЮДОКРИСТАЛЛЙЧЕСКИЕ МАТЕРИАЛЫ — материалы на основе природных или синтетических слюд. С. м. на основе природных слюд используют с конца 19 в,, С. м. на основе синтетических слюд получены в 1960—1965 гг. Синтетические слюды отличаются от природных отсутствием в их структуре ионов гидроксила, вследствие чего они не разлагаются нри нагревании и плавятся конгруэнтно. С. м. характеризуются достаточно высокими электротехническими и физико-мех. св-вами и отличаются от др. видов окисных неорганических материалов (нанр., керамики, стекла) хорошей обрабатываемостью (точением, распиловкой, сверлением, фрезерованием и т. д.) на обычных металлорежущих станках резцами из закаленной стали или твердых сплавов. Различают С. м. литые и спеченные. Литые С. м.— плотные ноликристаллические материалы, состоящие из кристаллов слюды (90—95 об.%), сцементированных фторсодержащим стеклом (5— 10 об.%). Изменяя состав кристаллической фазы, можно получить С. м. из кристаллов слюды и магнезиальной шпинели (60—90 об.%), муллита, форстерита (до 40 об.%) и др. Кристаллы слюды размером 200— 250 мкм располагаются в виде суб-нараллельных, радиально-лучистых и сноповидных образований без строгой ориентации (см. вклейку между сс. 416—417). Литые С. м. получают на основе синтетических слюд. Плотность литых материалов 2,71—2,88 г/см , пористость 1—3%, прочность на сжатие 900—1250 кгс/см , прочность на изгиб 250—350 кгс/см , коэфф. термического расширения (1,6—6,5) 10 град , коэфф. теп- [c.407]

    С целью оценки актавности адсорбента определяют значение к стандартного соединения в стандартных условиях [1] и сравнивают этот показатель ск для стандартного образца адсорбента. Исправление активности адсорбента в том случае, если значение отличается от стандартного, проводят путем добавления сухого адсорбента (если к мало) или дополнительного количества воды (если к больше стандартного значения). В ВЭЖХ широко применяют определение активности путем элюирования нафталина пен-таном [9]. Удобная и простая методика оценки активности силикагеля и ее стандартизации [8] состоит в следующем. Адсорбент — промышленный силикагель марки АСК зернением 250-500 мкм - по методике, предназначенной для определения группового состава высококипящих нефтепродуктов, подвергают предварительно следующим операциям удаление неорганических примесей, измельчение и отбор фракции 63-100 мкм, удаление органических лримесей, термическая активация, доведение активности силикагеля А до требуемого значения. Удаление неорганических примесей осуществляют кипячением силикагеля с концентрированной хлороводородной кислотой в течение 2 ч, после чего суспензию охлаждают до комнатной температуры, кислоту сливают, а кислый силикагель 2—3 раза промывают дистиллированной водой и нейтрализуют раствором щелочи до pH=7. Нейтральный силикагель промьшают водой до отсутствия ионов хлора и подсушивают в сушильном шкафу до воздуш-ноч ухого состояния при 100°с. Измельчение силикагеля проводят на шаровой мельнице с последующим рассевом и отбором рабочей фракции 63—100 мкм на проволочных ситах. Для удаления органических примесей силикагель прокаливают 15-20 ч при 200—250 °С. Для оценки степени уда- [c.27]

    Одним из серьезных ограничений применения лазерного источника на настоящем этапе развития служит трудность получения количественных результатов. Калибровка затруднительна и может быть выполнена лишь для газов, растворенных в пленках, полученных катодным напылением (Уинтерс, Кей, 1967). Количество некоторых ионов (особенно ионов щелочных металлов), которые могут образоваться при взаимодействии лазер— твердое тело, намного ниже предела обнаружения других способов. Плохая воспроизводимость выходной мощности лазера — другое ограничение рассматриваемого метода. Электронное регулирование импульса лазера может быть ключом к решению этой проблемы. Вплоть до недавнего времени результаты масс-спектрометрического изучения частиц пара, образовавшихся при взаимодействии лазер—твердое тело, были малопонятны. Взаимодействие фотонов луча лазера с твердым материалом более сложное, чем в случае короткого термического импульса. Высокое давление, возникающее в облаке, очевидно, играет важную роль в формировании частиц пара. Распределение энергии на процессы нагрева конденсированной фазы, ее плавления и испарения пока еще не ясны. Можно предполагать, что в случае неорганических твердых тел большая часть энергии идет на повышение температуры, а для органических — преобладает ДЯ (скрытая теплота плавления). К сожалению, термодинамические данные для большинства частиц, полученных при лазерном испарении, отсутствуют, поэтому рассчитать распределение энергии луча лазера невозможно. Несмотря на эти ограничения, лазерный источник относится к новым важным источникам энергии для масс-спектрометрии. [c.442]

    Термическая стойкость силоксановых полимеров вызывается не только влиянием энергии связи 51—О, но и ионным характером связи 31—О (50%), в чем она приближается к неорганическим соединениям с чисто понным характером, которые известны своей термостабильностью. Можно представить себе, что полимерная молекула пол)1силоксана имеет строение, аналогичное строению неорганических силикатов [1274, 2061]. [c.191]

    Здесь не рассматриваются явления, происходящие при меха-иодиопергировании полимеров в присутствии металлов или ионных кристаллов с особым механизмом перехода в активное состояние, или при диспергировании окислов, которые могут рассматриваться как неорганические полимеры и т. д. Можно принять, что для систем, содержащих полимерные и низкомолекулярные компоненты, подводимая механическая энергия преобразуется для возбуждения механохимических про цессов именно через полимерный компонент. Именно это придает специфичность процессу механической деструкции и определяет ее основные отличия от деструкций других видов. Эта специфичность в общих чертах может быть выявлена хотя бы при сопоставлении с другими видами деструкции, наиболее важными из которых являются термическая и химическая. [c.122]

    К неорганическим фторокислителям, кроме фтора, в основном относят фториды кислорода, фториды и оксофториды азота, фториды и оксофториды галогенов, фториды и оксофториды благородных газов, фториды, в состав которых входят сложные, обладающие высокими окислительными свойствами фторсодержащие ионы. Многие из этих соединений при обычных условиях-жидкие или даже твердые вещества с высокой термической устойчивостью, некоторые из них достаточно инертны и окислительные свойства проявляют лишь при нагревании или каком-либо ином способе инициирования процесса, что упрощает их эксплуатацию. Наиболее эффективными фторокислителями будут соединения с макси- [c.171]

    Взаимодействие энергии луча лазера и твердого тела приводит к образованию по крайней мере двух типов частиц. При пиковой интенсивности импульса лазера частицы образуются непосредственно под действием луча. В неорганических материалах процесс ионизации имеет несомненно термическую природу. Ионизация органических твердых тел может сопровождаться химической ионизацией. Подробно ионизация лучом лазера рассмотрена Беном (1969) и Ноксом (1971). Степень ионизации неорганических твердых тел зависит от потенциала ионизации частиц и может быть оценена по известному уравнению Ленгмюра—Соха. В течение импульса лазера в газовой фазе образуются необычные нейтральные и ионные частицы. Это можно объяснить влиянием температуры и давления, развивающихся при взаимодействии лазер—твердое тело (Бен, 1969 Нокс, 1969а), поскольку давление расширяющейся плазмы может легко достигать нескольких тысяч атмосфер, что достаточно для нагревания многих материалов до их критической температуры или выше. В сочетании с высокими температурами на поверхности, которые могут достигать несколько тысяч градусов, эти давления переводят режим испарения в критическую область. Другими словами, превращение из конденсированной фазы в паровую происходит с небольшим разрушением связей, причем сохраняется структура ближнего порядка конденсированной фазы. Таким образом, в дополнение к сведениям о химической природе частиц пара можно получить некоторую информацию относительно их структуры. [c.430]

    Бескислородная соль. Белый, летучий, термически неустойчивый. Хорошо растворим в воде (с заметным эн( о-эффектом), гидролизуется по катиону. Разлагается шелочами при кипячении раствора, переводит в раствор магний. Вступает в реакцию конмутации с нитритами. Качественная реакция на ион NH4+ — выделение NH3 при кипячении со щелочами или при нагревании с гашеной известью (см. 81 ") и его последующее обнаружение (см. 79" ). Применяется в неорганическом синтезе, в частности для создания слабокислотной среды, как компонент азотных удобрений, сухих гальванических элементов, при пайке медных и лужении стальных изделий, выше 337,8 °С.  [c.170]

    Реакции образования полимеров с металлсодержащими циклами, как правило, представляют собой реакции поликоординации. При синтезе стремились получить полимеры, сочетающие свойства неорганических и органических структурных фрагментов. Вклад металла должен проявляться в термостойкости, электро-и теплопроводности органические фрагменты должны придавать полимеру пластичность, прочность и перерабатываемость, что особенно важно при практическом использовании полимеров. Стимулом в развитии этих работ послужила стабилизация органических соединений против термической и термоокислительной деструкции за счет хелатирования их с ионом металла. Чаще других приводится пример фталоцианина меди (18), который возгоняется в вакууме при температуре 500° С в атмосфере азота или углекислого газа и устойчив к действию расплавленного поташа и кипящей соляной кислоты [13]. Известно также, что этилендиамино-бис(ацетилацетон) термически не очень устойчив, но его комплекс с медью (19) медленно разлагается только при температуре красного каления [29]. Ион трис(Х-оксиэтилэтилендиамин)-кобальта (III) (20) устойчив в азотной кислоте и в царской водке и термостоек до 245 — 250° С [21 ]. Не все полимеры, полученные полициклизацией, обладают желаемым комплексом физико-химических свойств, но так как число полимеров, синтезированных поликоординацией, довольно велико, можно надеяться, что в будущем этим методом будут получены полимеры с ценными свойствами. [c.14]


Смотреть страницы где упоминается термин Иониты неорганические термическая: [c.282]    [c.407]    [c.50]    [c.252]    [c.4]    [c.104]    [c.238]    [c.406]    [c.399]    [c.217]    [c.59]    [c.12]    [c.6]    [c.340]    [c.334]   
Иониты в химической технологии (1982) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Неорганические иониты. Иониты

Неорганические иониты. Иониты неорганические



© 2025 chem21.info Реклама на сайте