Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал ионообменные смолы

    За последнее время появился ряд других электродов, в большей или меньшей степени специфичных в отношении тех или иных ионов. При этом используют ионообменные свойства некоторых материалов (малорастворимых осадков, ионообменных смол, жидких ионообменников), изготовляют их в виде мембран, у которых на границе раздела мембрана — исследуемый раствор возникает потенциал в соответствии с селективностью материала [c.117]


    Способность различных ионов поглощаться ионообмен-никами (см. разд. 12.8) в больщой мере зависит от их ионного потенциала. Когда водный раствор, содержащий смесь ионов, пропускают через ионообменную смолу, заряженную протонами, замещение ее водородных ионов осуществляется преимущественно теми катионами, которые имеют больший заряд. Из смеси, содержащей ионы АР, Са и Ыа , ионы АР будут поглощаться ионообменником в первую очередь, Са —во вторую, а Ыа" —в последнюю, что совпадает с последовательностью уменьщения их ионного потенциала. Если же, например, ионообменная смола, заряженная ионами Ыа, помещена в раствор, содержащий ионы Са , она будет поглощать практически все ионы Са , способные замещать ионы Ыа, но обратный процесс невозможен. [c.346]

    Поскольку содержимое шарика ионообменной смолы можно рассматривать как каплю концентрированного раствора электролита, движение ионов внутрь и из шарика связано с диффузией, на которую оказывают влияние градиенты электрического потенциала. [c.481]

    Мембранные электроды. Если между двумя растворами, содержащими разные катионы или различные концентрации одного катиона, поместить мембраны, проницаемые для катионов и непроницаемые для анионов, то в таких мембранах возникает потенциал. Были сделаны попытки использовать селективные мембранные электроды для измерения активностей ионов металлов, особенно металлов главных подгрупп 1-й и 2-й групп, металлические или амальгамные электроды которых разлагаются водой и нет возможности найти подходящую окислительно-восстановительную систему. Большое число таких электродов рассматривается в работах [85, 204]. Первые исследования проводились с коллодием или гидратированными цеолитами, но позднее начали изготовлять мембраны из синтетических ионообменных смол, содержащих карбоновые, фосфоно-вые [158] или сульфогруппы, либо из стеарата бария [86], окиси графита [58] и неорганических осадков в парафиновом воске [80]. Ионы щелочных металлов, также как и протоны, были изучены с помощью стеклянного мембранного электрода. Потенциал мембраны обычно измеряется косвенным путем с помощью элементов типа [c.165]

    Возникновение скачка потенциала на границе раздела фаз вызывается различными причинами, зависящими от природы граничащих фаз. Одной из наиболее общих причин будет обмен заряженными частицами. В момент появления контакта между фазами он протекает преимущественно в каком-либо одном направлении, в результате чего создается избыток частиц данного знака заряда по одну сторону границы раздела и их недостаток по другую. Такой нескомпенсированный обмен приводит к созданию двойного электрического слоя, а следовательно, к появлению разности потенциалов. Последняя в свою очередь будет влиять на кинетику обмена, выравнивая скорости перехода заряженных частиц в обоих направлениях. По мере увеличения разности потенциалов наступит момент, когда уже не будет больше преимущественного перехода частиц из одной фазы в другую, и скорости их перехода в обоих направлениях станут одинаковыми. Такое значение скачка потенциала отвечает равновесию между фазами, при котором электрохимические потенциалы заряженных частиц в обеих фазах равны. Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусловливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл — вакуум или металл 1 —металл 2 такими частицами являются обычно электроны. При создании границы металл — раствор соли металла в обмене участвуют катионы металла. Скачок потенциала на границах стекло — раствор, а также ионообменная смола — раствор появляется в результате обмена, в котором участвуют два сорта одноименно заряженных ионов. На границах стекло—раствор и катионитная смола — раствор такими ионами являются ионы щелочного металла и водорода на границе анионитная смола — раствор — ион гидроксила и какой-либо другой анион. При контакте двух не смешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую подобно тому, как образуется диффузионный потенциал. Следовательно, оба потенциала — и фазовый жидкостный, и диффузионный —не являются равновесными. [c.204]


    В последние годы появился ряд работ, связанных с применением ионообменных смол, и мембран и в химических источниках тока. Описываются три случая применения этих смол в качестве а) активного материала электрода, б) электролита и в) мембраны, разделяющей растворы разного состава и имеющей поэтому определенную разность потенциалов (мембранный потенциал). [c.213]

    Обменные потенциалы и других ионов (не гидроксильных) больше зависят от природы иона, чем от природы ионообменной смолы. При низких концентрациях обменные потенциалы различных ионов, очевидно, возрастают с увеличением валентности. Для слабоосновных анионитов обменные потенциалы ионов возрастают в последовательности гидроксил > сульфат>хромат> цитрат > тартрат > нитрат > арсенат > фосфат > молибдат > ацетат-иодид-бромид > хлорид > фторид. Установлено, что при сильноосновных анионообменных смолах последовательность расположения ионов по их обменному потенциалу остается такой же, за исключением положения гидроксильного иона [309]. При сильноосновных ионообменных материалах гидроксильный ион имеет наименьший обменный потенциал. Однако при изменении концентраций и значений рП в широких пределах указанные ряды ионов неизменными не остаются. Так, хотя сульфатный ион имеет более высокий обменный потенциал, чем ион хлора, при высоких концентрациях ион хлора обладает большей активностью [606] (рис. 22). Это изменение относительных активностей объясняют различием зависимостей коэффициента активности от концентрации указанных ионов. Весьма важно отметить, что константа диссоциации кислоты, образованной каким-либо анионом, мало влияет на по- [c.47]

    В нашей работе нри изучении каталитических превращений полипептидов была выбрана карбоксильная сильно набухающая смола КМТ. Сшивающим агентом этой смолы является триазин, что способствует образованию дополнительных водородных связей между смолой и пептидами. Было показано, что смола КМТ в Н-форме сорбирует аминокислоты с небольшой емкостью, тогда как с ростом молекулярного веса полипептидов наблюдается увеличение сорбируемости. На такой смоле в отличие от смолы амберлит ШС-50 мы наблюдали резко выраженный гидролиз пептидной связи при использовании белков и их гидролизатов в качестве субстратов. В последнем случае выявилась специфичность смолы в отношении гидролиза смеси полипептидов. Эти результаты, а также термодинамические расчеты позволили поставить вопрос о возможности синтеза пептидной связи на ионообменных смолах [2]. Возможность подобного процесса при гетерогенном катализе могла быть объяснена известным механизмом сорбции диполярных ионов с превращением их в катионы [3]. Отличие этого процесса от обычного ионного обмена с энергетической стороны состоит в том, что если в последнем случае имеется разрыв одной электровалентной связи и образование другой, то при сорбции диполярного иона образуются две химические связи. Вторая связь образуется за счет ковалентной связи СОО — Н. Действительно, было показано, что в данном случае убыль термодинамического потенциала больше, чем в случае ионного обмена с участием ионов аналогичного типа. [c.172]

    Первая попытка применения ионитовых мембранных электродов в потенциометрическом анализе принадлежит Синха [8], который показал, что при титровании соляной кислоты щелочью и в некоторых случаях титрования по методу осаждения потенциал мембранного электрода дает заметный скачок в эквивалентной точке. Более четкие результаты при применении мембранных электродов из ионообменных смол для потенциометрического титрования по методу осаждения получил Парсонс [9]. [c.87]

    Если мембрана из ионообменной смолы разделяет два раствора электролитов, то между ними возникает разность электрических потенциалов, называемая мембранным потенциалом. Возникновение мембранного потенциала в общем случае рассматривается в литературе как результат потоков различного рода частиц через мембрану [1]. [c.192]

    Хотя высокий редокс-потенциал и избыток окислителя оказывают благоприятное влияние на окисление железом (III), скорость реакции с редокс-полимером мала. В первом приближении порядок скорости реакции тот же, что и для карбоксилсодержащих ионообменных смол при взаимодействии с некоторыми щелочными агентами. Относительная скорость реакции редокс-полимера с железом (III) подчиняется тем же правилам, что и реакции с церием (IV). Сульфированные гидрохинонные смолы реагируют быстрее, чем аминированные, тогда как гидрофобные аддукты окисляются наиболее медленно. Редокс-полимер, имеющий меньшие размеры гранул, реагирует быстрее, чем такой же полимер с большим размером гранул. [c.159]

    Необходимо отметить, что для растворимых солей карбоновых и сульфокислот доказано наличие всех трех факторов, объясняющих свойства карбоксильных и сульфокислотных смол. Поэтому до некоторой степени верны все три объяснения. Хотя существование обменных рядов отмечалось многими исследователями, было-показано, что возрастание обменного потенциала с увеличением атомного номера происходит только в растворах низкой концентрации. При высоких концентрациях различия в ионообменной способности, наблюдаемые при низких концентрациях, исчезают и порядок расположения по обменной способности может даже измениться на обратный [606]. Этот же самый эффект наблюдался [c.35]


    Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусл(Звливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл — вакуум или металл 1 — металл 2 такими частицами являются обычно электроны. При создании границы металл — раствор солн металла в обмене участвуют катионы металла (см., однако, ниже). Скачок потенциала на границе стекло — раствор, а также ионообменная смола — раствор по5 вляется в результате обмена, в котором участвуют два вида одноименно заряженных ионов. На границах стекло — раствор и катионнг—раствор такими нонами являются ноны щелочного металла и водорода иа границе анионит— раствор это ион гидроксила н какой-либо другой анион. Прн контакте двух несмешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую. [c.28]

    Выпадения осадка АВ внутри зерен ионообменных смол не происходит, что объясняется не стерическими факторами, а действием доннановского потенциала при использовании растворов обычных концентраций и ионитов со сравнительно высоким содержанием ионогенных групп донна-новское равновесие приводит к почти полному исключению свободного электролита (ВМ) из фазы ионита. Иначе говоря, электролит ВМ практически не входит в зерна ионообменной смольь Следовательно, нет оснований предполагать, что осадки образуются и закрепляются внутри зерен смолы. [c.204]

    Эти процессы обусловлены градиентом электрического потенциала по толщине мембран. Среди электромембранных методов наибольшее практическое применение нашел электродиализ-раз деж-ние растворов под действием электродвижущей силы, создаваемой в растворе по обе стороны разделяющей его перегородки-мембраны. Эти мембраны, изготовленные из полимерных или неорганических материалов [поры размером (2 н- 8) 10 мкм], проницаемых для любых ионов, служат для отделения электролитов от неэлектролитов. Дрзтой тип мембран, селективных только для катионов или только для анионов, изготовляют из ионообменных смол. Ионообменные мембраны применяют для обессоливания растворов электролитов или фракционирования ионов. [c.336]

    Важная практич. задача — отделение сильных электролитов от неэлектролитов. Решение ее возможно благодаря различию в их взаимодействии с ионообменными смолами. Если сильнокислотный катионит в солевой форме К80зМе+ находится в соприкосновении с разб. р-ром сильною электролита Ме + А , то стремление системы к выравниванию концентраций ионов приводит к тому, что часть катионов Ме+ переходит в р-р, а часть анионов А — в фазу ионита. В результате этого на границе раздела фаз возникает значительный электрич. потенциал ( п отенциал Доннана ), препятствующий дальнейшему перемещению ионов. Т. к. катионит приобретает отрицательный заряд, проникновение в него КОНОНОВА- (так называют ионы, имеющие заряды ТОГО же знака, что и фиксированные ионы) затруднено. В равновесном состоянии концентрация КОНОНОВ А , а следовательно, и электролита Ме+А в фазе ионита ничтожна ( принцип ионного исключения ). Нейтральные молекулы неэлектролита, напротив, свободно проникают в фазу ионита. При хроматографич. разделении смеси электролита и неэлектролита (или слабого электролита) последний дольше удерживается в колонке ( способ опережающего электролита ). Этим способом удается отделять хлористый натрий от гликолей, альдегидов и алканоламинов, соляную к-ту от органич. кислот, хлористый аммоний от аминокислот и т. д. [c.430]

    Амфотерные ионообменные смолы, содержащие одновременно кислотные и основные ионогенные группы во внутрисолевой форме, не содержат подвижных ионов, поэтому потенциал Доннана на них не возникает и электролиты могут свободно проникать в фазу ионита. Специальные амфотерные смолы (типа ретардион ), виутрисолевая форма к-рых образуется с нек-рыми стерич. напряжениями, наоборот, охотно сорбируют электролиты. Они могут применяться для отделения электролитов от неэлектролитов по способу отстающего электролита (явление ионной задержки ). Так, саха- [c.430]

    Наиболее важная работа по выяснению влияния фиксированных ионных групп на селективность выполнена Эйзепманом и Карреманом [13, 14]. Она посвяш,ена исследованию не ионообменных смол, а электродных стекол. В этой работе были получены ряды, качественно характеризуюп ие степень влияния состава стекла на потенциал электрода при заданной концентрации различных ионов. Правда, относительное влияние различных ионов на потенциал стеклянного электрода зависит не только от условий равновесия, определяюп] их селективность, но и от ряда других факторов. Однако Эйзен-ману [15, 16] удалось вполне убедительно доказать, что ионообменное равновесие различных ионов с фиксированными группами электродного стекла играет решаю-п] ую роль при определении рядов сродства. Для алюмо-силикатных стекол с постоянным содержанием кремнезема (50 атомных %) было установлено, что селективность закономерно изменяется с ростом отношения Ка/А1  [c.130]

    В ЭТОМ случае ему удалось наблюдать колебания, когда концентрации соли в растворах по обе стороны мембраны были одинаковыми. Помещая один из двух электродов, предназначенных для измерения электропроводности, непосредственно в слой ионообменной смолы и изменяя положение этого электрода, Теорелл обнаружил, что при прохождении постоянного тока в мембране устанавливался градиент концентраций. Возникновение такого градиента вызвано различием в, числах переноса ионов в мембране и растворе, в результате которого у одной поверхности мембраны концентрация противоионов убывает, у другой — растет. Теорелл постулировал, что колебания и в этом случае происходят вследствие искажения концентрационного профиля, если поток объема значителен, или вследствие релаксации, если поток объема близок нулю. Хотя при исследовании слоя ионообменной смолы явления могут быть в некоторой степени осложнены, следует считать, что они определяются теми же физическими причинами, что ив случае обычных мембран. Форгакс [63] обнаружил также колебания электрического потенциала при прохождении постоянного тока через ионообменные (катионо- и аниопообменные) мембраны и через гель агар-агара. [c.504]

    Более высокая избирательная проницаемость. Соллнер и Шин [75] пропускали постоянный электрический ток через ячейки с двумя водными растворами, разделенными 20%-ным раствором амберлита LA-2 в бензоле, ксилоле или нитробензоле. По изменениям в концентрации водных растворов они вычислили отношения количества анионов к количествам катионов, прошедших через органический растворитель. За исключением сильно разбавленных водных растворов, эти соотношения были больше, чем аналогичные соотношения для мембран из ионообменных смол в десятки и даже несколько тысяч раз. Боннер и Ланней [76] измерили мембранный потенциал ячеек с жидкими ионообменными мембранами. [c.305]

    Некоторые мембранные электроды из ионообменных смол обладают электродной функцией, зависящей от концентрации в растворе ионов СПАВ. Описаны ион-селективные электроды такого типа для лаурилсульфата натрия и цетилтриметиламмония. Прямолинейные участки кривой зависимости электродного потенциала от логарифма концентрации дают возможность определять СПАВ вплоть до критической концентрации мицеллообразовапия [37, 38]. В работе [39] описано определение органической серы в анионных СПАВ методом мокрого сжигания при 140—160° С со смесью азотной и хлорной кислот, с последующим определением образующейся серной кислоты осаждением в виде сульфата бария. [c.237]

    Грегор [25] первый четко указал на то, что явление ионного обмена в смолах можно рассматривать как пример доннанов-ского равновесия, причем осмотическое давление внутреннего раствора уравновешивается механическим давлением напряженной полимерной сетки. Основная идея этой концепции, однако, принадлежит Проктору и Вильсону (1916 г.), которые использовали ее для объяснения влияния pH на набухание желатины, Незаряженный сшитый гель набухает в подходящем растворителе до равновесного объема, определяемого главным образом отношением объема, приходящегося на одну поперечную связь, к молярному объему растворителя и величиной термодинамического коэффициента взаимодействия между полимером и растворителем для степени набухания можно вывести термодинамические или статистические формулы (см., например, [26]), причем свободная энергия смешивания уравновешивается свободной энергией растяжения полимерных цепочек. Эта теория, однако, не нашла применения для ионообменных смол, используемых на практике, во-первых, ввиду того, что степень их сшивки достаточно высока, а во-вторых, потому, что свободная энергия растворения сшитой смолы относительно невелика по сравнению с энергией смешивания растворителя с диссоциированными ионами. Если рассматривать фазу набухшей смолы как раствор, то станет очевидным, что молярная концентрация ионов несравнимо больше, чем концентрация полимера таким образом, ответственными за понижение химического потенциала растворителя в среде являются главным образом противоионы. Следовательно, вода из внешнего раствора имеет тенденцию диффундировать внутрь до тех пор, пока энергия растяжения матрицы не скомпенсирует противоположный по знаку член в выражении для свободной энергии. [c.115]

    Однако Михаэлис впервые обратил внимание на зависимость мембранного потенциала от различия в подвижностях ионов в пористой мембране. Шульц еще в 1953 г. [9] упоминал о необходимости учета подвижностей в выражении константы селективности стеклянного электрода. В более четкой форме этот вопрос рассмотрен [23] для любой ионопроводящей мембраны с учетом явлений, происходящих на границе равновесных фаз и внутри мембраны. Используя уравнение Скэтчарда для частного случая проницаемости мембраны только для катионов + + /в=1) и переноса электричества только свободными ионами, авторы [23] проинтегрировали уравнение Скэтчарда в предположении, что коэффициенты активности ионов и их подвижности постоянны по всей мембране [см. уравнение (1.16)]. Полученное уравнение подробно исследовано экспериментально для мембран из ионообменных смол с учетом кинетического фактора, т. е. нв/ма. [c.37]

    Перхлорат-хлорид- и нитрат-ионы являются слабыми комп-лексообраззгющими анионами, в то время как карбонаты, ацетаты, фосфаты или сульфаты—сильными комплексообразователями. Стремление к комплексообразованию в частном случае более или менее может быть изучено стандартными методами. Эти методы включают снектрофотометрию (комплексные ионы часто имеют различные спектры поглощения) потенциометрию (измерение изменения потенциала в присутствии комплексообразующего аниона) полярографию эксперименты по распределению между несмепшвающимися растворителями или между ионообменной смолой и раствором, а также определение растворимости. Все эти методы были применены для изучения комплексных ионов урана и других актинидных элементов. В настоящее время известно большое количество комплексных ионов урана как в виде катионов, так и в виде анионов. Некоторые из них играют важную роль при выделении урана из руд. Здесь мы ограничимся обсуждением небольшого числа комплексов урана, для которых имеются количественные характеристики. [c.200]

    Ионообменные смолы находят широкое применение не только в виде зерненых сорбентов, но также в форме мембран. С помощью мембран можно разделять различные вещества путем электродиалнза и применять их в качестве электродов для определения концентрации в растворах. Мемб-паны из ионообменных смол могут функционировать в растворах соответствующих электролитов как обратимые электроды [1—7], потенциал которых, если они проницаемы только к ионам одного знака, определяется обычным уравнением [c.87]

Рис. 2. Зависимость термодинамического потенциала набухания ионообменных смол КФУХ от состава сорбента и степени сшитости. Коэффициенты набухания смол Рис. 2. <a href="/info/334828">Зависимость термодинамического потенциала</a> <a href="/info/717478">набухания ионообменных смол</a> КФУХ от состава сорбента и <a href="/info/1121383">степени сшитости</a>. <a href="/info/222448">Коэффициенты набухания</a> смол
    Равновесная теория энергии набухания ионитов была предложена Грегором. Эта теория, как мы видели, принимает во внимание эластичность каркаса, образующего вещество ионообменной смолы. Между зерном ирнита и омывающим его раствором при этом возникает осмотическое давление вследствие различия между концентрированным раствором в зерне ионита и разбавленным (В окружающей среде. При этом растворитель диффундирует в зерна ионита, вызывая их набухание и одновременно разбавляя раствор, находящийся в зернах. Вследствие этого поступление В зерно ионита молекул растворителя, например молекул ВОДЫ, растягивает сетку (каркас) макромолекул и вызывает увеличение внутреннего давления набухания я, которое постепенно уравновещивает осмотическое давление. Давление тем больше, чем больше сетчатость ионита. Величину химического потенциала каждого иона в ионите можно охарактеризовать величиной давления набухания л , умноженной на парциальный молярный объем иона в ионите. Тогда логарифм константы можно выразить формулой [c.98]

    Связь между избирательностью ионообменной сорбци , с одной стороны, и количеством мостикообразующего агента в ионите или набухаемостью, с другой стороны, являлась предметом многочисленных теоретических и экспериментальных исследований. Впервые эту связь пытался установить Грегор, выдвинувший положение о решающей роли давления набухания в избирательности ионного обмена [ ]. Большая величина давления набухания в сильно сшитых смолах определяла в этой интерпретации повышение избирательности ионного обмена при увеличении степени сшитости ионообменных смол и уменьшений их степени набухания. Этот же эффект в теории Райса и Харриса ], основанной на развитии теории линейных полиэлектролитов, объясняется в связи с преимущественным возникновением неионизированных ионовых пар на сильно сшитых смолах. Новый подход к анализу роли набухания или взаимодействия иопитов с водой при ионном обмене основан на анализе термодинамического потенциала АФнаб [уравнение (2. 49)], учитывающего всю совокупность взаимодействия с растворителем фазы ионита при ионном обмене [ ]. Как уже отмечалось, величина АФ может как увеличиваться, так и уменьшаться при переходе от смол с меньшим количеством сшивающего агента к смолам с большим количеством сшивающего агента. При этом остальные члены уравнений (2. 83)—(2. 85), зависящие прежде всего от коэффициентов активности ионов в ионите, также могут изменяться по величине, в результате [c.191]

    Определение S N -hohob возможно с помощью сульфидного ионообменного электрода [581], мембранного на основе силиконовой смолы 0P-S-711 [1303], бромид-селективного мембранного электрода [1011]. Электродная функция мембраны тиоцианатного электрода из смеси кристаллов AgS N с термопластичной пластмассой линейна в интервале концентраций 10 —10 молъ/л, измеряемый потенциал не зависит от pH в интервале 1 —13 и мало зависит от ионной силы раствора [1091]. [c.140]

    Если эта реакция выполняется в замкнутой системе, то, поскольку ионный обмен является обратимым процессом, наступает равновесие. Равновесные концентрации ионов, принимающих участие в обмене, неидентичны. Они зависят как от величины относительного сродства реагирующих ионов к ионообменнику, так и от исходной концентрации. Экспериментально установлено, что сродство (или ионообменный потенциал) различных ионов к одной и той же смоле (в разбавленных растворах, <0,1 М) увеличивается с повышением ионного заряда исследуемого иона. Поливалентные ионы образуют с ионообменником более прочные связи (при одинаковых условиях), чем одновалентные ионы. Для ионов одинакового заряда сродство обратно пропорционально радиусу гидратиррванного иона. Однако это утверждение является только общим правилом существуют исключения. [c.26]

    Наиболее значительным является влияние кинетики ионообменного процесса в отдельном зерне смолы внешне-, внутри-или смешаннодиффузионный характер кинетики, отсутствие или заметное влияние химической реакции, учет или неучет переноса за счет градиента электрического потенциала и т. п. Структура потока жидкой фазы и потока дисперсного материала (для аппаратов с движущимся или псевдоожиженным слоем ионита) также может приниматься различной в зависимости от конкретных условий организации процесса в аппаратах с псевдоожиженным слоем частиц принимается режим полного перемешивания по дисперсной фазе и режим полного вытеснения по сплошному жидкому потоку в иных условиях может учитываться нли не учитываться эффект продольного перемешивания или приниматься более сложные комбинированные модели структуры потоков. [c.256]

    Окислительно-восстановительные иониты представляют собой обычные ионообменные материалы, в которые введены обратимые окислительно-восстановительные пары, такие как, u +Z u, Fe +IFt +, метиленовый голубой/лейкометиленовый голубой. Окислитедьно-восстанови- тельный потенциал пары мало, меняется при введении ее, в матрицу смолы. Полученные таким образом ионообменники можно использовать для окисления или восстановления веществ в растворах. Сшитые полимеры, содержащие обратимые окислительно-восстановительные пары (например, пару хинон/гидрохинон) назьшают электронообменниками. Электронообменники не содержат функциональных групп, имеющихся в окислительно-восстановительных ионообменниках, но они ведут себя подобным образом оба типа материалов характеризуются их окислительно-восстановительной емкостью, стандартным окислительно-восста- [c.480]

    Содержание электролита в мембране уменьшается с ростом потенциала Доннана. Поэтому этот потенциал и его влияние на ионы имеют первостепенную важность для выяснения механизма сорбции и транспорта ионов через ионообменные и иономерные мембраны. Сорбция электролита и его транспорт зависят главным образом от распределения коионов, так как поглощение электролита и коионов является стехиометрически эквивалентным. К параметрам, которые влияют на величину потенциала Доннана, можно отнести емкость сухой смолы, степень набухания, плотность поперечных сшивок, концентрацию раствора, ионную плотность заряда и т. д. [c.157]

    Кроме этих исследований относительно влияния концентрации внешнего раствора и структуры смолы на скорость ионного обмена, были проведены дополнительные расчеты по экспериментальным данным, опубликованным в работе [7]. Были определены средние диаметры зерен смол, что позволило рассчитать толщины гидродинамических пленок. Как было показано в работе [7], теория внещнедиффу-зионной кинетики с учетом диффузионного потенциала лучше описывает экспериментальные данные, чем без его учета (в работе сравнивались начальные потоки, когда влияние сопротивления в зерне пренебрежимо мало). Поэтому толщины гидродинамических пленок рассчитывались по теории внешнедиффузионной кинетики с учетом диффузионного потенциала, которая дает следующее выражение для начального ионообменного потока [2, 7]  [c.145]


Смотреть страницы где упоминается термин Потенциал ионообменные смолы: [c.166]    [c.556]    [c.331]    [c.37]    [c.79]    [c.113]    [c.250]   
Новые проблемы современной электрохимии (1962) -- [ c.157 ]

Новые проблемы современной электрохимии (1962) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменные смолы



© 2025 chem21.info Реклама на сайте