Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры, синтетические, адсорбция

    Несмотря на то, что растворы высокомолекулярных веществ не являются коллоидными в точном смысле этого слова, описание их свойств, как правило, включают в курс коллоидной химии, поскольку сходство ряда свойств коллоидных растворов и растворов высокомолекулярных веществ позволяет рассматривать многие проблемы одновременно для систем обоих типов. Помимо этого, кроме типичных растворов высокомолекулярных веществ, в которых они существуют в виде больших, но не связанных друг с другом, обычно вытянутых или свернутых в весьма рыхлые клубки молекул, известны растворы полимеров, по существу ничем не отличающиеся от коллоидных систем. Это растворы полимеров в плохих растворителях цепные молекулы в таких растворах свернуты в компактный клубок с явно выраженной поверхностью, на которой могут протекать явления адсорбции. Примером таких систем являются натуральный и синтетические латексы, у которых сравнительно большие полимерные частицы находятся в вод- [c.14]


    Э. Гриффин, 1916), но и сейчас не потеряла своего значения и стала наиболее широко распространенным способом получения иммобилизованных ферментов в промышленности. В литературе описано получение адсорбционным способом более 70 иммобилизованных ферментов с использованием главным образом таких носителей, как кремнезем, активированный уголь, графитов сажа, различные глины, пористое стекло, полисахариды, синтетические полимеры, оксиды алюминия, титана и других металлов. Последние применяются наиболее часто. Эффективность адсорбции молекулы белка на носителе определяется удельной поверхностью (плотностью центров сорбции) и пористостью носителя. Процесс адсорбции ферментов на нерастворимых носителях отличается крайней простотой и достигается при контакте водного раствора фермента с носителем (статистическим способом, при перемешивании, динамическим способом с использованием колонок). С этой целью раствор фермента смешивают со свежим осадком, например, гидроксида титана, и высушивают в мягких условиях. Активность фермента при таком варианте иммобилизации сохраняется практически на 100%, а удельная концентрация белка достигает 64 мг на 1 г носителя. [c.88]

    Водоизолирующие свойства растворов синтетических высокомолекулярных соединений зависят не только от концентрации полимеров, но и от степени аэрации и газонасыщенности смесей. Газонасыщенные растворы обладают более высокими ингибирующими свойствами, чем негазированные, поскольку величина адсорбции газонасыщенных смесей в несколько раз выше. Даже в тех случаях, когда газы не являются необходимым компонентом промывочных жидкостей, они, по разным причинам, присутствуют в них, принимая разностороннее участие в физико-химичес-ких процессах. В системе газированного раствора адсорбция пузырьков газа по скорости превышает адсорбционные процессы [c.45]

    Аналогичными особенностями обладают многие дисперсные структуры, полученные из синтетических полимеров, например, конденсационные структуры поливинилформаля (ПВФ) относительно невысоких (60—70%) степеней ацеталирования [8]. В оводненном состоянии они обнаруживают развитую поверхность раздела порядка десятков квадратных метров на грамм [И] и из-за интенсивного рассеяния света представляются молочно-белыми. После высушивания они превращаются в однородные прозрачные полимерные стекла, практически лишенные пористости, о чем свидетельствуют измерения адсорбции [12] и исследования, проведенные методом малоуглового рассеяния рентгеновских лучей [13]. [c.331]


    Скорость и величина адсорбции полимеров зависят от свойств их макромолекул. Вытянутые макромолекулы адсорбируются лучше, и в этом состоит одно из главных преимуществ синтетических флокулянтов над природными. [c.300]

    Теория адсорбции полимеров так тесно связана с собственно химией полимеров и настолько специфична, что мы ограничимся лишь самыми общими представлениями. Прежде всего следует отметить, что, поскольку нелинейные полимеры малорастворимы, исследования адсорбции из растворов проводятся в основном на линейных макромолекулах, например синтетических каучуках, различных видах целлюлозы, метакрилате, поливиниле, полистиролах и т. д, [17, 34, 35]. Чаще всего в качестве растворителей используют сильнополярные органические растворители, а в качестве адсорбента — уголь (что, по-видимому, обусловлено спецификой резиновой промышленности). Далее, полимеры, получаемые обычными способами, представляют собой полидисперсную смесь, и их адсорбцию следует рассматривать как адсорбцию многокомпонентной системы, в которой важную роль могут играть эффекты фракционирования. Авторы более поздних работ пытаются изучать адсорбцию полимеров одного молекулярного веса или хотя бы фракций с узким распределением молекул по весу. Кроме того, как и на поверхности раздела вода—воздух (разд. П1-12), на поверхности раздела твердое тело — раствор возможно большое число конфигураций макромолекул. Вероятно, поэтому адсорбционное равновесие может устанавливаться крайне медленно уровень адсорбции, как будто установившийся после одно- или двухчасовой выдержки, может медленно смещаться вверх в течение многих дней или месяцев (см. [36]). Для медленной адсорбции полимеров Геллер [37] дает уравнение [c.317]

    Этот случай полимеризации изопрена и образование его пористого полимера можно сравнить с термополимеризацией дивинила, доставлявшей много хлопот химикам и инженерам при эксплуатации производств синтетического каучука. В настоящее время можно дать следующее объяснение превращению, которое наблюдал Вильямс изопрен в железной реторте, через стадию образования перекисных соединений, активирующихся путем адсорбции на стенках сосуда, превратился под совместным действием кислорода и перекисных соединений при нагревании в губчатый полимер изопрена (пористый термополимер). [c.129]

    Влияние связанного каучука на напряжение при заданном удлинении сильно зависит от природы полимера и сажи. Наличие связанного каучука в количествах, обычных для смесей из натурального и синтетических каучуков, можно рассматривать как доказательство сильного взаимодействия между полимером и сажей, что обычно признается одним из необходимых условий усиления. Хотя наличие таких количеств связанного каучука считается положительным фактором, увеличение их выше этого уровня обычно ухудшает упруго-релаксационные свойства резины. Так, например, содержание связанного каучука можно увеличить путем повышения содержания кислорода в саже или, наоборот, уменьшить удалением кислорода из сажи термообработкой. В первом случае возрастает количество связанного каучука, но одновременно снижается напряжение при заданном удлинении, очевидно, в результате адсорбции сажами с высоким содержанием кислорода компонентов вулканизующих систем и связанного с этим ингибирования поперечного сшивания в процессе вулканизации. Содержание кислорода в сажах было небольшим, а количество связанного каучука возрастало с увеличением удельной поверхности сажи, как обычно. Однако параллельно этому росту уменьшалось напряжение при заданном удлинении резин на основе натурального каучука. Термообработка, которой подвергались образцы этих саж, проводилась при температурах, не вызывающих ослабления их усиливающих свойств. При более высоких температурах сажи графитируются, что сопровождается резким падением как содержания связанного каучука, тан и напряжения при заданном удлинении (см. табл. 12.6). [c.290]

    Сухой способ формования применяется при получении волокна из полимеров, растворимых в легколетучих органических растворителях. Формование волокна происходит в результате испарения растворителя при повышенной температуре. Тонкие струйки раствора полимера, вытекающие из фильеры, пропускают через закрытую камеру (шахту), где они затвердевают в виде элементарных волоконец, которые собираются вместе в нить, наматываемую на быстро вращающийся цилиндр—бобину. Сухим способом производится формование ацетатного волокна, а в ряде случаев и некоторых синтетических волокон, например из сополимеров винилхлорида и акрилонитрила, полиакрилонитрильного волокна. На рис. 233 приведена схема формования волокна по сухому способу. Основное количество органического растворителя испаряется в закрытой (капсюлированной) шахте. Отсасываемая из шахты паровоздушная смесь содержит до 40 г/ж паров растворителя, который должен быть уловлен (рекуперирован). Без улавливания растворителя формование химического волокна сухим способом не может быть рентабельным. Поэтому на заводах химических волокон имеются специальные установки для улавливания летучих растворителей методом адсорбции или абсорбции. [c.672]


    С помощью адсорбции в ультрафиолетовом свете удалось определить наличие катализатора в синтетических полимерах. Таким путем были изучены перекись бензоила и перекись ацетила [106]. [c.114]

    Отсутствие таких конкурентных взаимодействий на границе раздела в водных системах обусловливает эффективность ПАВ при их ориентированной, физической (непрочной) адсорбции на твердых поверхностях. Вследствие разнообразия современных синтетических полимерных связующих гидрофобизация твердой поверхности только путем ориентированной адсорбции ПАВ в таких системах не может быть эффективной. Наряду с условием прочной фиксации ПАВ на поверхности твердых частиц иногда возникает необходимость варьирования молекулярного состава углеводородного радикала [6, с. 348—353]. В связи с этим эффективно применение полимеров с активными функциональными группами и различной молекулярной природы. Такие полимерные модификаторы приближаются по своим свойствам ко второй группе ПАВ вследствие способности образовывать структурированные адсорбционные слои [14, 15]. Следует подчеркнуть, что в различных системах, особенно полимерных, одно и то же ПАВ может оказывать противоположное действие в зависимости от его концентрации и других условий применения, хотя его действие часто основано на одном и том же физико-химическом принципе. Молекулярный механизм действия ПАВ является основой, раскрывающей сущность процесса модифицирования, что позволяет определить оптимальные рецептуру и условия применения ПАВ. [c.11]

    Значение производства ароматических углеводородов постоянно увеличивается, так как применение получаемых на их базе химических продуктов и синтетических полимеров непрерывно расширяется. Основными ароматическими углеводородами являются бензол, ксилолы, в том числе изомеры ксилола (параксилол, ортоксилол, метаксилол), толуол. Конфигурация комплекса ароматических углеводородов все время-видоизменяется. Это зависит от вида используемого сырья, соотношения спроса на отдельные ароматические углеводороды и цен на них. Ароматические углеводороды получаются на нефтеперерабатывающих заводах в процессе риформинга, направленного специально на увеличение содержания бензола, толуола и ксилолов в рафинате. Кроме этого ароматические углеводороды получаются на нефтехимических предприятиях в составе пироконденсата при работе этиленовых установок на жидком углеводородном сырье, а также на коксохимических предприятиях из легкого газойля коксования углей. Ароматические углеводороды извлекаются из рафинатов или пироконденсата методами экстракции, экстрактивной дистилляции, адсорбции. Кроме этого существуют различные методы взаимного превращения ароматических углеводородов, например, деметилирование толуола в бензол диспропорционирование смеси толуола и ксилолов в бензол и изомеры ксилолов изомеризация ксилолов. Разработаны также процессы получения ароматических углеводородов из смеси пропана и бутана. [c.130]

    Набухающие полимеры и пористые полимеры с жестким скелетом. Давно известны многие органические набухающие сорбенты— природные, например крахмал и целлюлоза, и синтетические. Среди последних широкое применение в аналитической практике для препаративного выделения различных ионов и устранения жесткости воды приобрели набухающие в водных растворах полимеры, содержащие функциональные группы, способные к ионному обмену — иониты. В сухом состоянии такие полимеры практически не имеют пор. Если эти полимерные сорбенты содержат полярные функциональные группы, например гидроксильные (целлюлоза, крахмал), амино- (многие аниониты) и сульфогруппы (катиониты), то они сорбируют пары таких полярных веществ, как спирты и особенно вода. Эта сорбция сопровождается набуханием полимера, что проявляется как в увеличении его объема, так и в обширном сорбционном гистерезисе. В отличие от капиллярно-конденсационного гистерезиса в адсорбентах с жестким скелетом, начинающегося при достаточно высоких относительных давлениях пара после обратимой начальной части изотермы адсорбции (см. рис. 3.4, 3.5 и 5.2), сорбционный гистерезис в органических набухающих сорбентах простирается вплоть до относительного давления пара р1ро = 0. [c.112]

    Адсорбция из растворов олигомеров — полимеров со сравнительно небольшой молекулярной массой (от 300 до 5000) —происходит в соответствии с их химическим строением. На рис. 18.4 показано разделение олигобутадиенов и их моно- и диоксипроизвод-ных со средней молекулярной массой около 1200 на колонне с широкопористым силикагелем при градиентном элюировании с постепенным увеличением содержания полярного компонента метилэтилкетона в н-гептане. Первым из такой колонны при элюировании чистым н-гептаном выходит олигобутадиен, вторым при добавлении в н-гексан 5% метилэтилкетона выходит монооксиолигобутадиен и третьим, при содержании в н-гептане 15% метилэтилкетона, — диоксиолигобутадиен. Этот пример показывает, что методом адсорбционной хроматографии можно разделять синтетические олигомеры по типу и числу функциональных групп в их макромолекулах. [c.337]

    Спектрополяриметрический метод был использован для изучения изменений конформации, вызываемых введением дополнительных пептидных цепей в молекулу инсулина по трем его свободным аминогруппам [15]. Исходный инсулин спирален на 25%, модифицированный лизином — на 32—33%, модифицированный глутаминовой кислотой — на 3—16%. Если к растворам синтетической полиглутаминовой кислоты добавить некоторые красители (акридин оранжевый, псевдоизоцианин) и измерить дисперсию оптического вращения в области 560—360 нм, то при pH 5,5 кривая ДОВ имеет плавный характер (полимер в неупорядоченной конформации) при pH ниже 5,1, когда полимер приобретает спиральную конформацию, дисперсия оптического вращения становится аномальной, причем величина вращения резко возрастает. Это связано с адсорбцией красителя на спиральной полипептидной цепи, в результате чего полоса поглощения красителя становится оптически активной [16]. Дальнейшее развитие спектрополяриметрического метода позволило перейти к прямому измерению эффекта Коттона в области 185—240 нм, непосредственно связанного со спиральностью молекул белков и полипептидов (обзор см. [17]). [c.638]

    Для очистки исхолных полупроводниковых материалов типа хлоридов был[ опробованы все имеющиеся виды адсорбентов силикагели, алюмогели, активные угли, цеолиты и даже некоторые синтетические полимеры амберлит, леватит и др.). В табл. 8 приведены результаты работ, в которых для исследования адсорбционного равновесия применены радиоактивные микропримеси. Поскольку в больншнстве работ пеличины емкостей сорбентов отнесены к единице веса, а не к поперхности сорбента, анализ приведенных данных по коэффициентам Генри может быть проведен лишь приближенно. Селективность адсорбентов по отношению к одной и той же примеси хороню видна из табл. 8. Коэффициенты адсорбции отличаются в этом случае на 1—2 порядка для различных адсорбентов. Наиболее селективным адсорбентом по отношению к примесям металлов япляется силикагель, поэтому его широко применяют на конечной стадии [c.165]

    Специальный цикл исследований был вьшолнен по изучению акцепторнокаталитической полиэтерификации в присутствии синтетических карбо- и гетероцепных полимеров-наполнителей [15-23]. При этом основывались на том, что полимерные матрицы могут воздействовать на реакционную систему или за счет химического взаимодействия с мономерами, изменяя их активность, или за счет физической адсорбции (селективной или неселективной), которая может влиять на результаты реакции, изменяя концентрацию сомономеров в растворе. С учетом этого в качестве полимерных матриц были выбраны, с одной стороны, такие потенциально химически активные полимеры, как полинафтоиленбензимидазол (ПНБИ), полифенилхиноксалин (ПФХО) и полиэтиленоксид (ПЭО), а с другой -химически инертные полистирольные сорбенты с высокой удельной поверхностью [c.307]

    Электрофорез в полиакриламидном геле. Полиакриламидный гель (ПАГ) представляет собой синтетический продукт сополимеризации акриламида и сшивающего агента, чаще всего Ы, Ы -метиленбисакриламида. Благодаря образованию поперечных связей между растущими соседними полиакриламидными цепями, возникающими в результате полимеризации Бинильных групп, такой гель имеет структуру трехмерной сетки. В отличие от природного полимера крахмала синтетический гель прозрачен, химически стабилен, инертен, устойчив к изменениям pH и температуры, нерастворим в большинстве растворителей и, наконец, в нем практически отсутствуют адсорбция и электроосмос. [c.147]

    К группе носителей второго поколения многие авторы относят наночастицы на основе как природных, так и синтетических полимеров. Лекарственные вещества включаются в наночастицы в процессе полимеризации, наиболее часто путем адсорбции. Наночастицы размером от 10 до 1000 нм с удельной поверхностью 10 мУг, диспергированные в воде, образ5тот опалесцирзтощие растворы, которые могут быть использованы дяя парентерального введения. [c.295]

    Реагенты на твердой матрице. Вероятно, несколько большее распространение имеют тест-средства, приготовленные на твердом носителе — на бумаге, ткани, на синтетических органических полимерах, силикагеле и др. Природа носителя, способ его прш отовления и способ иммобилизации реагентов на нем имеют весьма существенное значение. Реагент иммобилизуют адсорбцией, испарением растворителя после импрегнирования раствором реагента в этом растворителе, другими физическими или химическими (ковалентными) методами. Относительно слабая фиксация физически закрепленных реагентов на поверхности носителя и как следствие этого частичное смывание его при контакте с раствором являются основным недостатком таких тест-систем. Увеличения прочности связывания реагента с носителем добиваются образованием химических связей между ними (химическая иммобилиза- [c.214]

    В книге изложены современные представления об адсорбции и хроматографии синтетических высокомолекулярных веществ рассмотрены теоретические и методические основы гель-проникающей и тонкослойной хроматографии полимеров показана возможность применения этих методов для разделения олигомеров и полимеров, определения молекулярно-массового распределения, композиционной однородности сополимеров и др. В книге рассматриваются различные сочетания хроматографических и других методов, которые могут бьггь использованы для анализа сложных полимерных систем. [c.2]

    Основное п55еимущество пористых пластмасс в качестве носителей состоит в сорбции на внутренней поверхности сферических полостей ячеек сорбента, что оказывает положительное влияние на хроматографические процессы адсорбции, обмена и распределения. Это достигается использованием в качестве носителей твердых, жестких или упругих пенообразных синтетических полимеров с ячейками открытого типа. Хроматографические колонки с крупнопористыми полимерными носителями обладают прекрасными гидродинамическими свойствами и хорошей кинетикой процессов распределения, которые реализуются на тонких пленках,, разделяющих ячейки пены. Одним из принципиальных преимуществ таких колонок для серийных анализов является высокая скорость элюирования, которая легко может быть достигнута просто под действием силы тяжести. [c.439]

    Вюрц [401] разбирает вопрос о связи между строением и на-крашиваемостью синтетических волокон. Вегман [402] установил закономерную связь между светопрочностью основных красителей на полиакрилонитрильных волокнах и их основностью. С повышением основности красителя его светопрочность на полиакрилонитрильных волокнах, как правило, понижается. Гленц [403] установил, что первичный процесс крашения состоит в адсорбции основного красителя поверхностью полиакрилонитрильного волокна, затем следует растворение красителя в фазе волокна и его диффузия в глубь волокна. Основная часть поглощенного красителя химически связывается кислыми груп- -пами полиакрилонитрильного волокна. Помимо этой химически связанной части, некоторая доля красителя находится в растворенном состоянии и небольшая доля — в поверхностном сорбционном слое. Наивысшей светопрочностью обладает химически связанный краситель. Фрелих [404] предлагает для облегчения процесса крашения полиакрилонитрильного волокна осуществлять 1) нарушение кристаллической структуры волокна введением в молекулы боковых цепей 2) введение в структуру полимера активных групп (окси-, аминогрупп и других) 3) применение при крашении темп. > 100° 4) создание новых типов красителей. Поцца [405] считает, что наиболее применимо для синтетических волокон крашение в условиях повышенного давления и темп. > 100°. [c.572]

    Приведенные примеры наглядно демонстрируют основные черты биополимеров строгую упорядоченность структурных элементов и связанную с этим точную направленность связей. Механизм контроля столь точной сборки биополимеров пока остается неясным, однако очевидно, что вследствие этой точности биополимеры приобретают способность осуществлять большое число самых разнообразных функций. Химикам-синтетикам лишь иногда удается получить полимеры с некоторыми из этих функциональных характеристик. Хорошо известным примером функциональных полимеров являются ионообменшле смолы, осуществляющие селективную адсорбцию ионов. Такая узкая специализация резко отличает их от биополимеров, участвующих одновременно в очень большом числе разнообразных реакций, Далее в этой книге будет рассказано о синтетических полимерах с высокой степенью функциональности, однако во всех случаях они уступают пока биополимерам как по числу осуществляемых процессов, так и по [c.11]

    Дисперсные красители в водной фазе существуют в виде суспензированных частиц, размер которых колеблется от 0,5 до 5 мкм. Очень небольшая часть красителя находится в растворе в виде индивидуальных сольватированных молекул, участвующих в процессе крашения. По мере адсорбции молекул красителя волокном происходит растворение агрегатов суспензии. Таким образом, суспендированные частицы образуют резерв, который служит для пополнения раствора красителем. Естественно, что от растворимости красителя в воде зависят скорость его перехода в волокно и кинетика процесса крашения. Мериан [32] установил зависимость скорости крашения гидрофобных синтетических волокон, оцениваемой по времени половинного накрашивания от растворимости красителя в воде Св и от коэффициента диффузии его в полимере В. Она выражается уравнением [c.206]

    Среди синтетических флокулянтов в (ХХЗР наибольшее распространение получил полиакриламид (ПАА) — растворимый в воде полимер, содержащий в своей цепочной молекуле ионогенные группы. При его диссоциации образуется высокомолекулярный поливалентный анион и много простых маловалентных катионов, поэтому тгисие вещества называют полиэлектролитами. Действие ПАА объясняется адсорбцией его молекул на хлопьях гидроксида, образующегося при гидроли- [c.127]

    В газо-жидкостной хроматографии носителями неподвижной фазы служат диатомовые земли и другие тонкоизмельченные тугоплавкие материалы, которые часто дезактивируют , т. е. промывают кислотой или щелочью либо силанизируют, чтобы исключить возможность адсорбции на их поверхности разделяемых веществ. Носитель покрывают слоем неподвижной фазы, представляющей собой высококипящую жлдкость (обычно синтетический полимер), и приготовленным таким образом сорбентом заполняют стеклянные или металлические трубки (на-садочные колонки), которые в зависимости от их длины и размеров термостата могут быть изогнуты или иметь форму спирали. [c.26]

    Следует заметить, что условие дп1ди1< дп/дс, (т. е. П1ХП2, когда отпадает осложняющее интерпретацию данных светорассеяния влияние избирательной адсорбции) осуществимо для многих синтетических полимеров, имеющих широкую растворимость в органических растворителях. [c.204]

    Фильтрование широко используют при анализе природных вод для отделения суспендированных частиц [723]. Для этих целей обычно применяют вьшускае.мые промышленностью мембранные фильтры с размером пор 0,45 мкм, которые изготавливают из целлюлозы, синтетических полимеров, стекла и металлов. Высокое содержание суспендированных частиц в пробе приводит к засорению пор фильтра, уменьшению их диаметра и снижению скорости фильтрования. Применение вакуума, гю-вышенного давления, частая смена фильтров помогают преодолеть эти затруднения. При фильтровании проб может наблюдаться адсорбция растворенных веществ материалом фильтра, загрязнение проб примесями, содержащимися в фильтре или воздухе, а также разрыв фитопланктоновых ячеек фильтра при фильтровании под вакуумом или при повышенном давлении. [c.110]

    В соответствии с правилом полярностей органические полимеры на границе с водой как более полярным компонентом имеют отрицательный заряд. При адсорбции анионоактивных ПАВ полярность двойного электрического слоя не меняется, а емкость увеличивается. В связи с этим большинство получаемых и применяемых в технике водных дисперсий полимеров (в частности, почти все синтетические латексы) стабилизуют анионоактивными ПАВ. В качестве анионных эмульгаторов используют соли щелочных металлов и высших жирных кислот, различные алкил- и арилсульфопроизводные. Катионоактивные эмульгаторы (четвертичные аммониевые и пиридиние-вые соединения), хотя они весьма перспективны для водных красок, наносимых электроосаждением (исключение анодных процессов), применяются редко. В качестве неионных эмульгаторов используют различные относительно низкомолекулярные соединения с неионными полярными группами алкил (арил) производные полиоксиэтилена и др. [c.65]

    При этом также возможно образование формальных групп за счет взаимодействия гидроксильных групп соседних макромолекул. Благодаря этим группировкам утрачивается растворимость полимера в воде. Волокна, изготовленные из ПВС, обладают повышенной адсорбцией влаги по сравнению с другими синтетическими волокнами. Известно, что хлопковое волокно и одежда, изготовленная на его основе, сопсобны поглотить большое количество влаги. Таким образом, волокно из ПВС может служить заменителем хлопкового волокна. Причем волокно ПВС, а следовательно, и изделия из него хорошо сохраняют свои первоначальные размеры. Оно легко стирается и сушится. Волокно ПВС обладает отличной износостойкостью и имеет высокую разрывную прочность. [c.185]

    Ни один из перечисленных неприродных полиэлектролитов сам по себе не является антигеном. Существенно также, что мономерные аналоги звеньев указанных полимеров (пропионо-вая кислота, этилпиридин и т. д.) вовсе не проявляют адъювантного действия. Несмотря на значительные различия в строении и даже в самой химической природе элементарных звеньев макромолекул ныне известных природных и синтетических полимерных адъювантов, их иммуностимулирующая активность близка. Все они в несколько раз увеличивают число антителообразующих клеток (АОК), специфичных по отношению к введенному антигену. Таким образом, механизм действия полимерных адъювантов не связан прямым образом с тонкими особенностями строения звеньев. В основе иммуностимулирующей активности полимерных адъювантов должны лежать некоторые общие механизмы, обусловленные в первую очередь их макромолекулярной природой. Одно из таких свойств макромоле-кул — способность к многоточечному кооперативному взаимодействию с другими химически комплементарными макромолекулами с образованием устойчивых интерполимерных комплексов или к прочной многоточечной кооперативной адсорбции на химически комплементарных поверхностях. Подробно эта кон- ВЦия развита в работе [163]. [c.205]

    Все до сих пор рассмотренные в этой главе адсорбенты, за исключением некоторых упомянутых синтетических полимеров, построены на основе биологических матриц. Существует также ряд неорганических веществ, использовавшихся для адсорбции белков, — в основном оксиды, нерастворимые гидрооксиды и фосфаты. Главное место среди них занимает гидроксифосфат кальция, который в кристаллическом состоянии известен как гидроксилапатит. Использование гидроксилапатита и студнеобразной формы геля фосфата кальция будет описано ниже в заключительной части этой главы, посвященной адсорбции в объеме . Тем не менее краткое описание этих адсорбентов даст лредставление о пригодности неорганических материалов для адсорбции белков. Одно из отличительных преимуществ таких материалов, особенно при крупномасштабном или промышленном применении, — это их дешевизна часто не стоит труда очищать их после однократного использования. [c.178]

    Ионообменные гели производятся из естественных или синтетических водорастворимых или сияьнокабухающих полимеров сшиванием. Вводя ионообменные группы в полимер, получают материал, поверхность которого имеет большие поры, чем у ионообменных смол. Они обладают высокой емкостью и низкой неспецифической адсорбцией, что крайне важно в биохимических исследованиях. [c.108]


Смотреть страницы где упоминается термин Полимеры, синтетические, адсорбция: [c.401]    [c.188]    [c.230]    [c.296]    [c.348]   
Физика и химия поверхностей (1947) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры синтетические



© 2025 chem21.info Реклама на сайте