Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Первичные радикалы и соединени

    В противоположность этиленкеталю IV, у которого главным образом происходит а-разрыв связи 13-17, а не связи 16-17, в случае 3-кетостероидов, например этиленкеталя 5а-андростан-3-она V, происходит а-разрыв двух связей (2-3 и 3-4) с примерно равной вероятностью. Это приводит к появлению двух интенсивных пиков (т/е 99 и 125) в масс-спектре соединения V (рис. 3-4). Если первоначально разрывается связь 3-4, то образующийся фрагмент н превращается в фрагмент н в результате миграции атома водорода от С-2. Этот процесс энергетиче-ски выгоден, так как вместо первичного радикала образуется более устойчивый аллильный радикал. Далее происходит обычный гомолитический разрыв связи 1-10, который приводит к образованию иона м с т/е 99. Пик, отвечающий иону м, является самым интенсивным в масс-спектре V (см. рис. 3-4). [c.75]


    Радикальные реакции фотозамещения ароматических соединений можно разделить на реакции, при которых первичный радикал образуется из реагента, и реакции, при которых первичный радикал дает ароматическое соединение. [c.210]

    Указанные соображения справедливы не только в отношении электровосстановления углеводородов [42, 43], но и в отношении хинонов [44—48], карбонильных соединений [49], нитросоединений [22, 24, 31, 50] и других классов органических деполяризаторов. Отсюда понятна необходимость предотвращения или замедления протонизации исходной частицы К или первичного радикал-аниона К . В зависимости от диапазона потенциалов электровосстановления частиц, их адсорбируемости на электроде, механизма электрохимического процесса и т. д. это достигается по-разному. Даже если суммарный электрохимический процесс представляет собой сложную совокупность переноса нескольких электронов и протонов, то путем торможения определенных элементарных реакций удается задержать процесс на первой стадии. [c.10]

    Следует отметить, что по крайней мере в некоторых случаях радикал-анионы простейших карбонильных соединений (бензальдегида, ацетофенона) являются, вероятно, вторичными продуктами, образующимися в результате взаимодействия первичного радикал-аниона с диметилформамидом по схеме [c.32]

    Образовавшийся первичный радикал присоединяется затем к винильным или другим непредельным соединениям за счет [c.60]

    Такой распад идет при повышенной температуре. Иногда вследствие малой стабильности первичного радикала принимается неправильная схема диссоциации некоторых органических соединений, которые протекают будто бы с отщеплением устойчивой молекулы (СОд, N2 и др.) или атома (металл), например  [c.790]

    Образовавшийся первичный радикал присоединяется затем к непредельным соединениям по месту двойной связи  [c.128]

    В случае комплексов 5- и Р-содержащих соединений с металлами стехиометрия обрыва цепей по реакции КО- с ингибитором существенно выще. Механизм реакции КО. с такими ингибиторами остается неизученным первичный акт, вероятно, включает перенос электрона с ингибитора на пероксидный радикал. [c.127]

    Однако возможен другой путь разложения молекул органических соединений, а именно радикально-цепной механизм распада молекул через свободные радикалы, при котором сначала, в первичной стадии процесса, образуются два свободных одновалентных радикала путем непосредственного разрыва простой связи. Затем радикалы, возникшие в первичной реакции, вступают во вторичные реакции с молекулами исходных веществ, радикалами и стенками, которые приводят к образованию конечных продуктов. В этом случае гамма получающихся конечных продуктов является следствием сложного многостадийного превращения, в котором участвуют промежуточные активные вещества в форме радикалов. Выход различных продуктов в сложном радикальноцепном превращении определяется соотношением скоростей конкурирующих между собой радикальных реакций, в которых радикалы появляются, заменяются или исчезают. Обыч-14 [c.14]


    Приведенные выше данные позволяют сравнивать реакционную способность радикалов по отношению к различным соединениям. Так, отношение скоростей реакций перехода атома Н от первичной и третичной С—Н-связей для радикала -СНз равно 1/50, а для атомов С соответствующее отношение составляет только 1/4. Таким образом, селективность радикалов существенно зависит от их природы. Высокая активность атакующего реагента связана с малой селективностью. В частности, при переходе от Р к Вг селективность очень сильно повышается. В изобутане, например, атакуется бромом практически только третичная связь С—Н, а фторирование идет почти статистически. Аналогично в реакциях с тремя типами С—Н-связей более высокую селективность по сравнению с атомами С1 имеют метильные радикалы, а атомы С1 являются более активными и требуют меньшей энергии активации для отрыва соответствующего атома Н. Обратную связь между селективностью и активностью радикалов можно объяснить с помощью термодинамических и кинетических соотношений (см. 3). Повышение температуры ведет к снижению селективности, так как вследствие больших температурных коэффициентов сильнее проявляются конкурирующие реакции с более высокой энергией активации. Наряду со статистическим фактором это обстоятельство ведет к появлению смеси продуктов. [c.147]

    Образовавшиеся свободные радикалы фенилы при встрече с молекулами исходного бензола будут превращаться, как показано выше, в дифенил с выделением атома водорода. Последний, встречаясь с молекулой бензола, будет превращаться в молекулу водорода и регенерировать радикал фенил. Развернувшаяся таким образом цепь будет давать дифенил и водород. При достаточно длинной цепи количество метановых углеводородов, образовавшихся в результате первичной реакции распада бензольного ядра, будет невелико в сравнен НИИ с количеством образовавшегося водорода. Обрыв цепей будет происходить в результате соединения свободных радикалов друг с другом. [c.165]

    Радикальная полимеризация является одним из наиболее распространенных методов синтеза полимеров из низкомолекулярных соединений. Процесс образования каждой макромолекулы включает несколько элементарных актов инициирование молекулы мономера с образованием первичного свободного радикала, последовательное присоединение к нему п-ного количества мо- [c.89]

    I. Реакция инициирования (образование активного центра). На этой стадии происходит инициирование молекулы мономера с образованием первичного свободного радикала, легко взаимодействующего с различными ненасыщенными соединениями (мономерами)  [c.390]

    В молекуле изобутана углеродные атомы в являются первичными, а атом г — третичным углеродным атомом, так как на соединение с другими углеродными атомами затрачены три его валентные связи. Все первичные углеродные атомы равноценны между собой, поскольку они соединены с одним и тем же третичным углеродом. Поэтому при отнятии атома водорода от любого из первичных углеродов изобутана образуется радикал первичный изобутил (или просто изобутил ), а при отнятии водорода от третичного углеродного атома — третичный изобутил [c.43]

    Ароматические-амины, в которых, как в анилине, толуидинах и иафтиламинах, азот аминогруппы соединен только с одним ароматическим радикалом, являются первичными аминами вторичные к третичные ароматические амины содержат в соединении с азотом соответственно два или три радикала, причем такие амины могут быть двух типов  [c.386]

    Радикал далее реагирует с кислородом воздуха, превращаясь в пероксирадикал, достаточно активный для того, чтобы с исходным соединением образовать первичный гидропероксид и новый бензильный радикал  [c.313]

    При выдерживании диэтилового эфира при 130—140 °С под давлением этилена в присутствии трет-бутилпероксида и соляной кислоты были получены несколько соединений (табл. 5, опыт26). Этилирование протекало по нормальной схеме, приводя к втор-бутилэтиловому эфиру, ди-вгор-бутиловому эфиру (этилирование по обоим вторичным углеродным атомам эфира), к 1-метил-1-этил-пропилэтиловому эфиру (этилирование по третичному углероду первичного продукта) и к этил-1-метилпентиловому эфиру, образующемуся в результате теломеризации первичного радикала с двумя молекулами этилена. Было получено, кроме того, некоторое количество простых эфиров Сю. Образующийся продукт [c.146]

    Таким образом, вопрос о том, какой из этих путей превращения перекисного алкильного радикала получает действительное осуществление, так и не был решен схемами 1934—1937 гг. А между тем этот вопрос, несомненно, является одним из кардинальных для теории окисления углеводородов. По существу спор о дальнейшей судьбе радикала ROj есть давнишний спор о природе первичного молекулярного промежуточного соединения, который был иачат еще ранними не цепными схемами. В самом деле, распад радикала RO2 приводит к образованию в качестве первичных промежуточных соединений альдегидов и спиртов, его же взаимодействие с исходным углеводородов — к образованию алкилгидроперекисей, только в последующем распадающихся на альдегиды. [c.131]


    Здесь необходимо отметить, что в рассматриваемый период (середина 30-х годов) раскрытие природы первичного промежуточного молекулярного соединения приобрело еще большее значение, чем до этого времени. Ведь теперь, когда был установлен цепной вырожденно-разветвленный характер окисления углеводородов, стало очевидным, что если алкил-гидронерекиси действительно образуются как первичные промежуточные соединения, то в силу своей нестойкости и относительно легкой способности распадаться на радикалы именцо они являются теми активными создаваемыми реакцией молекулярными продуктами, которые обусловливают разветвление. Признание же за альдегидами роли первично образуемых, путем распада радикала ВО2, промежуточных соединений обозначало, что алкилгидроперекиси вообще не возникают в ходе реакции и что, следовательно, альдегиды или какие-нибудь продукты их дальнейшего превращения вызывают разветвление. Таким образом, выяснение природы первичного молекулярного промежуточного продукта необходимо было еще и для идентификации разветвляющего агента, обусловливающего столь своеобразный кинетический механизм —вырожденное разветвление. Как мы видели, схемы 1934—1937 гг. не смогли придти к единому ответу на этот актуальный вопрос, а в имевшемся тогда экспериментальном материале отсутствовали данные, которые позволили бы сделать выбор менаду предлол енными схемами. [c.131]

    С увеличением объема молекул реагента V н заместителей у реакционного центра в субстрате возрастает вероятность элиминирона-ния. Особенно легко элиминирование протекает у соединений, в которых К —третичный радикал. Соединения Н—X, в которых Р -метил или первичный радикал, обычно реагирующие по механизму в меньшей степени подвергаются элиминированию. [c.98]

    В приведенном ряде реакций арсеиирование ведет к образованию первичных мышьякорганических соединений, т. е. соединений, содержащих на 1 атом мышьяка 1 остаток углеводорода. Целый ряд реакций арсенирования ведет к образованию вторичных и третичных мышьяковых производных (на 1 атом Аз — 2 и 3 радикала). [c.79]

    Как отмечалось выше, свободно-радикальная полимериза--ция виниловых соединений отличается от классической цепной реакции тем, что реакционноспособные промежуточные продукты радикальной природы хотя и являются соединениями одного и того же типа (все они представляют собой органические радикалы, построенные из одних и тех же структурных единиц), но содержат различное количество этих единиц в зависимости от числа актов роста, в которых участвовал данный первичный радикал. При кинетической обработке необходимо учитывать реакции радикалов всех размеров было сделано допущение, что реакционная способность радикала данного типа не зависит от длины цепи, поэтому, например, одна константа скорости может характеризовать все акты роста, происходящие при полимеризации данного мономера. Очевидно, что принятие этого допущения значительно упрош,ает расчеты. Вопрос о справедливости этого предположения был предметом многих теоретических работ уже в то время, когда методы кинетической трактовки полимеризации только начинали разрабатывагься окончательным подтверждением правильности этого допущения является хорошее совпадение уравнений, выведенных на его основе, с экспериментальными данными. (Как будет показано, некоторые уравнения могут быть выведены без учета этого допущения, по они, как правило, не могут быть проверены экспериментально.) Были сделаны попытки проверить эту гипотезу экспериментально другими методами [15—17], но не все эти попытки привели к однозначным результатам. [c.22]

    Количественная характеристика энергии диссоциации связей С—К в том же гомологическом ряду, вероятно, иная, но их относительные величины подчиняются той же закономерности, т. е. в ряду первичных алкильных соединений свинца прочность связи металл — алкил закономерно уменьшается с увеличением радикала. Мы вправе ожидать, что термическая диссоциация гомологов тетраэтилсвинца меняется в соответствии с прочностью этой связи, и, следовательно, термически наиболее стабильный тетраметилсвинец (ТМС) разлагается при температурах более высоких, чем тетрапропилсвинец (ТПС), а ТЭС занимает в этом отношении промежуточное положение. Такое предположение согласуется с экспериментальными данными [287], (рис. 34). [c.160]

    Среди продуктов превращения антиоксидантов были найдены различные вещества, образующиеся в результате димеризации феноксильных радикалов, а также соединения хиноидной структуры, которые могут образоваться при окислении и диспропорционировании этих радикалов. Так, антиоксидант — гидрохинон может превращаться в хинон, при взаимодействии первичного радикала 0СвН40Н со вторым пероксидным радикалом [264]  [c.130]

    НО получают соответствующее производное эфир определяемого спирта с трифторуксусной кислотой [20], соль аминокислоты или пептида с трифторуксусной кислотой [21], молекулярные комплексы спиртов, аминов, амидов кислот или меркаптанов с гекса-фторацетопом [22]. Эти методы удобны тем, что позволяют различать структурные особенности соединений (например, первичный, или вторичный, или третичный углеводородный радикал соединен с функциональной группой). Величины химического сдвига ядер, в различных производных сильно различаются [23, 24]. Кроме того, введение в молекулу трех (трифторуксусная кислота) или [c.248]

    Однако в присутствии непредельных соединений вторичный распад подавляется, и первичный радикал взаимодействует в основном с мономером. Чаще других используют ацилпероксиды — пероксид бензоила, пероксид ацетила, алкилпероксиды — пероксид изопропилбензола (кумола), пероксид трег-бутила. [c.45]

    Аяализируя свои данные и результаты исследований Шленка [9], авторы пришли к заключению, что полимеризация под действием щелочных металлов протекает аналогичным образом. Первичное металлоорганическое соединение образуется путем присоединения натрия к ненасыщенной молекуле. Дальнейшими исследованиями было установлено, чт о образование металлоорганического соединения происходит через стадию образования анион-радикала в результате осуществления переноса электрона с щелочного металла на мономер с последующей рекомбинацией радикальных центров [10—15]. [c.518]

    При построении кинетической схемы и определении кинетических величин важно выяснить, образуются ли при бимолекулярной реакции между двумя растущими цепями одна пли две стабилизированные молекулы полистирола, т. е. происходит ли соединение или диспропорцио-иирование. Большинство исследований в этой области показало, что у стирола обрыв за счет соединения преобладает. Это следует из сопоставления вычисленных различным путем скоростей инициироваиия [43], из определения содержания радиоактивных концевых групп инициатора при использовании радиоактивных меченых нипциаторов, в условиях отсутствия передачи [44] и, наконец, почти из десятикратного увеличения длины цепи при инициировании полнмернзации такими инициаторами, концевые группы которых можно соединять между собой при помощи соответствующих реагентов [45]. Правда, две такие концевые группы могут также встретиться у одной полимерной молекулы, если обрыв радикальной цепи произойдет за счет первичного радикала инициатора, что приведет к цепям такой же длины, как и при диспропорционировании. [c.213]

    Неспособностью свободных радикалов к быстрой изомеризации объясняется низкое содержание в продуктах термического крекинга соединений с разветвленной цепью. Однако было высказано предположение [33], что возможна изомеризация первичного алки.тьнрго радикала [c.237]

    Катионоактивные вещества в водных растворах распадаются на положительно заряженный радикал и отрицательно заряженный ион кислоты. К ним относятся в основном азотистые основания — нечетвертичные или четвертичные. Нечетвертичные — это соли первичных, вторичных и третичных аминов. Примером таких соединений может служить вещество АНП-2 — хлористая соль первичного амина  [c.85]

    Сернистые и азотистые соединения, содержащиеся в сырой нефти, перегоняются вместе с дизельным дистиллятом в процессе первичной перегонки. При перегонке может происходить расщепление высокомолекулярных соединений с образованием пизкомолекулярных соединений, соответствующих по температурам выкипания дизельному топливу. Сернистые и азотистые соединения, содержащиеся в топливах, полученных термическим крекингом, целиком представляют собой продукты расщепления более высокомолекулярных соединений, а в топливах, полученных каталитическим кре-1гингом, являются преимущественно продуктами, образовавшимися в результате изменения структуры углеводородного радикала сернистых и азотистых соединени исходного сырья. [c.197]

    Энергии разрыва связей изменяются в углеводородах в широких пределах от 40 до / 400 кДж/моль (от / 10 до 100 ккал/моль). В парафиновых углеводородах связи С—Н прочнее связей С—С. Энергия разрыва первичной связи С—Н, наибольшая в метане, снижается с удлинением цепи радикала С Н2п+ь но при /1 5 становится постоянной — 394 кДж/моль (94 ккал/моль). Прочность связи Свтор—Н меньше, чем Сперв—Н, и для нормальных парафинов, содержащих меньше J0 углеродных атомов, несколько снижается с увеличением числа атомов углерода в радикалах, соединенных с данным углеродным атомом. Например, в додекане энергии разрыва связей С—И составляют  [c.35]

    Фенолы с диеновыми углеводородами в присутствии фтористого бора образуют полиолефииы с двумя и более остатками фенола в молекуле [76] или производные хромапа [77—79]. Последние получаются, например, при взаимодействии метилового эфира гидрохинона или 2-метил-1, 2-нафтохинопа с диметилбутадиеном и ВКз. Однако имеются данные, которые показывают, что в некоторых условиях в этой реакции наряду с продуктами глубоких превращений можно получить соединения первичной реакции фенольного или эфирного типа, содержащие олефиновый радикал [80]. [c.188]

    Гидроперекись является первичным, сравнительно устойчивым промежуточным продуктом окисления углеводородов. Установлено, что перекисные соединения, выделенные из продуктов жидкофазного окисления углеводородов различных классов, состоят почти исключительно из гидроперекисей [3]. Однако имеются данные [4] об образовании первичных продуктов окисления, не содержащих гидроперекисных групп. Так, при окислении циклогексана до спирта с помощью меченых атомов было установлено, что часть циклогексанола получена непосредственно из перекисных радикалов, а не через цикло-гексилгидроперекись. Некоторое количество кислородных соединений может иметь меньше атомов углерода, чем исходный углеводород, что обусловлено распадом радикала ROO- по связи С—С. Таким образом, все промежуточные и конечные продукты окисления углеводородов образуются в результате превращений радикала ROO- [c.210]

    Несколько иная двухфазная система с сильными связями на границах фаз получена на основе трехблочных сополимеров типа бутадиен-стирольного сополимера. Как показано в гл. 2, молекула такого сополимера состоит из твердых концевых блоков (стирол), соединенных центральными эластомернымп блоками (бутадиен). Блоки стирола накапливаются и образуют небольшие домены, которые выполняют роль сшивок, вызывая резиноподобную эластичность блочного сополимера ири температурах окружающей среды и обусловливают пластическую деформацию ири высоких температурах. Для выяснения механизма разрушения таких систем было бы полезно определить, в какой из фаз чаще всего происходит разрыв молекулярной цепи. Прямые пути решения данной задачи заключались бы в разрушении материала и анализе сверхтонкой структуры образующихся в результате спектров ЭПР. Однако в интервале температур от температуры жидкого азота до комнатной температуры деформирование растяжением не вызывает накопления свободных радикалов в количестве, достаточном для их обнаружения. Вследствие этого Деври, Ройланс и Уильямс [36] использовали менее убедительный, но более доступный метод сравнения спектра бутаднен-стирольных блочных сополимеров (5В5) с отдельными спектрами стирола и бутадиена. Эти исследования были выполнены при температуре жидкого азота путем измельчения материала с целью увеличения поверхности разрушения. При низкой температуре радикалы становились более стабильными и, по-видимому, замораживались на стадии первичных радикалов. Сравнение спектров трех материалов показало, что спектр 5В5 содержал все линии радикала бутадиена, но не содержал линий радикала стирола. Поэтому радикал системы 5В5 был отнесен к фазе бутадиена. К сожалению, в данных исследованиях не удалось выяснить, был ли радикал, полученный при измельчении в условиях низких температур, тем же самым, что и образовавшийся в нормальных условиях при комнатной температуре, и являлся ли обнаруженный радикал первичным или вторичным. [c.219]

    Побочное образование первичных и третичных спиртов. Казалось бы, что взаимодействие реактивов Гриньяра, у которых радикал не имеет в -положении способных к переходу в виде гидрид-иона атомов водорода, с карбонильными соединениями, не имеющими активированных а-водородных атомов, должно протекать гладко, без образования побочных продуктов. Однако уже при йзаимодейстнии фенилмагнийбромида с избытком [c.289]

    Затем в реакционную смесь вводят первичный галогеналкил. Первичные галогеналкилы с разветвлением у второго углеродного атома цепи (КаСН—СНаХ) дают лишь следы монозамеш,енных ацетиленов вторичные и третичные галогенопроизводные в реакцию алкилирования не вступают, так как в этих условиях они, отщепляя галогеноводород, превращаются в этиленовые углеводороды. Наиболее часто применяются бромистые алкилы. Хлористые алкилы реагируют с меньшей скоростью. Выход уменьшается с увеличением. длины алкильного радикала. Иодиды реагируют хорошо, но образуют большее количество аминов, чем бромиды и хлориды. Ароматические галогенопроизводные в реакцию не вступают. Галогеналлилы образуют смесь соединений, содержащих 8 и 11 углеродных атомов строение этих соединений не установлено. [c.188]

    Перекисные радикалы, образующиеся при окислении органических соединений RH, взаимодействуют с исходным веществом, давая гидроперекиси ROOH. Таким образом, гидроперекиси являются первичным промежуточным продуктом окисления (и на ранних стадиях окисления — практически единственным продуктом). При этом во всех случаях строение радикала R- в молекуле гидроперекиси сохраняется таким же, как и в исходном углеводороде. Следовательно, на первой стадии окисления в углеводороде разрывается только одна связь. При окислении разветвленных [c.190]

    При замещении одного атома водорода в молекуле пропана на радикал метил или, что то же, при соединении пропильного радикала С3Н7— с метильным радикалом СН3— образуется следующий в ряду гомолог С4Н] , углеводород, получивший название бутан. Однако на основании вьсшеизложенного следует сделать вывод, что бутанов может быть два. Один образуется при соединении метила с первичным пропильным радикалом его структурная формула и упрощенная формула имеют следующий вид  [c.41]

    В связи с особой актуальностью охраны окружающей среды от загрязнения химическими реагентами большое внимание уделяется изучению способности ПАВ к биологическому разрушению в водной, почвенной и других средах. Биологическим разложением называют любое изменение (трансформацию) молекулы химического соединения, ведущее к упрощению структуры и изменению его различных свойств (физико-химических, токсикологических и др.) под влиянием живых организмов. Различают первичное и полное биологическое разложение. Так, гидрологическое отщепление от молекулы ПАВ активной сульфогруппы приводит к утрате веществом поверхностной активности, а с ней и способности к пенообразованию. В данном случае приемлемое для окружающей среды биоразложение совпадает с первичным разложением. Полное биоразложение — это распад вещества до простых неорганических соединений с образованием воды, углекислого газа, азота, аммиака и др. Известно, что алкилсульфаты разрушаются в результате гидролиза с образованием соответствующих спиртов которые окисляются до жирных кислот. В свою очередь последние подвергаются деструкции путем а- и р-окисле-ния. Вторичные жирные спирты (ВЖС) могут разлагаться по такому механизму ВЖС- спирт->кетон->оксикетон- дион альдегид-V кислота. Деструкция анионных ПАВ,, ведущая к потере поверхностной активности, может происходить либо путем отщепления от молекулы вещества гидрофильной группы, либо в результате последовательного окисления алкильного радикала. Отщепление гидрофильной, группы у синтетических алкилсульфатов, алкилсульфена-тов и алкиларилсульфенатов осуществляется в результате каталитического воздействия ферментов сульфатаз. [c.93]


Смотреть страницы где упоминается термин Первичные радикалы и соединени: [c.408]    [c.233]    [c.130]    [c.23]    [c.294]    [c.550]    [c.142]    [c.62]    [c.221]    [c.298]    [c.301]   
Краткий справочник химика Издание 6 (1963) -- [ c.128 , c.129 ]

Краткий справочник химика Издание 7 (1964) -- [ c.128 , c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Радикалы первичные



© 2025 chem21.info Реклама на сайте