Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические соединения, реакции щелочными металлами

    Одним из наиболее полезных применений системы металл -аммиак для целей органического синтеза является восстановление ароматических колец. Растворы металлов в жидком аммиаке в присутствии спирта в качестве донора протона или без него выступают как достаточно мощные агенты для того, чтобы восстановить ароматическое кольцо, и одновременно достаточно специфичные, чтобы восстановление провести лишь частично до дигидробензолов (циклогексадиенов). Этот тип реакции известен как восстановление по Берчу, Легкость восстановления в первом приближении коррелирует с восстановительным потенциалом соединения и уменьшается в порядке > антрацен > фенантрен > > нафталин > дифенил > бензол. Сам бензол не удается восстановить щелочным металлом в жидком аммиаке, и его восстановление может быть успешно проведено до 1,4-дигидробензола лишь в присутствии более эффективного донора протонов, такого как этанол  [c.171]


    Алифатические кетоны восстанавливают до гликолей при действии активных металлов, таких, как амальгамы натрия, магния или алюминия [891. Выходы в этих реакциях обычно составляют менее 50%. Для восстановления ароматических карбонильных соединений применяют магний и иодистый магний [90, 911, щелочные металлы [92] или электролитические методы [93]. При взаимодействии с натрием или магнием и иодистым магнием в качестве промежуточных соединений образуются, по-видимому, кетилы металлов, такие, как [c.235]

    Восстановлением по Берчу (см. обзоры ) называется реакция непредельных органических соединений со щелочными металлами и спиртами в жидком аммиаке. Для ароматических соединений этот метод впервые был использован в 1937 г. Вустером , который показал, что бензол и его производные восстанавливаются натрием при наличии спирта в жидком аммиаке, тогда как в отсутствие спирта указанное превращение не происходит. Однако всеобщее признание и широкое применение эта реакция получила лишь после серии работ Берча, публиковавшейся начиная с 1944 г.  [c.9]

    Эти важные функциональные производные кислот получаются, как уже указывалось выше, обработкой реакционноспособных галоидных соединений цианидами щелочных металлов или в ароматическом ряду в результате реакции диазосоединений с цианистой медью (реакция Зандмейера). [c.801]

    Аммиак оказался наиболее подходящим растворителем для реакций типа 5 / благодаря следующим обстоятельствам. Он хорощо растворяет реагенты различной природы неполярные органические соединения и соли, образованные щелочными металлами и анионными нуклеофилами. Для фотоинициируемых реакций важным оказывается то, что аммиак прозрачен для ультрафиолетового света для реакций, инициируемых сольватированными электронами, он удобен тем, что не взаимодейств)Тот с последними. Поскольку больщинство нуклеофилов, успещно введенных в ароматические реакции типа, представляют собой анионы высокой основности, особое значение приобретает слабая кислотность аммиака. [c.198]

    Анион-радикалы ароматических соединений достаточно устойчивы из-за делокализации заряда по системе л-связей. Распределение спиновой плотности в анион-радикалах изучено методами ЭПР и ЯМР. Реакция между щелочным металлом и ароматическим углеводородом обратима, перенос электрона с атома металла на молекулу сопровождается выделением тепла. Например, реакция [c.320]


    Кислотно-основное взаимодействие у лигнина подчиняется теории ЖМКО (теории жестких и мягких кислот и оснований) в органической химии. Лигнин при таком подходе рассматривается как сложная кислотно-основная система, а протекающие реакции как кислотно-основные взаимодействия жестких и мягких кислот и оснований. В этом взаимодействии особенно важны уровни энергии так называемых граничных орбиталей кислот и оснований. У оснований - это высшая заполненная молекулярная орбиталь (ВЗМО), содержащая передаваемую пару электронов, у кислот -это низшая свободная молекулярная орбиталь (НСМО), предоставляемая для взаимодействия. Жесткие основания и кислоты имеют малую поляризуемость и низкие энергии граничных орбиталей, тогда как мягкие основания и кислоты имеют высокую поляризуемость и высокие энергии граничных орбиталей. К жестким основаниям относят анионы НО", КО, КСОО", а также молекулы Н2О, КОН, ЫНз, ЫН2-МН2 и т.п., к мягким основаниям относят, например, анионы Н8", К8 , ЗзО]", карбанионы, молекулы непредельных и ароматических соединений. Мягкость оснований в определенной степени отражает их нуклеофильность. К жестким кислотам относят протон, катионы щелочных металлов и т.п., к мягким - катионы ряда переходных металлов, хиноны, [c.442]

    Алкилирование и ацилирование ароматических и алифатических соединений катализируются электрофилами — галогенидами металлов всех групп периодической таблицы, за исключением подгруппы щелочных металлов. В этих реакциях Фриделя — Крафтса в качестве катализаторов особенно часто применяют галогениды алюминия, олова, мышьяка, железа, цинка, бора и галлия. [c.181]

    Реакцию можно проводить в органическом растворителе или без него. В качестве растворителей используют спирты, диметилсульфоксид, диметилформамид, этиленгликоль и др. В водной среде реакция протекает медленно из-за малой растворимости ароматических соединений в воде. Оптимальная температура, при которог ведут процесс, зависит от подвижности галогена в исходном галогенпроизводном. Чем менее подвижен галоген, тем выще температура и продолжительность реакции. Обычно процесс проводят при 150°С или выше. При этих условиях в реакцию вступает и п-нитрофторбензол [163]. В качестве оснований можно использовать как органические, так и неорганические соединения [164—169]. В частности, процесс можно проводить в присутствии гидроксида натрия или калия, карбоната натрия или калия. В большинстве случаев при использовании едких щелочей или карбонатов щелочных металлов предварительно получают соответствующий фенолят, отгоняют воду и далее проводят реакцию при указанных выше условиях в органическом растворителе илн без него. [c.127]

    Возможно, самым простым окислительным процессом, который может объяснить эти наблюдения, является процесс с удалением одного электрона из молекулы олефина с образованием молекулярного иона, аналогичного хорошо известным [ПО, 111] катион-радикалам, найденным в кислотных растворах ароматических соединений с конденсированными бензольными ядрами. Такие ионы характеризуются парамагнетизмом и тем, что как спектры ЭПР, так и оптические спектры катион-радикала данного углеводорода имеют большое сходство со спектрами ЭПР и оптическими спектрами соответствующих анион-радикалов, полученных при реакции с щелочными металлами в подходящих растворителях [112]. Возможность того, что промежуточная форма, ответственная за полосу 6050 А, была катион-радикалом, подверглась дальнейшему исследованию. [c.82]

    В реакциях замещения типа алкилирования и ацилирования соединения щелочных металлов уступают первенство соединениям кислотной природы. При этом следует отметить, что в присутствии щелочных катализаторов превращению подвергаются главным образом алифатические соединения (в основном производные эфиров) [183—191], а не ароматические, как в случае кислотных катализаторов [245—247]. , [c.16]

    Основные научные работы относятся к химии ароматических соединений. Выявил общие закономерности перемещения заместителей в ароматических ядрах, установил роль кислотных катализаторов при изомеризации ароматических соединений. Исследовал нуклеофильное замещение в ароматическом ряду, на основании чего подобрал оптимальные условия промышленного получения важных продуктов, в частности л-нитро-анилина и нафтолов. Разработал метод получения ароматических фторсодержащих соединений действием фторидов щелочных металлов на хлористые соединения. Изучил реакции обмена атомов фтора в полифторароматических соединениях на азот-, кислород- и серу-содержащие заместители. Создал методы синтеза фторированных гетероциклических соединений. [c.116]


    Еще сто лет назад было известно, что ароматические углеводороды могут реагировать со щелочными металлами. Например, в 1867 г. Вертело [1] сообщил об образовании черного промежуточного продукта при сплавлении металлического калия с нафталином в запаянной ампуле. Первое объяснение этому явлению дал, по-видимому, Шленк, хотя подход, использованный в его работах, отличался от принятого в настоящее время. Еще в 1914 г. он исследовал реакцию щелочных металлов с антраценом в растворе эфира и сообщил [2] об образовании двух различных соединений аддукта натрийантрацен состава 1 1 и аддукта динатрийантрацен состава 2 1. Два эти вещества были идентифицированы химическим анализом и ультрафиолетовыми спектрами. Хотя в то время современная концепция радикалов и ион-радикалов еще не получила развития, описание Шленком [28] натрий-антрацена и кетилов, которые были широко изучены в его лаборатории, очень близко к современной интерпретации. Используя современную ему терминологию, Шленк сообщил о возможности процессов с переносом электрона с участием карбанионов, радикалов и ион-радикалов. [c.295]

    В процессах обессеривания лигроинов и газойлей при давлении 18— 30 ат и температуре 260—427° [4, 13] в качестве катализатора широкое применение нашел молибдат кобальта на активированной окиси алюминия. При этих условиях происходит гидрогенизация олефиновых углеводородов, но практически не идет гидрогенизация присутствующих в сырье ароматических углеводородов. Добавление солей щелочных металлов к этому катализатору подавляет гидрогенизацию олефиновых углеводородов, ие тормозя, однако, гидрогенизации сернистых соединений 5]. При более высокой температуре или при более низком давлении становится заметной реакция дегидрогенизации присутствующих в лигроине нафтенов до ароматических углеводородов и водорода (как в гидроформинге). При регулировании рабочих условий процесса можно обеспечить образование небольшого избытка водорода сверх того количества его, которое необходимо для обеспечения гидрогенизации олефинов и обессеривания [2] процесс становится независимым от внешнего поступления водорода. При этих условиях управление тепловым режимом реактора осуществляется легче, так как теплота, выделяющаяся при экзотермической реакции гидрогенизации олефинов и сернистых соединений, почти компенсируется теплотой, поглощаемой при эндотермической реакции дегидрогенизации. Однако при таких, более жестких условиях работы скорость гидрогеиизации олефинов [5] может снижаться, приближаясь к равновесию олефин — парафин, и появляется тенденция к отложению угля на катализаторе. Необходимость чередования процесса с регенерацией путем продувки воздухом для удаления с катализатора углеродистого осадка ограничивает процесс, сокращая продолжительность рабочих периодов по сравнению с процессом типичной обычной гидрогенизации. [c.279]

    Опыты П. Сабатье и его сотрудника Сандэрана возбуждают заслуженное внимание и представляют наиболее интересный пример неорганического синтеза нефти. Смесь непредельного углеводорода, с водородом подвергается (в присутствии катализатора — никеля) нагреванию нри температуре не свыше 180°. Происходит процесс гидрогенизации ненасыщенных углеводородов. В результате получается светло-желтая жидкость удельного веса 0,790, состоящая из предельных углеводородов и напоминающая по своим свойствам пенсильванскую нефть. При несколько измененных условиях опыта получаются и другие результаты так, если пропускать ацетилен без водорода над никелем при температуре 200°С, получается вещество, богатое ароматическими углеводородами. При вторичном пропускании этого последнего над никелем получается смесь нафтенов, т. е. нефть типа бакинской. Здесь, очевидно, мы имеем процесс полимеризации и образования под влиянием катализаторов циклических соединений. Вертело доказал, что полимеризация ацетилена (С2Н2) дает бензол (СаНе) при температуре размягчения стекла. Далее в литературе встречаются указания, что углеводороды могут получаться и при других реакциях. Например, еще в 1863 г. была известна возможность непосредственного получения ацетилена при пропускании водорода между угольными концами вольтовой дуги, но тогда на это не обратили должного внимания. Еще Вертело указал, что щелочные металлы, реагируя с СО2, образуют карбиды, или ацетиды и кислород, который потом уходит из сферы реа- [c.302]

    Совместно с П. И. Галичем и с участием О. Д. Коповальчикова и Ю. Н. Сидоренко исследованы реакции алкилирования метилзамещенных ароматических углеводородов метиловым спиртом па цеолитах типа фожазитов и ионообменными катионами щелочных и щелочноземельных металлов. Выявлено принципиальное различие превращений углеводородов в присутствии аморфных и кристаллических алюмосиликатов с катионами I и II групп. В присутствии аморфных алюмосиликатов и цеолитов типа X и с катионами щелочноземельных металлов, а также лития и натрия алкилирование толуола, ксилолов и метилнафталинов метанолом происходит в ароматическое ядро с образованием соответствующих полиметилбензолов и нафталинов различного изомерного состава. Те же цеолиты с катионами калия, рубидия и цезия селективно метилируют боковую цепь, и получаются соответствующие этил-и винилзамещенные ароматические углеводороды. Эта неизвестная ранее реакция может служить новым общим методом одностадийного получения этил- и винилзамещенных ароматических соединений путем конденсации метилзамещенных ароматических углеводородов и метанола. [c.14]

    Удаление галоидов путем восстановления. Атом галоида, стоящий в ароматическом ядре водорастворимого соединения, например сульфокнслоты, может быть заменен па водород действием энергичного восстановления. В бензольнолм ряду сульфогруппа, повидпмому, незначительно затрагивается при восстановлении, в нафталиновом ряду а-сульфогруппа удаляется в виде сернистой кпслоты, а, 5-сульфогруппа не затрагивается. Наиболее употребительными восстановителями являются амальгама натрия в водном или спиртовом растворе и цинковая пыль в водном растворе аммиака пли гидроокись щелочного металла. Хотя амальгама натрия дает удовлетворительные результаты при восстановлении небольших количеств веществ, ее применение при работе с большими количествалп неудобно, так как в этом случае для окончания реакции требуется от одного дня до нескольких недель. [c.156]

    Ароматические соединения щелочных металлов неожиданно легко получаются при действии щелочных металлов на хлорзамещенные ароматические соединения в присутствии индифферентного органического растворителя при температуре не выше 40 . Образующиеся металлорганическне соединения можно без выделения использовать для дальнен[цих превращений их можню также получать в присутствии соответствующих реагентов, вступающих при этом с ними в реакцию. Ароматические соединения щелочных металлов реагируют с СО2, образуя карбоновые кислоты, с бензонитрилом дают кетоны, напрнмер беизофенон [c.623]

    Из реакций восстановления рассматриваемого типа наиболее изученной является реакция Бёрча — восстановление ароматических соединений щелочными металлами в жидком аммиаке или [c.292]

    Большое препаративное значение имеет реакция органических соединений сери с нитрилами, приводящая к амидам тиокислот. Эта реакция особенно легко протекает с ароматическими нитрилами или в тех случаях, когда на нитрильную группу влияют системы с двойной связью. Алифатические нитрилы реагируют с HaS только-в присутствии основных катализаторов [59]. Обычно в качестве катализаторов используют гидросульфнды аммония и щелочных металлов, диметиламин, триэтиламин и другие сильные основания. Реакцию необходимо проводить в безводной среде и при возможно более высокой концентрации HSS. [c.557]

    Реакции цианэтилирования за исключением некоторых, немногочисленных случаев идут в присутствии основных катализаторов. Применяют следующие катализаторы окислы, гидроокиси, гидриды или амиды щелочных металлов, а также сами металлы. Особенно эф ктивным катализатором, по-видимому, в связи с хорошей растворимостью в органических соединениях является гидроокись бензилтриметиламмовня (тритон Б). В исключительных случаях (ароматические амины) применяют кислые катализаторы. Количество катализатора обычно составляет от 1 до 5% по весу от количества реагирующих веществ. [c.586]

    Однако некоторые органические соединения подвергаются окислительно-восстановительным превращениям с явным переносом электронов. Классическим примером таких реакций можно назвать восстановление ароматического углеводорода щелочным металлом в безводном простом эфире до аниои-радикала этого углеводорода [2]. Подобным же образом различные замещенные феногиазииы (1) можно успешно окислить до катиои-радикалов (2) и дикатионов (3) если правильно выбрать среду, то можно избежать реакций, протекающих с расщеплением или [c.30]

    Функционализация полиизобутилена фенолами и аминофенолами протекает легко с высоким выходом (2-4 ч 373-393 К) в присутствии комплексных солей типа Ме[А1С14], Ме - Ы, Ма, К, причем выход продукта практически не зависит от природы щелочного металла в катализаторе. Если для фенолов при алкилировании полиизобутиленом по реакции Фриделя -Крафтса характерно образование продуктов замещения в ароматическое кольцо, то для аминофенолов - получение М-замещенных соединений [3 Г. [c.223]

    В последние годы ведутся систематические исследования в области химии алкилгипохлоритов, направленные на изучение их свойств и расширенное использование в синтезе практически важных соединений. Результаты исследований их гомо- и гетеро-литических превращений, приводящих к ценным продуктам сложным эфирам, лакто-нам, хлоралкилароматическим соединениям, кетонам и дикетонам, хлорированным ке-тонам и спиртам, 2-алкоксиоксациклоалканам, линейным и циклическим ацеталям и др., свидетельствуют о ценности алкилгипохлоритов как реагентов органического синтеза. Однако сведения о взаимодействии различных алкилгипохлоритов с сульфидами, вторичными аминами, меркаптанами, спиртами, пространственно затрудненными фенолами, енолятами щелочных металлов, олефинами, ароматическими эфирами отсутствуют или крайне ограничены, чаще всего, изучением реакций трет-бутилгипохлорита. [c.3]

    Реакцию ароматических галоидных соединений с роданидами щелочных металлов или аммония чаще всего проводят в ацетоновом или спиртовом растворах. Температура реакции зависит от подвижности галоида в исходном соединении. В некоторых случаях процесс ведут при 0 ,а в других—при кипячении реакционного раствора. Особенно подробно изучена реакция солей роданистоводородной кислоты с хлористым бензилом и различными замещенными галоидбензилами [12, 65, 75, 154, 286— 305]. [c.17]

    Тиоцианаты ароматического ряда можно получать по общим методам (схемы 7, 8, 9). Кроме того, можно проводить реакцию прямого тиоцианирования (схема 13), которая пригодна для получения тиоцианатоаминов, тиоцианатофенолов и других соединений, легко замещающих один из водородов в ароматическом ядре. Процесс можно осуществлять двумя способами электрохимически с дироданом либо с использованием в качестве реагента для тиоцианирования тиоцианата аммония (или щелочного металла) совместно с окислителем (хлорамином, сульфурилхлоридом или галогеном). [c.352]

    Инициирование, состоящее в переносе электрона на мономер, имеет место также в системах с участием щелочных металлов и нолициклических ароматических соединений, ставших недавно предметом интенсивного изучения. Известно, например, что раствор нафталина в тетрагидрофуране способен растворять щелочные металлы. Такие растворы, имеющие темно-зеленую окраску, вызывают быструю полимеризацию различных мономеров при температуре существенно ниже 0°. Реакция сопровождается заметным внешним эффектом. При полимеризации стирола темнозеленая окраска мгновенно переходит в оранжево-красную, характерную для карбаниона стирола. В последнее время Шварцем было показано [69, 70], что химизм инициирования сводится в данном случае к переносу электрона от металла на нафталин и к последующему взаимодействию нафталинового анионорадикала с мономером, причем нафталин регенерируется  [c.342]

    Многоядерные ароматические углеводороды и циклоалкены гидрируются в присутствии безводного аммиака и металлического рубидия (или других щелочных или щелочноземельных металлов) при температуре 50—150° С и давлении 2000— 3000 бар [136]. В работе [137] описано применение щелочных металлов при гидрировании ароматических соединений. Пайне [138] расширил круг исследуемых реакций в присутствии щелочных металлов изучалось диспропорционирование водорода, дегидрирование, дегидроконденсация углеводородов. В сравнительно недавно опубликованной работе [1391 детально изучалась каталитическая активность щелочных металлов, нанесенных на активированный уголь, в реакции гидрирования этилена. Циркуляционно-статическим методом проведено исследование каталитических свойств щелочных металлов от Li до s. Катализаторы готовили путем пропитки активированного угля БАУ соответствующей гидроокисью металла при 600—800° С. Содержание металла в контакте составляло 5%. Максимальная активность образ- [c.68]

    Циклооктатетраен не относится к числу ароматических соединений, хотя в его молекуле, как и в молекуле бензола по Кекуле, имеются чередующиеся простые и двойные связи. Молекула цикло-октатетраена имеет форму ванны. Энергия перехода этой формы в плоскую много больше энергии резонансной стабилизации. Однако есть доказательства, что небольшие количества плоской формы существуют в равновесии с формой ванны. При восстановлении в неводных средах, например в диметилформамиде или ди-метилсульфоксиде, циклооктатетраен дает четыре полярографические волны [51]. Полярографические данные для небензоидных циклических соединений представлены в табл. 2.8. Первые две волны приписаны последовательным одноэлектронным стадиям, приводящим, соответственно, к образованию анион-радикала и дианиона. Первая стадия квазиобратима. Методом циклической вольтамперометрии можно выявить способность анион-радикала к окислению. Однако, чтобы окисление шло быстро, нужно заметно большее напряжение, чем то, какое соответствует восстановлению. Коэффициент переноса для катодной реакции значительно ниже 7г- Предполагают, что эта стадия включает плоское переходное состояние, приводящее к плоскому анион-радикалу. Действительно, полученный спектр ЭПР подобен спектру при восстановлении циклооктатетраена щелочным металлом. Вторая стадия, приводящая к плоскому дианиону, является быстрой и обратимой.  [c.97]

    В противоположность кислотным катализаторам, вызывающим алкилирование ароматического ядра, в присутствии щелочных катализаторов алкилируется боковая цепь алкиларо-матических соединений. Процессы идут высокоселективно в отношении образования моно-аддуктов. Условия протекания реакций под воздействием щелочных катализаторов близки к условиям кислотного алкилирования реакции проводятся в жидкой фазе, в интервале температур 150—300° С и осуществляются под давлением реагирующего олефина. Наиболее легко алкилированию поддаются алкилароматические соединения, содержащие бензильный атом водорода. В обзоре [340] подробно изложены основные закономерности реакций алкилирования, катализируемых щелочными металлами, и обсужден механизм этих процессов. [c.16]

    В реакциях дегидроциклизацни парафиновых и олефиновых соединений в ароматические особенно широкое распространение получили окиснохромовые катализаторы, открытые советскими исследователями Молдавским и Камушером [995]. Изучение окиснохромовых и окисномолибденовых катализаторов дегидроциклизации показало, что индивидуальные окислы [304], окислы, нанесенные на кислые носители [252, 273, 279, 284, 286, 288, 286, 575, 576] и про-мотированные добавками щелочных металлов [219,255, 289, 245, 273, 574], менее активны, чем металлические катализаторы (Р1, Рс1, N1, Си), нанесенные на окись алюминия, так как первые работают в области температур 450—500° С, а вторые — около 350° С. Однако подобрав оптимальные условия ведения процесса (соответствующую температуру, скорость потока реакционной смеси, парциальное давление водорода), можно достичь высоких выходов ароматических веществ, даже превышающих выходы, полученные в присутствии металлических нанесенных катализаторов [988]. [c.580]

    Помимо графита и кремния, которые могут применяться в свободном или элементарном состоянии брикетированными с помощью глины, глинозема или жидкого стекла -, были также предложены многие другие каталиваторы. В качестве примеров можно упомянуть , огнеупорные или содержащие кремнезем кирпичи, пропитанные солями меди, или такие огнеупорные материалы, как хромовые и никелевые стали, ферросилиций, карбид кремиия , окиси хрома, вольфрама, ванадия или урана, или их смеси хром, вольфрам, молибден или сплавы этих металлов Последние из упомянутых металлов устойчивы к действию высоких температур и не благоприятствуют отложению угля. Были предложены также элементы селен, теллур и таллий или соединения их Имеются указания также и на то, что газообразные парафиновые или олефиновые углеводороды (при температуре от 400 до 1100°) подвергались пиролизу в присутствии паров металлов с температурой плавления ниже 500° (за исключением щелочных металлов) Как правило, катализаторы, применяемые для превращения газообразных парафинов в ароматические углеводороды, могут быть также применены и для аналогичных пирогенетических реакций газообразных олефинов. Ароматиче- [c.203]


Смотреть страницы где упоминается термин Ароматические соединения, реакции щелочными металлами: [c.166]    [c.448]    [c.257]    [c.415]    [c.578]    [c.800]    [c.40]    [c.50]    [c.8]    [c.294]    [c.142]    [c.49]    [c.247]    [c.247]    [c.90]   
Основы химической кинетики (1964) -- [ c.500 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы соединения

Щелочные металлы, соединени

Щелочных металлов соединения реакции



© 2024 chem21.info Реклама на сайте