Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксилол реакция с ароматических кислот

    Ароматические соединения нитруют концентрированной азотной кислотой, однако вода, образующаяся в результате реакции, разбавляет кислоту, что способствует протеканию побочных реакций окисления. Этим методом нитруют ксилол, дг-цимол (при температуре —15°), псевдо-кумол и тетралин. В последнем случае при нитровании нитрующей смесью смолообразные побочные продукты не образуются. При нитровании нафталина азотной кислотой нитрогруппа преимущественно вступает в а-положение, однако образуется также небольшое количество и Ь-изо-мера . [c.210]


    Длительность смешения в реакционных аппаратах. Процесс жидкофазного каталитического окисления алкилароматических углеводородов до ароматических кислот весьма сложен как с точки зрения многообразия одновременно протекающих параллельных и последовательных химических реакций, так и с точки зрения измерения физических характеристик системы. Известно, что при глубоком окислении ксилолов образующиеся фталевые кислоты представляют собой кристаллические продукты, ограниченно растворимые в применяемых растворителях (вода, карбоновые ароматические кислоты). [c.49]

    Многие ядовитые вещества в результате реакций, протекающих в организме, превращаются в менее токсичные или нетоксичные продукты. Например, бензол окисляется до фенолов, диоксибензола, пирокатехина, гидрохинона толуол окисляется в бензойную кислоту, ксилол — в толуиловую кислоту сложные эфиры подвергаются гидролизу и расщепляются на составные компоненты — спирт и кислоту ароматические амины подвергаются дезаминированию, например бензиламин превращается в бензиловый спирт, в дальнейшем окисляющийся в бензойную кислоту. Неорганические химические вещества также подвергаются в организме изменениям нитриты окисляются в нитраты, мышьяковистая кислота — в мышьяковую, сульфиды — в сульфаты. [c.242]

Таблица 28. Влияние условий реакции гексахлор-п-ксилола с эфирами ароматических кислот на выход хлорангидридов Таблица 28. <a href="/info/480165">Влияние условий реакции</a> гексахлор-п-ксилола с <a href="/info/272120">эфирами ароматических кислот</a> на выход хлорангидридов
    При окислении гомологов бензола различными окислителями или воздухом боковые алкильные цепи превращаются в карбоксильные группы. Таким образом можно получать соответствующие ароматические кислоты. Эта реакция имеет большое практическое значение для синтеза двухосновных фталевых кислот. Так, например, терефталевая кислота в настоящее время является важнейшим сырьем для синтеза полиэфирных волокон типа лавсан. Ее можно получать из 1,4-диэтилбензола, 1,4-диизопропилбензола или из и ксилола. По одному из методов окисление п-ксилол а ведут в жидкой фазе при повышенной температуре с избытком азотной кислоты. Вначале образуется толуиловая кислота [c.43]


    Выполнение реакции. Для бензоилирования ароматических аминов обычно применяют следующий общий метод. Около 0,2 г бензоилхлорида нагревают с приблизительно двумя эквивалентами амина. Избыток амина необходим для связывания выделяющейся при реакции соляной кислоты. В одних случаях смесь амина и бензоилхлорида нагревают на водяной бане в отсутствие растворителя, в других случаях прибавляют безводный растворитель, лучше всего бензол, толуол или ксилол, и нагревают до кипения. По окончании реакции остаток гидрохлорида амина удаляют, экстрагируя его разбавленной соляной кислотой. При бензоилировании в среде одного из названных выше растворителей гидрохлорид амина отделяют фильтрацией, так как гидрохлориды нерастворимы в этих растворителях. Бензоильное производное перекристаллизовывают из спирта. [c.652]

    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]

    I — исходное сырье II — рециркулирующий поток сульфомассы III — поток, поступающий на вторую стадию IV — дымящаяся серная кислота V — сульфомасса из реактора VI — вода VII — сульфомасса после разбавления водой VIII — пар IX — ароматические углеводороды j, не вступивщие в реакцию X — сульфомасса после разбавления водой и отпарки углеводородов XI — сырье, поступающее в гидролизер I ступени XII концентрат и-ксилола на ректификацию XIII — -ксилол — полимеры — серная кислота после гидролиза XVI — смесь ароматических углеводородов Gj. [c.142]

    Поскольку с пероксидными радикалами реагируют только мономерные молекулы алифатической кислоты, при увеличении глубины окисления и накопления ароматических кислот равновесие реакции должно сдвигаться вправо и вероятность взаимодействия пероксидного радикала с водородом карбоксильной группы алифатической кислоты становится меньше. Такая закономерность подтверждена в области неглубоких окислительных превраш,ений при умеренных температурах (до 120 °С) в условиях, котда образуюш,иеся при окислении ароматические кислоты не высаживаются из раствора. Однако в реальном процессе жидкофазного каталитического окисления при 180—260°С и достижении практически полного превраш,ения алкилбензолов в кислоты, например при непрерывном окислении и-ксилола в ТФК, почти вся ТФК (более 90%) находится в нерастворенном состоянии (осаждается в виде кристаллов) и закономерности по снижению декарбоксилирования при повышении глубины окисления могут, очевидно, не наблюдаться. [c.35]

    Не специфичны для рассматриваемых солей реакции окисления молекулярным кислородом. Зато очень часто нитрат и сульфат ртути применяются в процессах каталитического окисления азотной кислотой (окислами азота) и серной кислотой (олеумом). Соединения ртути являются, вероятно, наиболее активными катализаторами этих реакций. При окислении циклогексанола и азотистых гетероциклов азотной кислотой или окислами азота [906, 908—910] в присутствии нитрата ртути образуются карбоновые кислоты, т. е. нитрогруппа не входит в молекулы продуктов при взаимодействии бензола и его производных с азотной кислотой наряду с окислением происходит нитрование [902—904]. Окисление нафталина или я-ксилола серной кислотой либо олеумом в присутствии сульфата ртути приводит к образованию ароматических кислот в то же время HgS04 часто применяется в органическом синтезе как катализатор сульфирования [913—916]. [c.1349]

    При каталитическом окислении метиЛ и полиметилбензолов в отсутствие растворителя основными продуктами реакции являются одноосновные кислоты, спирты, сложные эфиры и др. Соотношение этих продуктов в оксидате зависит от природы углеводорода и условий окисления. Так, например, при окислении толуола выход бензойной кислотк может достигать более 80— 90%, а в случае окисления изомеров ксилола выход фталевых кислот не превышает 15—23% и основными продуктами реакции являются толуиловые кислоты [9, 91]. Прекращение окисления на стадии образования ароматических монокислот может быть следствием дезактивирующего влияния карбоксильной группы на окисление оставшихся метильных групп, дезактивации катализатора, накопления в оксидате ингибиторов окисления, нарушением условий гомогенности оксидата и др. Отмечается, что замедление реакции окисления обусловлено в основном не электрофильностью образующейся карбоксильной группы, а ее склонностью к комплексообразованию и солеобразованию с ионом металла катализатора. [c.30]


    Применительно к процессу окисления изомеров ксилола изучены растворители различной природы и полярности (вода, водные щелочные растворы, жирные и ароматические кислоты, их нитрилы, алифатичеокие углеводороды, хлоропроизводные, ароматические углеводороды, нитро- и хлорогтроизводные ароматических углеводородов и др.). При 01жлении я-ксилола растворители в зависимости от их природы вдогут играть различную роль — инициировать процесс (кислотные полярные растворители) илц не принимать участия в реакционных превращениях и по существу выполнять функции разбавителя (неполярные растворители). На глубоких стадиях окисления, например,при окислении /г-толуиловой кислоты кислотные растворители (особенно бромуксусная кислота) заметно промотируют реакцию. [c.144]

    Сложность получения хлорпроизводных ксилолов с атомом хлора в боковой цепи непосредственным хлорированием ксилолов заключается в особенностях молекулы исходного ксилола. Ароматическое ядро ксилола содержит два электронодонорных заместителя (две мётильные группы), которые определяют высокую реакционную способность ксилолов в реакциях электрофильного замещения. Поэтому присутствие даже незначительных примесей в реакционной смеси катализаторов ионного типа (кислот Льюиса) способно вызвать нежелательную реакцию хлорирования ксилола в ароматическое ядро. С увеличением концентрации хлорида железа скорость реакции радикального хлорирования, например п-ксилола, уменьшается за счет обрыва цепей, а выход продуктов, содержащих хлор в ароматическом ядре, повышается. Ингибирующее действие хлорида железа практически не проявляется лишь при содержании его в реакционной массе порядка -0,4-10 % (в пересчете на Fe ) [90]. Содержание хлорида [c.38]

    Замена ароматических кислот алифатическими, например капроновой, также устраняет образование нерастворимой части, но при этом получаются лишь низкомолекулярные растворимые продукты. Линейные полимеры с различным молекулярным весом были получены в аналогичных условиях из дифенила, п-ксилола, п-дихлорбензола и других насыщенных соединений. Реакция полирекомбинации оказалась применимой и для получения металл-органических полимеров, например полиферроцена и полиди-изопропилфарроцена. Получение последнего может быть представлено следуюгцей схемой  [c.44]

    Гнедин Б. г., Р у д а к о в а Н. И. Реакции хлорсульфоновой кислоты с ароматическими соединениями. 3. Кинетика сульфирования толуола и о-ксилола в среде [c.34]

    При взаимодействии нафтеновых кислот с ароматическими углеводородами в присутствии хлорида алюминия, как было найдено Зелинским [17] протекает ацилирование по Фриделю-Крафтсу. В работе [18] изучено аци-лирование узкими фракциями нафтеновых кислот, выделенных из туркменских нефтей, бензола, толуола и < -ксилола. Реакцию проводили в присут- ствии РС и А1С1з- Строение продукта доказано превращением их в 2,4-динитрофенилгидразоны по ИК-спектрам и превращением кетонов в соответствующие углеводороды. Нафтениларилкетоны представляют со- бой светло-желтые жидкие продукты, а их 2,4-динитрофенилгидразоны—) желтое кристаллическое вещество.  [c.130]

    В концентрированной НМОд в качестве растворителя [93] при (HNOз) > > (АгН) скорость зависит только от первой степени концентрации АгН. В менее кислых растворителях, таких, как нитрометан и уксусная кислота, при постоянном избытке НМОд над АгН скорость реакции для очень реакционноспособных ароматических соединений [93] становится нулевого порядка по АгН. Это выполняется в случае бензола, толуола, ксилолов, п-хлорани-зола и алкилбензолов, все эти соединения нитруются с одинаковой скоростью. Предложенный механизм предполагает, что медленной стадией является разрыв связи в азотной кислоте [c.503]

    Уже в более ранней работе было показано, что такие ароматические соединения, как бензол, толуол, ксилол, фенол, крезолы, могут легко алкилироваться олефинами, циклоолефинами, некоторыми циклопарафинами, галоидалкилами, спиртами и эфирами, а также соединениями, дающими в результате разложения указанные выше соединения или являющимися промежуточными соединениями при образовании таковых. В качестве катализатора при проведении реакции в жидкой фазе используются галоидметаллы и сильные кислоты, при проведении же реакции в паровой фазе — кислотные катализаторы или кислоты, отлол енпые на носителе. [c.489]

    Гийо впервые показал на примере бензола, что сульфирование можно осуществить полностью, если применять повторное пропускание углеводорода в паровой фазе через кислоту, удаляя таким образом воду, образующуюся во время сульфирования в виде азеотропной смеси. В этохМ методе перегонки с использованием парциального давления сочетаются превосходные выходы с простотой операций, поэтому он стал господствующим промышленным методом сульфирования таких стойких низкокипящих ароматических углеводородов, как бензол, толуол и ксилолы. Метод можно распространить также и на более высококипящие соединения путем добавления соответствующего инертного низкокипящего вещества, образующего смесь, например четыреххлористый углерод или лигроин. Воду можно также удалять при помощи инертного газа с применением вакуума или же с использованием химической реакции с веществами типа ВГз, который обпазует стойкий гидрат. [c.520]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]

    Описан процесс получения сульфонатной присадки путем непрерывного сульфирования дистиллятного масла газообразным серным ангидридом в реакторе типа Ротатор с рециркуляцией кислого масла. Серный ангидрид затем нейтрализуют раствором аммиака, сульфонат аммония экстрагируют изопропиловым спиртом. Обменной реакцией сульфоната аммония с гидроксидом кальция получают сульфонат кальция, из которого в результате карбонатации углекислым газом в растворе ксилола и метилового спирта образуется высокощелочная сульфонатная присадка. Для упрощения процесса перед сульфированием вводят 1—3 % (масс.) низкомолекулярных ароматических углеводородов (толуол, ксилол и др.), что снижает окисляющее действие серного ангидрида, повышает степень сульфирования и позволяет отделить кислый гидрон от вязкого масла без добавления каких-либо растворителей [а. с. СССР 405933]. Чтобы ускорить очистку присадки и повысить ее эффективность перед обработкой углекислым газом в реакционную смесь, состоящую из сульфоната щелочноземельного металла или аммония, минерального масла, гидроксида щелочноземельного металла, воды, углеводородного растворителя и промотора (уксусная кислота), вводят 0,01—0,1 % (масс.) поли-силоксана [а. с. СССР 468951]. [c.79]

    Возможность образования ароматических углеводородов непосредственной циклизацией длинных углеводородных цепей олефинового характера была установлена в 1931 г. А. Д. Петровым [54]. Он подвергал разложению под давлением и в присутствии AljOg при 400—420° олеиновую кислоту. В этих условиях олефины в газовой фазе продуктов реакции отсутствовали и, следовательно, образование с несомненносхью доказанных толуола и ксилола не могло быть представлено схемами  [c.140]

    Ниязов распространил реакцию получения кетонов из алифатических кислот и ароматических углеводородов в присутствии А1С1з и РС1з и на циклопентанкарбоновые кислоты [36—40]. При взаимодействии циклогексан- и метилциклогексанкарбоновой кислот с гомологами бензола (толуол, этилбензол, ксилолы) были получены смешанные циклогексил- и метилциклогексилароматические кетоны типа [c.316]

    Изучение кинетики сульфирования ароматических углеводородов С 8 серной кислотой показало [121], что количество образовавшихся сульфокислот прямо пропорционально количеству серной кислоты, и реакция в основном протекает в кислотном слое. По мере повышения температуры и концентрации кислоты скорость сульфирования возрастает. На рис. 3.47 показана зависимость констант скоростей реакции сульфирования л- и и-ксилола от концентрации серной кислоты при различных температурах реакции и на рис. 3.48— зависимость глубины сульфирования отдельных ароматических углеводородов С 8 от длительности реакции в случае употребления 75%-ной H2SO4 при 75 °С. Мольное отношение H2SO4 сырье во всех случаях составляло 35 1. Во всем изученном интервале температур и концентраций кислоты быстрее всех сульфировался л-ксилол. [c.139]

    На обратимости реакции сульфирования ароматических углеводородов, о которой говорилось выше, основан гидролиз (десульфирование) сульфокислот. При добавлении к сульфомассе воды образуются углеводороды и разбавленная серная кислота. Скорость гидролиза сульфокислот ароматических углеводородов Сд различна [121]. Наиболее легко гидролизуется л-ксилолсульфокис-лота. Гидролиз протекает при следующих температурах л-ксилол-сульфокислоты при 120—150 °С о- и п-ксилолсульфокислоты при 160—190 °С, этилбензолсульфокислоты при 180—200 °С [121, 128— [c.141]

    Углеводородную фазу (углеводороды, не вступившие в реакцию) выводят из верхней части аппарата 3. Сульфомассу направляют из реактора-сепаратора 3 двумя потоками заданное количество подают в контактор первой стадии 1, а балансовый избыток идет на разбавление водой до концентрации кислоты 70%. В отпарной колонне 4 при 105 °С отпаривают углеводороды, увлеченные из реактора-сепаратора 3 сульфомассой. Сульфомассу после разбавления водой до концентрации серной кислоты 28% десульфируют в гидро-лизере I ступени 6 при 150 °С образующийся концентрат л-ксилола поступает на ректификацию для отделения от полимеров. Чистота получаемого л-ксилола 95%. Неразложившиеся сульфокислоты в ги-дролизере И ступени 7 полностью гидролизуются с образованием углеводородов м 53%-ной серной кислоты. Ароматические углеводороды Се, выделенные в колонне 4 и гидролизере II ступени 7, также поступают на ректификацию в колонну 8 для очистки от полимеров. л-Ксилол 95%-ной чистоты и ароматические углеводороды Се после промывки щелочью (нейтрализация) и водой (на схеме не показано) являются товарными продуктами установки. Чистоту л-ксилола, полученного сульфированием, можно повысить до 98—99% ректификацией с целью отделения о-ксилола. [c.144]

    Высокая плотность п-электронов в молекулах ароматических соединений определяет их основные свойства при взаимодействии с кислотами. Бензол, толуол, ксилолы, мезитилен, нафталин, антрацен и многие другие полиядер-ные ароматические углеводороды растворимы в жидком фтористом водороде, особенно в присутствии комплексооб-разователей иона фтора. Изучая электропроводность и спектры этих растворов, можно найти койстанты равновесия реакций и установить константы основности ароматических углеводородов  [c.85]

    Изучение сульфирующего действия диоксан-сульфотриоксида проведено Сьютером с сотрудниками на ряде ароматических соединений, сульфокислоты которых были получены ранее другими методами. Бензол сульфировался с хорошим выходом до бензолсульфокислоты в течение одного дня при комнатной температуре. Сульфирование л -ксилола, анизола и нафталина заканчивалось в несколько минут. Фенол и анилин реагировали своими активными атомами водорода, давая соответственно фенилсер-ную и фени л сульф амовую кислоты. Хлорбензол в обычных условиях не сульфировался. Бензойная кислота дает легко гидролизуемый продукт Спирты вступают во взаимодействие с диоксан-сульфотриоксидом практически мгновенно, давая с количественным выходом соответствующие кислые эфиры серной кислоты. Эта реакция может быть использована для практических целей, так как соли подобных эфиров высших спиртов широко применяются в качестве поверхностно-активных веществ [c.252]

    Систематическое исследование процесса нитрования ароматических углеводородов смесью азотной и уксусной кислот проведено М. И. Коноваловым и К. Гуревичем [121]. Авторы изучали нитрование толуола, ксилолов (орто-, мета-и пара-изомера), этилбензола, дизтилбензола и других, применяя азотную кислоту уд. в. 1,495 и ледяную уксусную кислоту. Во всех случаях, за исключением этилбензола и дизтилбензола, реакция проводилась при кипячении с обратным холодильником в течение 1,5—2 час. [c.49]

    До выяснения причин основности ароматических углеводородов до отношению к сильным кислотам алкилирование бензола часто приводило к парадоксальным результатам. Часто изомеры получались в соотношениях, сильно отличавшихся от расчетных равновесных. Логично предположить, что соотношение первоначально образовавшихся изомеров при этих реакциях алкилирования соответствовало правилам направленного замещения в бейзоле. Если образования а-комплексов не происходило, то равновесие могло медленно устанавливаться в результате изомеризации по какому-то механизму, отличающемуся от рассмотренного ниже. Однако вместо этого изомеры с наибольшей основностью исключались пз равновесной реакции вследствие образования а-комплексов, а с меньшей основностью изомеризовались с образованием равновесного алкилата, не связанного в комплексах. Последующая переработка продукта вела к разрушению комплекса и к получению алкилата, фактически представлявшего собой сочетание не связанной в комплексах истинной равновесной смеси с изомерами большей основности, которые до этого были связаны в виде комплексов. Как указывалось выше, эта гипотеза подтверждается тем, что соотношение изомеров можно регулировать, изменяя количественное соотношение сильной кислоты и ароматического углеводорода (см. таблицу). Равновесие изомерных ксилолов в кислотной и углеводородных фазах представлено на схеме  [c.106]

    Важнейшими реакциями, протекающими при гидрировании ароматических углеводородов, являются рассмотренные выше насыщение кольца и гидрогенизационное отщепление алкановых боковых цепей в некоторой промежуточной точке цепи или непосредственно при кольце. Такое отщепление или разрыв боковых ценей называют деалкнлированием. Например, при осторожном нагревании ксилола с водородом нри 312° С в присутствии активного катализатора (никель на кизельгуре) реакция деметилирования приводит к образованию 4% бензола и 32% толуола при суммарной эффективности превращения около 98% [46]. В присутствии аналогичного катализатора, но с использованием сернистого соединения в качестве модифицирующей добавки никель катализирует реакции, промотируемые сильными кислотами [58]. Так, в присутствии обработанного тиофеном катализатора при избыточном давлении 10,5—78,7 ат и 300—350° С тарето-алкил- или цикло-алкилароматические углеводороды легко вступают в реакцию деалкилирования, вторичные алкилароматические углеводороды подвергаются лишь частичному деалкилированию, а первичные остаются непревращенными. [c.131]

    Характерной особенностью кинетики реакции, в которой образование эЛектрофила определяет скорость реакции, является отсутствие концентрации ароматического соединения в выражении скорости. Нитрование бензола и толуола азотной кислотой в ннтрометане 101], ксилола й мезнтилена в четырёххлористом углероде [102] — примеры ре- [c.356]


Смотреть страницы где упоминается термин Ксилол реакция с ароматических кислот: [c.149]    [c.628]    [c.107]    [c.271]    [c.67]    [c.171]    [c.9]    [c.155]    [c.382]    [c.425]    [c.385]    [c.31]    [c.240]    [c.358]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты



© 2025 chem21.info Реклама на сайте