Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функция распределения в пространстве

    Скалярная величина скорости с движения молекулы связана с векторными компонентами скорости Vx, Vy, уравнением = уЦ- Уу- - v. Положение об изотропности пространства для движения молекул означает, что вероятность обнаружения молекул с данной скоростью с не будет зависеть от направления движения молекулы. Это в свою очередь означает, что общая функция распределения P(vx, Vy, v ) = Р (Vx) Р (vy) Р (v ) постоянна для всех тех комбинаций компонент, которые при сложении дают данную скорость с. Поэтому Р vx, Vy, Уг) = Р (с), а это значит, что функция зависит только от с и не зависит от распределения с между нространственными компонентами. Данное ноложение предполагает наличие определенной функциональной зависимости между Р (vx), Р (vy), и Р (v ). Мы можем вывести ее следующим образом. Для любого выб рапного с можно одновременно написать два условия  [c.128]


    Здесь ди, ( 21, , — значения координат в узловых точках Л -мерного пространства, которые определяются функцией распределения (7.2). Для вычисления узловых точек используется реализация цепи Маркова [336]. Этот метод называется методом Монте-Карло и состоит из двух этапов. На первом, как правило более трудоемком, генерируется последовательность узловых точек. На втором этапе, используя полученные данные, вычисляют средние значения искомых величин. Значение <Л> соответствует каноническому ансамблю. В ряде задач более удобно использовать другие статистические ансамбли, при этом несколько изменяется процедура определения узловых точек в (7.3). Необходимо отметить, что узловые точки с физической точки зрения представляют собой мгновенные конфигурации равновесной многочастичной системы и поэтому дают информацию, которая недоступна в реальном эксперименте. [c.119]

    Ориентационный фактор уширения обусловлен тем, что величина магнитного поля внутри неоднородности анизотропной формы зависит от ее ориентации в пространстве. Детальный анализ ориентационного фактора уширения проведен в [612] для модельной системы с неоднородностями сфероидальной формы. Спектр ЯМР может иметь довольно сложную структуру, вид которой определяется ориентационной функцией распределения неоднородностей в объекте и ориентацией объекта в магнитном поле. Общая протяженность спектра, обусловленная этим фактором, равна [c.238]

    Каждая из перечисленных в табл. 8-1 орбиталей, характеризуемая определенными значениями квантовых чисел и, / и т, соответствует различной функции распределения вероятности электрона в пространстве. Простейшие из таких функций вероятности соответствуют -орбиталям (/ = 0) и являются сферически симметричными. Вероятность обнаружения электрона в -состоянии одинакова во всех направлениях, но изменяется с расстоянием от ядра. Зависимость VI и плотности вероятности Ц от расстояния электрона до ядра для 1 -орбитали графически изображена на рис. 8-18. Сферическая симметрия этой орбитали более наглядно показана на рис. 8-19. Величину можно понимать как вероятность обнару- [c.367]

    Рассмотрим поведение ансамбля частиц полидисперсной ФХС в фазовом пространстве, координатами которого являются декартовы (внешние) координаты агд и внутренние степени свободы (внутренние координаты) у =Уису Уз, , У к) каждой А-й частицы. Введем функцию распределения р (х, у, определяющую вероятное число частиц ФХС в элементе объема dx около точки X, имеющих внутренние степени свободы в элементе йу около у, в виде р (х, у, ) х dy. Уравнение для р (х, у, ) получается из общего уравнения (1.81), где в качестве фазовых координат не рассматриваются импульсы, интегрированием его по внешним и внутренним координатам (/га—1) частиц  [c.71]


    Многие попытки решения этих задач следует признать неудачными из-за существенных недостатков в методике постановки эксперимента. Так, использование специальных индикаторов, не проникающих в поры и капилляры твердых частиц системы, как правило, не приводит к желаемым результатам, так как дает возможность учесть лишь один из видов гидродинамических источников (стоков) массы — поры и капилляры, не позволяя оценить величину объема застойной жидкости в пространстве между твердыми частицами системы. Такими же недостатками обладают методы парафинирования колец насадки, а также методы, основанные на сравнении функций распределения, получаемых на пористых и непористых насадках. [c.350]

    Процессы адсорбционного равновесия носят статистический характер, поэтому одним из возможных путей решения задачи теоретического обоснования существующих уравнений изотерм адсорбции является использование вероятностного подхода, причем в качестве критерия правдоподобия описания используется информационная энтропия [80]. Согласно информационному принципу максимальной энтропии [79], достоверная отображающая функция распределения, которая содержит наибольшую информацию о результатах измерения случайных величин, должна обладать максимальной энтропией. По одному из положений теории объемного заполнения адсорбент характеризуется предельным объемом адсорбционного пространства, заполнение которого связано с уменьшением свободной энергии газовой фазы А. Кроме того, любая система адсорбент — адсорбат определяется некоторой энергией Е, характеризующей энергетический механизм взаимодействия молекул в зависимости от свойств системы. Характеристику заполнения объема адсорбционного пространства можно рассматривать как некоторую функцию распределения и ее плотности, где параметром функции распределения будет энергетический симплекс [81]  [c.223]

    Функция распределения, служащая характеристикой заполнения адсорбционного пространства, находится прямым интегрированием уравнения (П.1.11)  [c.224]

    Следовало бы отметить, что эти распределения даются в пространстве векторов скоростей, которое не надо путать с пространством скаляров скоростей. Переход от функций вектор-скоростей к соответствующим значениям функций скаляров легко получается интегрированием. Из распределения нейтронов (4.171) соответствующая функция в пространстве скаляров скоростей получается интегрированием уравнения (4.171) по всем направлениям движения О. Если определить тп v)dv как долю нейтронов, скалярные величины скоростей которых лежат между V и то [c.92]

    Полное представление о поведении нейтронов в реакторе дает функция распределения нейтронов в пространстве по энергиям, во времени и но направлениям движения одновременно. [c.235]

    Если не известен вид функции плотности вероятности и не удается сделать предположений об аналитическом выражении этой функции, то можно использовать для распознавания некоторые непараметрические способы. Тематические обзоры по этой проблеме содержатся в работах [122]. Рассмотрим интерпретацию задачи с ядром Парзена. В этом случае каждый объект в пространстве признаков заменяется некоторым ядром, например, нормальным распределением плотности вероятности с матрицей ковариаций hl (1 — единичная матрица). Могут использоваться и другие типы ядер. Функция распределения плотности вероятности для некоторого класса приближенно определяется, например, как среднее по обучающей выборке для этого класса [c.247]

    Надо надеяться, что в ближайшие десятилетия измеряемыми величинами станут функции распределения, которые являются основными характеристиками эволюции статистического ансамбля, в котором наряду с другими каналами физико-химических процессов существует и химический канал. Определяющей величиной является функция распределения отдельной молекулы по координатам г и импульсам р (т.е. вероятность того, что молекула, взятая из всего ансамбля, находится в состоянии со значениями координат и импульсов, расположенными между г и г -н с1г, р и р + с1р), равная f( , р) / г У р. Это распределение задано в шестимерном пространстве, которое часто называется -пространством. [c.41]

    Будем рассматривать траекторию молекулы в фазовом пространстве. Определим величину т как время, за которое изображающая точка из заданной начальной области фазового пространства достигает некоторой поверхности 5 . Если точку в начальном фазовом пространстве выбирать случайным образом, то г будет случайной величиной, которую можно охарактеризовать некоторой функцией распределения 1 т), связанной с 5к. Если 5к соответствует критической поверхности, то функцию / кр (т) можно использовать для вычисления константы скорости распада. [c.75]

    Величину Оц (м /с ) — коэффициента диффузии в пространстве скоростей — авторы из соображений размерности связывают с удельным расходом газа и диаметром частиц, считая распределение последних по скоростям максвелловским. В более общей постановке рассматривают одновременно функции распределения и для молекул газа, и для твердых частиц. Поскольку же последние могут еще и вращаться, то дополнительно вводится и коэффициент диффузии в пространстве моментов количества движения [65]. [c.61]


    В качестве объектов, отвечающих перечисленным требованиям, были выбраны типичные человеко-машинные системы и комплексы, характерные для техники и технологии разработки, добычи, подготовки и транспорта нефти и природного газа. Обстоятельно изучались состав, структура и функция ЧМС, основные компоненты (человек, машина, объемно-пространственная среда), их природа, характер связей и свойства исследовалась также надежность, точность, быстродействие человека и ЧМС, их эффективность, безопасность, разностороннее соответствие эргономическим требованиям техники, производственной среды и профессиональной функции. Распределение ошибок, сбоев и отказов, их интенсивность во времени и пространстве, в структуре ЧМС и личности человека изучаются на основе обстоятельного анализа причин производственных несчастных случаев с помощью разработанных автором [57, 61, 63, 89] эргономических принципов. [c.81]

    Каждая орбиталь характеризуется определенной зависимостью распределения 1/)-функции в пространстве и знаком, т. е. она, как обычная мате.матическая функция, может быть либо положительной, либо отрицательной в конкретной точке пространства орбиталь обладает определенной симметрией. [c.58]

    Развитие во времени микроскопического динамического состояния каждого члена малого канонического ансамбля будет описываться траекторией его изображающей точки в 2Л /-мерном фазовом пространстве. Если в том же самом пространстве помещены изображающие точки всех других членов ансамбля, то получится как бы облако движущихся изображающих точек. Мгновенная плотность облака в данной точке может быть охарактеризована функцией распределения [c.180]

    Таким образом, теория переходного состояния показывает, что малая величина стерического фактора, обусловливающая аномально медленное протекание некоторых реакций, определяется тем, что при образовании переходного состояния происходит замена вращательных степеней свободы колебательными. Вероятность вращательного движения, как это следует из величин функций распределения, больще, чем колебательного. При обычных температурах близка к единице, Р р колеблется в пределах от 10 до 100. Следовательно, стерический фактор в реакциях с участием сложных молекул изменяется от 10 до и определяется не геометрической вероятностью, как это предполагали ранее. В частности, он зависит от вероятности определенного согласования вращательного движения реагирующих молекул. Стерический фактор, таким образом, отражает не статическое положение молекул в пространстве, а динамические процессы. [c.344]

    Легко представить, что в данном объеме вокруг иона с потенциалом оЬ концентрация ионов может увеличиваться не бесконечно, а до некоторого предела, которым является полное заполнение ионами этого пространства. Когда ионы начнут касаться друг друга, функция распределения Больцмана будет уже неприложима, ибо невозможно дальнейшее возрастание концентрации. Возрастание ограничивается тем количеством ионов, при котором они будут касаться друг друга. Чем число сольватации больше, тем раньше наступит явление насыщения. [c.211]

    Такие средние величины называют средними по совокупности . Здесь dW(p, д)—вероятность того, что наугад выбранная система попадет в бесконечно малую область Г-пространства в окрестности данной точки (р, д). Строгое определение величины ( (р,д) дано ниже ( 2), но основная идея достаточно ясна. Средние значения Р можно вычислить, если будет найден общий вид функции Ц "(р, д). Для произвольных систем эта функция не известна и не единственна. Однако для макроскопических равновесных систем такую функцию распределения действительно удалось найти. Усреднение с помощью W p, д) оказалось практически возможным и это привело ко многим новым результатам. Так возникла статистическая механика. С ее помощью были развиты новые методы расчета физических свойств макроскопических систем на основе их молекулярных моделей. Статистическая термодинамика— это раздел статистической физики, посвященный термодинамическим свойствам равновесных макроскопических систем. [c.191]

    СВОЙСТВА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ В Г ПРОСТРАНСТВЕ [c.192]

    Для нахождения р(в) Больцман предложил разделить Г-пространство па некоторое число ячеек и сгруппировать эти ячейки по величине отвечающих им энергий е,-. Тогда знание функции распределения в фазовом пространстве означает возможность дать следующие сведения об ансамбле систем  [c.198]

    Из полученных выражений видно, что для любого вида сисгем величины Р явным образом зависят от М — числа систем, заполняющих 1-й уровень энергии. Однако задать набор чисел ТИг и означает одновременно задать функцию распределения р(б) в фазовом пространстве. Сами уравнения (УП.П) — (УП.13) относятся к любым функциям распределения (в том числе и к мало вероятным). Поэтому поиск максимального значения Р путем варьирования Mi означает фактически поиск такой функции распределения р(е), которая осуществляется наибольшим числом способов. При этом, однако, вариации ЬМ1 в ансамбле не вполне про- [c.201]

    При подсчете вероятности состояния в Г-пространстве сумма по состояниям 1 была введена как нормирующий множитель для dW при переходе от функции распределения p q, р) к функции Р(е)  [c.209]

    В последнее время интенсивно развиваются методы, основанные на идеях, заимствованных из статистической физики, которые позволяют учесть хаотичный характер расположения частиц. Начало использованию статистических методов в механике суспензий было положено Бюр-герсом [96]. Далее методы статистического осреднения были развиты в работах Тэма [113] и Бэтчелора [114-116]. На наш взгляд, наиболее законченную фюрму эти методы приобрели в работах Буевича с сотрудниками [ 96, 117-119] и Хинча [120]. Главная идея, лежащая в основе указанных методов, состоит в том, что законы сохранения и реологические соотношения, описывающие некоторое произвольное состояние системы частиц (конфигурацию расположения центров частиц), должны усредняться по ансамблю возможных состояний системы. Такой ансамбль полностью описьгаается функцией распределения P t, Сдг), которая представляет собой плотность вероятности конфигурации N частиц в ЗЖ-мерном фазовом пространстве, образованном компонентами радиус-векторов Р центров частиц jv = . При этом среднее значение локальной физической величины 0(t, r ), которая связана с точкой г дисперсной системы и определяется конфигурацией jV, дается выражением [c.69]

    Макроскопическое поведение газа обычно описывается с помощью функций распределения низшего порядка. Для достаточно разреженной смеси газов состояние системы можно характеризовать функциями распределения для каждой к-ж компоненты газовой смеси pj (Xj, x j., t), заданными в фазовых пространствах отдельных молекул компонентов. Функция (х , t) определяет, что вероятное число молекул к-то компонента в элементе объема dXj около точки Xj, имеющих импульсы в элементе dx j. около равно ру. (Xj, Xpt, t) dx dxpj,. Уравнение для р. (х , х , , t) получается из уравнения Лиувилля (1.81) интегрированием его по координатам и импульсам (т—1) молекулы  [c.69]

    Книга состоит из четырех глав. В первой главе, посвященной качественному анализу структуры процесса массовой кристаллизации как сложной ФХС, вскрываются особенности данной ФХС как на языке смысловых, лингвистических построений, так и на языке точных математических формулировок, причем в последнем случае обсуждаются два подхода — феноменологический (детерминированный) и стохастический. На уровне детерминированного подхода формулируется обобщенная система уравнений термогидромеханики полидисперсной смеси с произвольной функцией распределения кристаллов по размерам с учетом роста, растворения, зародышеобразования, агрегации и дробления кристаллов. Особое внимание уделено описанию процесса вторичного зародышеобразования. На основе термодинамического подхода получены теоретические зависимости для структуры движущих сил вторичного зародышеобразования при бесконтактном и контактном зародышеобразовании. Стохастический подход представлен методом пространственного осреднения, развитого в последние годы в механике гетерогенных сред, а также методами фазового пространства и стохастических ансамблей для описания стохастических свойств процессов массовой кристаллизации. На основе метода пространственного осреднения получено уравнение типа Колмогорова— Фоккера — Планка с коэффициентом диффузии, учитываю- [c.5]

    Система (И) содержит Ь X N уравнений, Ь X N неизвестных величин и 8 неизвестных параметров К . Таким образов , эта система педоопределена и без дополнительных условий единственное решение ее невозможно. Предположение о том, что А является случайной величиной, позволяет решить систему (11) в статистическом смысле. Такое решение выбирается из естественных соображений, чтобы константы К ,.. ., давали наилучшее в каком-то смысле описание экспериментально измеренных величин. В качестве критерия наилучшего описания обычно выбирается оптимум некоторой функции Ф (Д " ) в пространстве переменных К ,.. ., Кд. Вопрос о выборе критерия является одним из важнейших при математической интерпретации измерений. Он связан со статистической гипотезой о законе распределения случайной величины Д . При формулировании указанного критерия наиболее последовательным представляется следующий путь высказывается гипотеза о функциях распределения случайных величин бХ и бУ , на основе этих функций строится функция плотности вероятности случайной величины Д( и далее вырабатывается критерий согласия между расчетом и эксперилгентом — требование экстремума Ф(Д ). В общем случае, однако, этот подход трудно реализовать. При отсутствии информации о взаимной корреляции величин бХ и бУ невозможно построить функцию распределения для Д(. Даже если такая функция построена, она может оказаться настолько сложной, что сконструировать с ее помощью критерий согласия между расчетом и экспериментом окажется невозможным. Наконец, нахождение экстре-лгума полученной (например, в соответствии с принципом максимального правдоподобия) функции Ф(Д ) может представлять практически неразрешимую задачу. [c.55]

    Здесь С также может принимать значения как из непрерывного, так и из дискретного лшожества. Такой критерий впервые использовал П. Л. Чебышев [81 при рассмотрении проблемы наилучшего приближения функций полиномами и другими функциями. Для статистических задач с произвольной функцией распределения критерий (2) был применен и теоретически обоснован А. Н. Колмогоровым ([7], с. 353). В теории наилучшего приближения в функциональных пространствах в качестве меры приближения рассматривается норма пространства, которая представляется как ([8], с. 145) [c.114]

    Математическая модель реализуется путем решения численньм методом системы обьпаювенкьк дифференциальных уравнений, интегро дифференциального уравнения баланса по растворенному веществу и дифференциального уравнения в частных производных, используемого для расчета функции распределения кристаллов по размерам. Для решения последнего уравнения используется метод представления функции распределения частиц в пространстве поколений.  [c.164]

    Столкновительный член в выражении (2.13) учитывает влияние на функцию распределения столкновения частиц друг с другом или с центрами рассеяния. В элементарной теории этот член определяют интуитивно, допуская, что число столкновений за время равно произведению вероятности нахождения частиц в единичном объеме пространства и числа центров рассеяния. При этом существенно используют допущение молекулярного хаоса, означающее в данной проблеме, что динамические связи между последующими столкновениями быстро теряются из-за большого числа и случайного распределения центров рассеяния, а также бинарность соударений. [c.42]

    Обычное уравнение Больцмана описывает эволюцию функции распределения в фазовом пространстве одной частицы. Уравнение содержит два члена потоковый, описывающий движение молекул по траекториям в фазовом пространстве и представленный дифференциальным оператором, и столкновительный, описывающий изменения скорости, обусловленные столкновениями последний представлен интегральным оператором. Уравнение Больцмана, следовательно, интегродифференциапьное уравнение, причем столкновительный член является нелинейным. В этой нелинейности главное препятствие при построении методов его решения, тем более что интеграл столкновений тесно связан с законом межмолекулярного взаимодействия, относительно которого имеется весьма неполная и зачастую противоречивая информация. [c.43]

    С помощью этой модели можно вычислять функцию распределения по максимальным временам спонтанного распада, которая является детальной кинетической характеристикой мономолекулярной реакции [406]. Максимальным временем спонтанного распада называется временной интервал между двумя последовательными прохождениями траекторией окрестности активированного комплекса с последующим необходимым распадом. За это время часть распадной траектории Г должна пройти область фазового пространства, соответствующую возбужденной молекуле, а затем возвратиться к области активированного комплекса, но уже с такими направлениями импульсов, которые непосредственно ведут к распаду молекулы. Максимальное время спонтанногг аспада является случайной величиной, так как начальные условия выбираются случайно. Функция распределения 1 т) этой случайной величины может быть определена при статистической обработке результатов моделирования. Используя эту функцию, можно получить константы скорости распада при различных видах активации молекулы. [c.72]

    Из формулы (3-8) следует, что коэффициент диффузии для бинарной смеси Du существенно зависит от содержания компонент в смеси ii2ln и пфг. Однако опыт не подтверждает этого. При изменении содержания компонент в смеси коэффициент диффузии меняется очень слабо (в пределах нескольких процентов величины Dia). Дело в том, что рассмотренный вывод является слишком упрощенным. Строгая теория явлений переноса была развита Энско-гом и Чепменом. В этой теории прежде всего учитывается изменение функции распределения скоростей (и энергий) молекул при их взаимодействии, т. е. учитываются отличия функции распределения от максвелловской (хотя эти отличия могут быть и небольшими). Тем не менее отклонения от максвелловского распределения существенно сказываются на коэффициенте диффузии и других коэффициентах переноса. Максвелловское распределение осуществляется только при равновесных состояниях газа. Отсюда ясно, что рассмотренная выше элементарная упрощенная теория, основанная на предположении, что в каждой точке пространства, занятого газом, осуществляется максвелловское распределение, не может привести к всесторонне правильным результатам. И все же оказывается, что из упрощенной теории вытекает правильная зависимость (3-6) для диффузионного потока. Однако выражение (3-7) для коэффициента диффузии не отвечает действительности. [c.67]

    Если рассматривать энергию как функцию координат пространства и импульсов г(д,р), то можно определить число частиц в интервале д+с1д и р, р+йр в виде больцм айовской функции распределения [c.297]

    Постулат о равновесной функции распределения. Равновесная функция распределения в фазовом пространстве является одновременно и наиболее пероятной. Она осуществляется наибольшим числом способов, совместимым с заданными условиями определения ансамбля. Практическое использование этого постулата см. 3. Важнейшим общим свойством плотности вероятности в фазовом пространстве р(р, д) оказалась ее полная нечувствительность для равновесных систем к изменениям импульсов и координат отдельных молекул при движении системы по фазовой траектории. Общие свойства функции р(р, д) оказались достаточно простыми, что и позволило разработать статистический метод определения термодинамических величин для равновесных систем. Основное внимание мы уделим каноническому ансамблю Гиббса и канонической функции распределения р(р,д). Для нахождения вида функции р(р, д) необходимо использовать теорему Лиувилля, описывающую системы, подчиняющиеся уравнениям классической механики. [c.194]

    Есть три класса систем, соответствующих трем различным способам заполнения уровней энергии Г-пространства. В результате этого появляются три различные функции распределения — Максвелла— Больцмана, Бозе — Эйнштейна и Ферми — Дирака. Однако это не три различные статистики. Статистический метод здесь один, а отличия связаны только с различной природой изучаемых систем. С точки зрения решаемой здесь задачи конкретные различия систем классифицируют по трем основным признакам 1) по различимости или неразличимости изучаемых частиц 2) по различимости ячеек фазового пространства, отвечающих данному значению энергии 3) по наличию ограничений, налагаемых на заполнение отдельных ячеек данного уровня энергии. [c.199]

    Согласно квантовой механике все элементарные частицы неразличимы. Однако в отношении заполнения уровней энергии имеются две возможности. Уровии энергии заполняются без каких либо ограничений, если частицы описываются симметричными волновыми функциями. Такими свойствами обладают частицы с нулевым или целочисленным спином. В каждой из ячеек фазового пространства можно разместить любое число частиц, однако сами ячейки, как н частицы, неразличимы. Свойства ансамбля таких частиц описывает функция распределения Бозе — Эйнштейна. [c.200]


Смотреть страницы где упоминается термин Функция распределения в пространстве: [c.138]    [c.28]    [c.68]    [c.68]    [c.70]    [c.257]    [c.25]    [c.42]    [c.75]    [c.60]    [c.21]    [c.53]   
Математическая теория процессов переноса в газах (1976) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Пространство

Функция распределения



© 2025 chem21.info Реклама на сайте