Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры количественный анализ

    Элементный качественный и количественный анализ —в общем химический состав мономера и полимера различается тем больше, чем больше степень полимеризации [c.414]

    Инфракрасная спектроскопия (ИКС) — раздел спектроскопии, охватывающий длинноволновую область спектра (>700 нм за красной границей видимого спектра). По инфракрасны.ч спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. По числу н положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрографы. [c.57]


    К основным областям использования пиролитической газовой хроматографии относятся качественная идентификация полимеров путем сравнения пирограмм и масс-спектров исследуемых и известных полимеров, определение стереорегулярности полимеров, количественный анализ сополимеров и их структур, т. е. определение различий между статистическими и блок-сополимерами установление отличий полимерных смесей от истинных сополимеров, изучение термостойкости и деструкции полимеров, кинетики деструкции их, в том числе и термоокислительной деструкции, оценка остаточных количеств мономеров, растворителя, добавок и сорбированной воды в полимерах, идентификация растворителей, содержащихся в клеях и растворах покрытий, изучение процесса сшивания в полимерах. [c.200]

    Однако газо-хроматографические методы применяются далеко не всегда в оптимальном варианте, и использование их для решения различных проблем химии полимеров очень неравномерно. Наиболее широко газовая хроматография используется в тех областях, где формы ее применения являются традиционными. Так, газовая хроматография является основным методом анализа при определении примесей в мономерах и растворителях для полимеризации и широко используется при изучении летучих продуктов деструкции. В гораздо меньшей степени используется газовая хроматография для исследования термодинамики взаимодействия летучих стандартных соединений с высокомолекулярными соединениями методом обращенной газовой хроматографии. Пиролитическая газовая хроматография, в которой исследуемая полимерная система характеризуется спектром летучих продуктов пиролиза, является, пожалуй, единственным примером метода, разработанного совместно исследователями, работающими в газовой хроматографии и в полимерной химии, метода, широко используемого для идентификации полимеров, количественного анализа сополимеров и их строения. Однако можно не сомневаться, что в ближайшее время будут разработаны и другие варианты газо-хроматографического метода специально для исследования полимеров. [c.6]

    Наука о полимерах за последние десятилетия обогатилась новыми открытиями и методами исследований. Она все более обретает прогностические возможности. Многие интуитивные подходы к анализу различных явлений в полимерных системах сменились строгим их описанием. Количественный анализ явлений и процессов становится важнейшим инструментом познания в этой науке, открывая целесообразные пути создания новых технологий. [c.8]


    Видимо, будущее развитие кинетики ферментативных реакций СО СЛОЖНОЙ стехиометрией покажет, насколько статистическая кинетика в ее современном варианте оказалась полезной для анализа конкретных экспериментальных данных. Автор, со своей стороны, полагает, что главное достоинство статистической ферментативной кинетики заключается не столько в ее значимости для расчета формальных эмпирических коэффициентов и количественного анализа экспериментальных кинетических кривых или в ее формулах, показывающих связь микроскопических и макроскопических параметров, сколько в ее общих выводах, иллюстрирующих принципиальные закономерности ферментативной деструкции полимерных субстратов во времени. Именно на эти закономерности будет обращаться основное внимание при изложении кинетики ферментативных превращений полимеров. В заключение данного раздела будут изложены кинетические подходы к деструкции полимерных субстратов, разработанные автором с коллегами, в которых сделана попытка уйти от формализованных статистических методов математического анализа и главное внимание уделено аналитической ферментативной кинетике. [c.107]

    Определение относительной термической стабильности, т.е. температур, при которых полимеры начинают заметно разлагаться, качественный и количественный анализ продуктов деструкции (в том числе, и состава остатка) в зависимости от температуры и давления. [c.392]

    При количественном ИК-анализе сополимеров с использованием сигналов от отдельных компонентов необходимо всегда иметь в виду, что положение полос и величина коэффициента поглощения существенно зависят от общего состава и микроструктуры полимера. В конкретных случаях необходимо поэтому выяснить, как этот факт сказывается на результатах анализа [55]. Перекрывающиеся или сильно искаженные полосы абсорбции пригодны для проведения количественного анализа только после предварительного )азделения их [56] или при введении соответствующих расчетных поправок 57]. [c.418]

    Количественный анализ. Новейшая техника разделения, такая, как газовая и тонкослойная хроматографии, позволила решать аналитические задачи, которые до недавнего времени решались методом количественной инфракрасной спектроскопии. Однако ИК-метод все еще широко используется полные сведения по этому вопросу можно найти в более обширных руководствах [1—11]. Для построения калибровочных кривых на график зависимости от состава смеси обычно наносят коэффициенты экстинкции, а не площади под кривыми. В химии полимеров [4, 7, 8, 10] можно встретить некоторые довольно интересные примеры, такие, как определение концевых групп, степени разветвлен ности цепи и степени кристалличности полимера. [c.174]

    Наряду с качественным определением строения сложных молекул ИК-спектроскопия дает возможность проводить количественный анализ полимеров например, определять количественный состав сополимера, содержание функциональных групп, степень ненасыщенности, наличие посторонних веществ в полимере и их количество и др. [c.188]

    Количественный анализ на первой стадии заключается в определении элементного состава, функциональных групп, свободных мономеров, влажности, зольности, а также характеристик, перечисленных в разд. 10.1 и 10.2. Для каждого типа полимера существуют параметры, которые определяют в первую очередь. Приводим их для некоторых конденсационных полимеров  [c.225]

    Количественный анализ полимерных соединений включает определение содержания основного вещества, пластификатора, наполнителя, стабилизатора, красителя. Для этого полимерные соединения специально подготавливают пластификатор выделяют методом экстракции наполнитель отделяют обработкой растворителем, в котором он не растворяется, после чего полимеры осаждают. В табл. 18.4 приведены растворители и осадители для некоторых видов пластмасс. [c.355]

    Количественный анализ диаграмм удерживания на участках плавления полукристаллических полимеров (рис. 24.4) позволяет оценить кристалличность полимера и получить кривую плавления. Выше Тт полимер становится полностью аморфным, при этом диаграмма представляет собой прямую линию. Экстраполяцией ее на более низкие температуры находят удерживаемый объем для идеального аморфного полимера. [c.51]

    Качественный и количественный анализы различных добавок в полимерах. [c.72]

    Пик на кривой исследуемого образца полимера можно интегрировать с использованием одного из методов, описанных в разд. 23.3. Если на кривой имеются перекрывающиеся пики, то такую кривую интегрируют по частям. При расчете ДЯ для каждого из пиков нужно использовать свою калибровочную константу (при использовании метода ДТА). Суммарная ДЯ тогда представляет собой сумму всех площадей. В методе ДСК константа К не зависит от температуры, поэтому можно пользоваться одним ее значением. При количественном анализе в этом заключается преимущество метода ДСК перед ДТА. [c.188]


    Количественный анализ состава полимеров, как и любых органических соединений, основан на том, что каждая из анализируемых мономерных групп имеет свое специфическое химическое строение, а следовательно, и свои, характерные только для него полосы поглощения. Все вещества, кроме оптических изомеров, имеют различные ИК-спектры, которые часто называют отпечатками пальцев молекулы. Метод ИКС почти универсален по своим возможностям образцы могут быть жидкими, твердыми, газообразными, бесцветными или окрашенными. Наиболее достоверная информация может быть получена для высокомолекулярных образцов регулярной структуры с линейной конфигурацией цепи, когда вклад концевых групп, аномальных звеньев, точек разветвления и нерегулярностей других типов минимален. [c.225]

    Несмотря на то, что спектроскопия в ближней ИК-области (БИКС) уже несколько десятилетий используется для количественного анализа полимеров, содержащих функциональные группы (например, для определения гидроксильного числа, влажности, остаточных двойных связей), она применяется сравнительно меньше, чем другие спектроскопические методы. [c.242]

    Метод ИК-спектроскопии рекомендуется при количественном анализе сложных нелетучих смесей, таких, как полимеры, или в случае, когда газохроматографическое разделение компонентов смеси затруднено. [c.13]

    Теплота образования обычной межмолекулярной водородной связи составляет 3 — 10 ккал/моль. Очень широкие полосы поглощения часто состоят из нескольких перекрывающихся полос, соответствующих равновесным концентрациям димеров, тримеров и других полимеров (рис. 5.12). Относительные количества различных ассоциатов зависят от концентрации растворенного вещества, растворителя и температуры. Только при разбавлениях 10 — 10 моль/л концентрация полимерных частиц становится пренебрежимо малой. Из-за сильной зависимости интенсивности от внешних факторов полосы поглощения ОН и КН нельзя использовать для количественного анализа, кроме особых случаев. [c.171]

    Количественный анализ полимеров представляет собой несколько специальную проблему, и во многих случаях этот метод нужно приспосабливать к конкретной задаче. Большинство трудностей возникает [c.266]

    Хроматографический анализ основан на концентрировании и периодическом автоматическом количественном анализе продуктов деструкции. При этом используется хроматографическая колонка в виде незамкнутого кольца, по которому непрерывно вращается П-образная электропечь в направлении движения газа-носителя. Продукты деструкции вместе с газом-носителем вносятся в колонку, заполненную соответствующим сорбентом, где они концентрируются при комнатной температуре. Разделение происходит на колонке и в зависимости от конкретного варианта исполнения позволяет определить кинетику образования отдельных продуктов деструкции, их сумму и, путем пересчета, кинетику изменения массы полимера. [c.392]

    Результаты количественного анализа могут быть выражены в массовых или мольных процентах. Результат, выраженный в массовых процентах, характеризует число граммов найденного повторяющегося звена в 100 г полимера. Однако это значение не отражает долю прореагировавших звеньев, поэтому нагляднее рассчитать мольную долю прореагировавших звеньев, т. е. показать, сколько молей повторяющегося звена прореагировало на 100 мономерных звеньев. Для этого нужно знать строение групп, образующихся в результате побочных реакций, чтобы иметь возможность вычислить молекулярные массы всех содержащихся в полимере структурных элементов. Если принять для простоты, что никаких побочных реакций не протекает, то можно рассматривать продукт реакции как двухкомпонентную систему, которая состоит из исходных мономерных звеньев А и образующихся в результате реакции звеньев С. Для пересчета массовых процентов в мольные можно пользоваться следующими формулами  [c.63]

    Приведенные выше расчеты справедливы также и для тех реакций, при которых образуются три или большее число различных групп например при проведении последовательных реакций с полимером, В этом случае из-за побочных реакций число учитываемых групп становится слишком большим и проведение количественного анализа трудоемким. Расчет степени превращения при этом возможен только на основании упрощающих допущений, которые выбираются в каждом конкретном случае. Тогда ограничиваются анализом лишь тех групп, которые получаются в результате реакций, учитываемых при упрощении, и степень превращения вычисляется в массовых процентах с учетом только этих реакций. [c.64]

    Качественный и количественный анализ полимеров [121] проводится обычными методами, применяемыми для низкомолекулярных соединений [122], [123]. То же самое относится к определению легко идентифицируемых групп [123], например ацетильных, мет-оксильных или амидных. Правда, при исследовании полимера часто возникают трудности, заставляющие изменять условия реакций (например, продолжительность отдельных процессов). Специальные методы, используемые при анализе концевых групп, описаны в разделе 2.3.2.2. [c.94]

    Растворы полимеров. Часто на практике приходится снимать спектр исследуемого полимера в растворе. Это удобнее в тех случаях, когда исследуют не весь спектр, а лишь отдельные характерные линии, и особенно тогда, когда эти линии очень интенсивные. Например, растворами пользуются при количественном анализе вещества. Для приготовления раствора тщательно подбирают растворитель и устанавливают оптимальную концентрацию. Концентрация растворов большинства углеводородных полимеров обычно составляет 10—100 г/л. Кювету применяют с толщиной слоя 0,1 мм. При этом используют преимущественно два типа кювет постоянной толщины и разборные различных конструкций. Оба окошка кюветы делаются из прозрачного материала —кварца, КВг, LiF, Na l, K l, СаРг. [c.190]

    Высокая стабильность скорости потока. Точность поддержания скорости потока в колонке во многом определяет результаты как качественного, так и количественного анализа. Для основных вариантов ВЭЖХ нестабильность потока не должна превышать 0,5—1%. В эксклюзионной хроматографии при анализе молекулярно-массового распределения полимеров требования еще выше—0,1—0,3%. Кроме того, весьма желательно, чтобы насос не давал пульсации потока и имел малый рабочий объем для быстрой смены растворителя в режиме градиентного, элюирования. [c.139]

    В монографии изложен подход для количественного анализа влияния химического строения линейных и сетчэтых полимеров на их свойства. Подход основан на представлении повторяющегося звена полимера в виде набора ангармоничных осцилляторов, которые описываюттермическое движение атомов в поле внутри- и межмолекулярных сил, включая слабые дисперсионные силы, диполь-дипольные взаимодействия, водородные и химические связи. Описываются ЭВМ-программы, основанные на данном подходе, котпрые позволяют производить расчеты более 50 фундаментальных физических и химических констант линейных и сетчатых полимеров, а также низкомолекулярных органических жидкостей. Программы позволяют решать прямую задачу, т.е. проводить количественную оценку физических свойств полимеров на основе их химического строения, и обратную задачу, те, проводить компьютерный синтез полимеров с заданными физическими свойствами. Для химиков, физико-химиков, научных сотрудников, аспирантов, студентов, [c.2]

    В отдельных случаях с помощью обычных методов сополимеризации можно получить удовлетворительные стандарты, но окончательный состав таких композиций зачастую неизвестен с точностью, достаточной для их использования в качестве стандартов. Для того чтобы охарактеризовать полимерную композицию, полезны методы химического анализа, если они доступны. Третий метод стандартизации основан на т уименении меченых атомов. В одном из примеров этилен, меченный С, использовали для приготовления этиленпропи-леновых сополимеров и их составы определяли из удельных активностей [34]. В другом случае стандарты для ИК-анализа тройного сополимера метилизопропенилкетона, бутадиена и акрилонитрила были приготовлены с использованием метилизопропенилкетона, меченного " С. Содержание акрилонитрила определяли по содержанию азота методом Дюма [105]. Для определения состава стандартов применяют и метод ЯМР. Методы стандартизации этиленпропиленовых сополимеров были рассмотрены в обзоре Тоси и Чиампелли [109], а Хэмптон [47] дал таблицу из 39 литературных ссылок, относящихся к методам количественного анализа полимеров. [c.267]

    Полимеры, содержащие наполнители и пластификаторы, часто готовят к съемке экстрацией растворителем [47]. Пластификаторы могут оказаться растворимыми в мягких растворителях, таких, как S2 или этиловый эфир, и их экстрагируют из измельченного полимера в аппарате Сокслета. Экстракт в S2 можно прямо перенести в ИК-спектрофотометр. От наполнителя полимер отделяется более жестким растворителем, например о-дихлорбензолом. В этом случае из раствора можно отлить пленку полимера, а спектр наполнителя получить методом прессования с КВг или методом суспензии в вазелиновом масле. Примером такого рода является количественный анализ состава поливинилхлорида [21]. [c.267]

    Полимеризация — образование полимера из мономера. Мономер — термин, имеющий смысл только по отнощению к его полимеру. Если нет полимера, нет и мономера. Однако исторически содержание, вкладываемое в понятия полимер и полимеризация, менялось. Во-нервых, как раз в области альдегидов и кетонов понятие полимеризация было противопоставлено понятию конденсация. Для конденсации (альдольной, кротоновой) характерно образование новой С— С-связи. К нолимеризации в этом узком смысле относили лишь связывание мономерных молекул неуглеродными связями в полимерную молекулу, легко подвергающуюся деполимеризации. В результате очевидного родства полиоксиметиленов с другими полимерами альдегидов и вследствие недостаточной точности обычного количественного анализа, не обнаруживающего наличия концевых групп (в нашем примере полиоксиметиленов концевые группы НО—, СН3О— или НОЗОзО—), такого рода вещества тоже начали называть полимерными, а процесс их образования — полимеризацией, и это наименование распространилось на все подобные линейные высокомолекулярные соединения, независимо от того, связаны ли мономеры углерод — углеродными или иными связями. Это ныне общепринято, хотя назвать такие линейные высокомолекулярные вещества полимерами данного мономера можно, только закрыв глаза на наличие концевых групп (часто, впрочем, строго говоря, не установленных). Так, например, полиэтилен (см. стр. 276), получаемый полимеризацией этилена в присутствии кислорода и имеющий строение НО—(СИзСНа) —ОН, называют полимером этилепа. Другими примерами линейных полимеров являются серии полигликолей, получаемых действием окиси этилепа на этиленгликоль в кислой среде (стр. 125)  [c.151]

    Цепь растет, пока случайная встреча с каким-либо анионом не оборвет ее. В нолучонном высокомолекулярном соединении с молекулярным весо ,[, равным нескольким сотням тысяч, количества находящихся на одном конце цепи молекул инициатора и закрывающих другой конец анионов исчезающе малы и по могут быть обнаружены при количественном анализе обычной точности- Вследствие малости содержания их присутствие не отражается на свойствах вещества, определяющихся целиком свойствами парафиновой цепи. При столь высоких значениях молекулярного веса полимеры с линейными молекулами проявляют свойства эластичности (см. раздел о каучуке). Так, оппаиол — химически устойчивый (в отличие от каучука) эластичный материал. [c.275]

    Количественный анализ диффузии газов в стеклооб--разных полимерах был сделан Петропулосом в ос-нойу положена модель двойной сорбции , допускающая существование двух типов сорбированных полимером молекул газа растворенных полимерной матрицей и адсорбированных в дефектах ( дырках ) полимера. [c.131]

    Применение пористых полимеров в газовой хроматографии помогло решить еще одну сложную задачу — количественного анализа аминов и алкилдиаминов. Для улучшения формы пиков аминов проводилось модифицирование полимерных сорбентов на основе стирола и дивинилбензола полизтиленимином, тетраэтиленпентамином и едким кали [1, 229, 230]. [c.139]

    В этой связи при количественном анализе расчет ведут чаще по отношению площадей характеристических пиков к площади стандартного пика. Это позволяет исключить из расчетов массу навески и уменьшить влияние факторов, В качестве внешнего стандарта применяют н-нонан для внутреннего стандарта, как правило, в образец вводят известное количество определенного полимера, который должен давать при пиролизе в основном только одно соединение. В качестве таких полимеров используют полистирол и полиметилметакрилат и выделяющийся мономер принимают за стандарт. Внутренним стандартом может быть также бензол, образующийся при пиролизе многих полимеров. Однако при введении внутреннего стандарта увеличивается продолжительность анализа и появляется опасность перекрывания характерисгических пиков пиками стандарта. [c.76]

    Для исследования полимеров метод ВЭЖХ очень удобен, особенно в осадочном варианте. Элюирование полимеров в осадочной ВЭЖХ происходит на грани между растворением и осаждением. Поскольку, полимер может перемещаться в коллоидном виде, что осложняет количественный анализ, для их элюирования в виде истинных растворов предпочтительно использование непористых сорбентов. [c.88]

    Количественный анализ особенно широко применяется в производстве и переработке полимеров для определения разнообразных низкомолекулярных веществ, входящих в их состав для установления связи между спектрами поглощения различных веществ и их химическим строением и составом [15]. Спектры поглощения наиболее распространенных веществ приведены в специальной справочной литературе [16]. С их помощью спектрофотометрически можно определить  [c.189]

    Пиролитическая газовая хроматография принята в 1977 г. в качестве стандартного метода ASTM(D 3452) для идентификации полимеров часть 1 - для индивидуальных эластомеров и часть 2 - для смесей. Применяются три различные способа пиролиза кварцевая пиролитическая трубка (500-800 С), нагреваемые электричеством платиновые филаменты (800-1200 С) и пиролизер по точке Кюри (550-650 °С). Наилучшая воспроизводимость результатов достигается при использовании пиролизера по точке Кюри этим методом с точностью 2 % были исследованы смеси изопренового, этилен-пропиленового, бутадиенового каучуков. Метод ASTM предусматривает использование любого типа образцов полимера (кроме твердых вулканизатов типа эбонита) массой от 1 до 5 мг. Все промышленные эластомеры характеризуются отчетливой пирограммой, при анализе смесей полимеров требуется использование пирограмм стандартов. Для точного количественного анализа любой композиции необходимы как минимум три (или более) известные смеси с соотношением компонентов от, 80/20 до 20/80. Изменение соотношения интенсивностей пиков пиро- ] граммы позволяет рассчитать содержание полимеров в смеси. [c.564]

    При исследовании условий этерификации выяснилось, что образование эфира, например пальмитиновой кислоты, в смеси 9 1 (по объему) этилового эфира и метанола полностью завершается за 10 мин [91]. При этом метанол, очевидно, действует как катализатор, поскольку значение молярной удельной радиоактивности получаемого эфира хорошо согласуется с молярной радиоактивностью меченого НСА. Это наглядно свидетельствует в пользу применения СНгЫг в качестве радиореагента для количественного анализа в присутствии метанола. В эфире или метаноле, взятых в отдельности, реакции не завершались и за 30 мин. Увеличение продолжительности реакции нежелательно, поскольку оно ведет к образованию примесей, например полимера ( СНг) , что приводит к помутнению раствора или появлению в нем хлопьев. [c.153]

    Качественное исследование сополимеров относительно просто, если гомополимеры существенно различаются по растворимости например, если один сополимер растворяется в бензоле, а другой нет. В этом случае одну пробу предполагаемого сополимера экстрагируют бензолом, а вторую пробу — растворителем второго гомополимера. Если таким образом не удается проэкстрагировать чистые гомополимеры, то исходный образец — истинный сополимер. Разумеется, экстракция должна быть проведена очень тщательно и повторена несколько раз, так как смеси полимеров обычно трудно разделить экстрагированием [125]. Если соответствующие го)Мопо-лимеры не различаются существенно по растворимости, то иногда такое различие можно создать путем химических превращений, например омылением сополимеров винилацетата, акрилатов или метакрилатов, эпоксидированием или гидроксилированием диенов. Качественное исследование сополимеров значительно осложняется, если невозможно использовать различие в растворимости гомополимеров. В этом случае определяют другие физические константы предполагаемых сополимеров (например, температуры размягчения и плавления, плотность, степень кристалличности) и сравнивают их с соответствующими значениями для смесей гомополимеров разного состава. Часто сополимеры можно отличить от смесей гомополимеров, проводя качественный и количественный анализ продуктов пиролиза (см. раздел 2.3.8). [c.95]

    В аналитической химии полимеров широко применяют оба метода, иногда их сочетание, используя спектрофотометрию для предварительного изучения спектрофотометрических характеристик химических соединений при выборе условий количественного анализа, который затем выполняется фотометрическим методом с помощью фотоэлектроколориметров. Непосредственное определение веществ в растворах после проведения цветной реакции или без нее обычно осуществляют визуальным или фотоэлектрическим способом. Оба способа требуют сравнения интенсивности поглощения определяемого вещества с рядом этало- [c.23]

    Большой экспериментальный материал и теоретические расчеты позволили выделить ряд характеристических частот для определения атомных групп в сложных молекулах (карбоксильных, гидроксильных, амидных, эпоксидных и др.). Эти частоты сохраняются при переходе от одних молекул к другим. Наличие полос поглоп ения при определенных частотах в спектре полимера даст возможность судить о функциональных группах, входящих в его молекулу, а изменение интенсивности этих полос позволяет проводить количественный анализ. [c.27]

    Исследована зависимость скорости термоокислительного старения полифениленоксида от молекулярной массы полимера и от примесей соединений металлов переменной валентности с применением дифференциально-термического и термогравиметрического методов анализа [119]. Молекулярную массу полимера определяли вискозиметрически, содержание меди и железа в золе — методом эмиссионного количественного анализа. [c.142]


Смотреть страницы где упоминается термин Полимеры количественный анализ: [c.357]    [c.6]    [c.189]    [c.268]    [c.62]    [c.71]    [c.558]    [c.117]   
Прикладная ИК-спектроскопия (1982) -- [ c.266 ]

Прикладная ИК-спектроскопия Основы, техника, аналитическое применение (1982) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ количественный



© 2024 chem21.info Реклама на сайте