Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обратимое восстановление катализатора ВН

    Обычно промежуточное соединение возникает в результате относительно быстрой обратимой реакции и постепенно распадается с восстановлением катализатора. В связи с этим в реакции (У1П-98) может установиться равновесие, т. е. справедливой будет зависимость  [c.228]

    И, наконец, объясняя свои главные реакции — дегидрогенизацию спиртов посредством окисления — восстановления катализатора, Ипатьев разработал важные принципы восстановительного и окислительного катализа как обратимого явления со всеми следствиями, вытекающими отсюда, в том числе идентичностью катализаторов для реакций гидро- и дегидрогенизации, окисления и восстановления и т. д. 4, стр. 570—579]. [c.129]


    Необратимое отравление, как следует из самого названия, в общем случае не дает возможность осуществить регенерацию. Примером необратимого отравления катализатора является отравление соединениями серы восстановленного никелевого катализатора. Даже в этом случае были попытки регенерации катализатора. В работе [9.1] показано, что адсорбция НзЗ на никелевом катализаторе, нанесенном на подложку, фактически является обратимой со степенью покрытия, зависящей от отношения Р(Н28)/Р(Н2). Однако вопреки фактической обратимости отравленные катализаторы трудно регенерировать. Пары воды не влияют на хемосорбционное равновесие [9.2], ио обработка паром при температурах 600—650°С может удалить серу из непромотированного катализатора путем полного окисления никеля. В случае обычного никелевого катализатора, промотированного щелочными металлами, обработка паром переводит серу в сульфат щелочного металла. Так как последний устойчив, то регенерация катализатора этого типа затрудни- [c.204]

    По мере эксплуатации катализатора под воздействием реакционной среды и температуры происходит рекристаллизация активного компонента, что также вызывает снижение каталитической активности. Дезактивацию такого рода можно рассматривать как обратимую, активность частично восстанавливается при окислении и восстановлении катализатора в мягких условиях при температуре 200—250 °С. [c.145]

    Обратимое отравляющее действие воды было проверено в опыте 4 с принудительным увлажнением катализатора. Этот опыт был проведен с гексаном в отличие от других опытов в настоящем исследовании, которые были выполнены с гептаном На катализаторе в течение 1 часа проводили ароматизацию н-гексана, и когда содержание бензола в катализате стабилизировалось, катализатор продували в течение 10 мин. сухим азотом, насыщенным при комнатной температуре водяным паром. Скорость азота подбирали так, чтобы количество воды, нанесенной на катализатор в токе азота, примерно отвечало количеству воды, которое выделяется во время восстановления катализатора. [c.367]

    Под регенерационной характеристикой обычно подразумевают способность катализаторов к быстрому восстановлению обратимо потерянной активности путем выжига с их поверхности коксовых отложений. Определение этого показателя качества представляет практический интерес только для катализаторов, работающих с весьма короткими циклами реакции и регенерации, в частности для катализаторов крекинга. Обычно для этой цели снимают кинетические кривые выгорания кокса в стандартных условиях регенерации. [c.141]


    Другае авторы связывают изменение активности алюмохромовых катализаторов со степенью дегидратации поверхности, которая также меняется как в процессе дегидрирования бутана, так и при окислительной регенерации [113, 114]. В процессе дегидрирования Сг " восстанавливается. Пары воды, образующиеся при восстановлении, вызывают обратимое отравление поверхности [95, 113]. Окисленная поверхность алюмохромового катализатора является более чувствительной к отравляющему действию воды, чем восстановленная . Полная дезактивация восстановленного оксида хрома(П1) парами воды наступала при покрытии 15% поверхности катализатора, а полное отравление окисленного оксида хрома(П1) отмечено уже при экранировании 2% поверхности [c.49]

    На рис. 1.2 приведено изменение состава этого катализатора во времени [4]. Активные компоненты ванадиевых катализаторов — сульфованадаты щелочных металлов, покрывающие жидкой пленкой поверхность кремнеземистого носителя. При увеличении содержания в реакционной смеси ЗОг и снижении температуры возрастает степень восстановления до Эти изменения обратимы и характеризуются малым временем релаксации. Наряду с ними при длительном воздействии на катализатор реакционной смеси, богатой ЗОа, при пониженных температурах появляется четырехвалентный ванадий в кристаллическом состоянии, обнаруживаемый по форме сигнала ЭПР (см. рис. 1.1, линия 2) и при помощи электронной микроскопии. Содержание ванадия в этой форме коррелирует с уменьшением каталитической активности (см. рис. 1.2). Эти изменения характеризуются большим временем релаксации. [c.9]

    Образование кокса и его отложение на катализаторе является нежелательной реакцией при крекинге углеводородного сырья, способствующей обратимой неравновесной дезактивации катализатора. В то же время тепло, выделяющееся в регенераторе при окислении кокса с целью восстановления активности катализатора, необходимо для обеспечения теплового баланса в системе. Кроме того, образующийся кокс в некоторой степени участвует в реакциях перераспределения водорода, важных для получения бензина высокого качества [1, 12, 99]. Развитие технологии каталитического крекинга характеризуется непрерывным уменьшением выхода кокса с целью достижения уровня, требуемого только для поддержания теплового баланса при полном окислении в СО . Этапы этого развития [27], показанные на рис. 4,38, свидетельствуют [c.142]

    Многие органические соединения при нагревании в присутствии катализаторов способны выделять водород, превращаясь при этом в ненасыщенные соединения. Такой процесс называют дегидрированием. В силу обратимости каталитических реакций он противоположен, реакциям гидрирования. В зависимости от условий опыта между гидрированием и дегидрированием существует динамическое равновесие, смещению которого способствуют различные факторы в первую очередь температура и давление. Экзотермические реак ции гидрирования протекают при сравнительно низких температурах повышение давления сказывается положительно. Дегидрирование связанное с поглощением пепла (эндотермическая реакция), уско ряется при более высоких температурах, повышенные давления тормозят процесс. Для дегидрирования пригодны обычные гидрирующие катализаторы, но восстановленные при более высоких температурах. Установлено, что гидрирующие катализаторы (N1, Со, Си) можно превратить в активные дегидрирующие путем дезактивирующих добавок, что позволяет им быть активными при более высоких температурах (до 400—500°). [c.251]

    Окислительно-восстановительный катализ в органической химии протекает в присутствии ионов металлов, способных к обратимому изменению валентного состояния. Ион-катализатор ускоряет реакцию, если в восстановленной форме он реагирует с окислителем, а в окисленной - с восстановителем быстрее, чем протекает некатализируемая окислительно-восстановительная реакция. В качестве примеров можно привести высыхание масел под воздействием добавок солей тяжелых металлов, автоокисление спиртов и аминов в присутствии солей меди, марганца, кобальта и железа. [c.238]

    Как видно, восстановление водородом на катализаторе — гомолитический процесс. Существенно также, что эта, реакция обратима. Прямая реакция — гидрирование — всегда экзотермична и ее тепловой эффект, например для превращения нитробензола в анилин достигает 435 кДж/моль. Реакция идет с уменьшением объема, поэтому ее проводят при сравнительно невысоких температурах и под давлением. Напротив того, дегидрирование ведут при сравнительно высокой температуре и часто при атмосферном давлении или даже в вакууме. [c.295]

    Ион меди играет роль переносчика электронов. Таким образом, становится понятным, что при введении легко окисляющихся или обратимо окисляющихся заместителей катализатор Зандмейера становится излишним. Так обстоит дело, например, с иодид-ионом, который в известной мере является катализатором процесса, в котором сам участвует. То же можно сказать и об арсенитной группе, при введении которой происходит окисление без обратного восстановления, так что получается ариларсоновая кислс та. Приводимые ниже схемы показывают имеющиеся в данном направлении возможности  [c.238]


    Скорость гидрирования возрастает с увеличением давления водорода, причем в неодинаковой степени для разных соединений или восстанавливающихся групп. Для повышения селективности реакции следует избегать излишне высокого давления. Например, представленное выше восстановление нафталина в тетралин и декалин удалось направленно осуществить на никелевом катализаторе при одной и той же температуре (200 °С), изменяя лишь давление водорода от 5-15 до 40 атм. Вместе с тем высокотемпературные процессы, такие как гидрирование сложных эфиров на хромите меди, могут быть обратимыми. Температура и давление влияют на положение равновесия в этом случае противоположно для его смещения вправо требуется повышение давления и понижение температуры (экзотермическая реакция с уменьшением объема реакционной смеси)  [c.37]

    Восстановление представляет собой реакцию, обратную окислению. Другими словами, многие реакции окисления в органической химии обратимы, если их проводить в подходящей восстановительной среде. Так, окисление спиртов в альдегиды можно провести в обратном направлении, получая из альдегидов спирты путем восстановления альдегидов цинком в кислом растворе. Молекулярный водород служит прекрасным восстановителем для двойных углерод-углеродных связей. Подобные реакции часто проводят при высоких температурах в присутствии катализатора [c.463]

    Реакция дегидрирования бутана обратима и протекает с увеличением объема. Согласно принципу Ле-Шателье, понижение давления благоприятно влияет на процесс дегидрирования. На практике для упрощения его проводят под атмосферным давлением при 550—575 °С в присутствии алюмохромового катализатора. Активность катализатора понижается вследствие отложения на его поверхности углеродсодержащих соединений, образующихся в результате протекания побочных процессов глубокой деструкции углеводорода. Для восстановления активности катализатора его часто подвергают регенерации путем продувки воздухом, предварительно смешанным с топочными газами. [c.142]

    СЗз) в водяном или полуводяной газе приводит к отравлению этого катализатора. Однако это отравление легко обратимо, поэтому исключение сероводорода из газа или увеличение расхода пара приводит к восстановлению активности катализатора. [c.231]

    Соединения, содерл<ащие серу, отравляют катализатор обратимо. Недопустимо попадание на поверхность катализатора пы- ли, ржавчины и смазочного масла от компрессора. Для получения аммиачно-воздущной смеси применяется исключительно синтетический аммиак, как более чистый по сравнению с коксовым аммиаком. Воздух обычно берется не с территории завода, где в его состав могут попадать различные газообразные соединения и твердые взвеси, а подводится через заборную трубу, установленную вне завода, и тем не менее перед контактным аппаратом воздух тщательно очищается. Несмотря на принимаемые меры по очистке аммиачно-воздушной смеси от вредных примесей, небольшое количество их проходит в контактный аппарат, при этом постепенно активность катализатора снижается. Для восстановления активности катализатора его промывают слабыми растворами соляной и азотной кислот. [c.257]

    Цель. Регенерация — процесс восстановления первоначальной активности путем тщательного удаления накопленных коксоот-ложений. Следует предусмотреть меры, предотвращающие обратимое отравление катализатора в ходе регенерации, если установку выключают до устранения причин дезактивации. [c.154]

    Каталнзатор выпускается в восстановленной форме. При пуске загруженного катализатором реактора нагрев до рабочей температуры проводится со скоростью 10—15 С/ч. Параметры процесса синтеза метанола температура — 320—390 С давление — 24,5—39 МПа объемная скорость подачи сырья — 20 ООО— 40 000 ч 1. Степень превращения окиси углерода за один проход равна 15—30%. Ядами являются сернистые соединения, вызывающие обратимое отравление катализатора. Катализатор не регенерируется. [c.418]

    Определение числа АЦ с помощью меченого ингибитора (метанола, содержащего тритий) в катализаторе Ti l4/M.gO показало, что активными в полимеризации являются 21—23% всех атомов Т1 [95], в то время как в катализаторах Циглера — Натта в сопоставимых уело-ВИЯХ только 0,5—5%. Многие авторы процесс дезактивации катализаторов Циглера — Натта связывают с не обратимым восстановлением переходного металла в каталитическом комплексе, содержащем активную связь Ме—С, которая образуется при алкилировании металла переменной валентности [99, 100]  [c.88]

    Помимо указанных реакций при гидрировании происходит восстановление металлорганических и кислородных соединений, а также соединений, содержащих основный азот. Последние являются каталитическими ядами, вызывающими обратимую дезактивацию катализаторов крекинга 36]. Содержащиеся в сырье крекинга металлы — железо, никель, ванадий и медь — отлагаются на поверхности катализатора, резко снижая его избирательность, и таким образом способствуют увеличению выхода газа и кокса и снижению выхода бензина [33, 35]. В отличие от отравления основным азотом, которое полностью устраняется при регенерации катализатора, дезактивация металлами необратима. Отравление металлами до известной степени уменьшается при старении катализатора в результате дезактиьации каталитически действующих отложений металлов и разбавления дезактивирозанного катализатора добавками свежего катализатора, но при высоком содержании металлов в сырье крекинга структура выходов заметно ухудшается. Расход водорода для удаления этих примесей гидрированием, существенно повышающим качество сырья крекинга, незначителен. [c.203]

    Другие исследователи [247, 280, 283] считают, что эффективность катализаторов-переносчиков определяется скоростью их диффузии. Согласно представлениям Антропова и Жищенко [253, 280] окисление (или восстановление) катализатора на электродах протекает обратимо, следовательно, с большой скоростью. Реакция между катализатором и органическим веществом тоже идет во многих случаях с достаточной скоростью. По мнению авторов, вероятнее всего скорость всего процесса определяется скоростью подхода катализатора к веществу и электроду. На основании этого предположения было выведено уравнение  [c.560]

    Катализаторы и их роль в процессе синтеза аммиака. В качестве катализаторов при синтезе аммиака из элементов испытаны железо, марганец, осмий, вольфрам и др. Но многие из них в заводской практике оказались мало пригодными. Удовлетворяющим предъявляемым требованиям катализатором оказалось металлическое железо, промотированное окислами калия и алюминия, длительно сохраняющее активность. Железный катализатор может быть получен следующим образом. Расплавленную массу железа с соответствующими добавками окисляют в токе кислорода. Затем полученную массу дробят, просеивают, отбирают зерна с диаметром 4—6 и 8—10 мм, загружают в контактный аппарат и восстанавливают азотно-водородной смесью. Восстановленный катализатор обладает достаточно развитой по-верхносрью. Его качество зависит от чистоты исходного сырья. С введением в катализатор окиси кальция повышается его термостойкость, важное свойство при синтезе аммиака. Активность железного катализатора ограничивается пределом от 450 до 575—600° С. При более высокой температуре он быстро теряет активность. В значительной степени железный катализатор чувствителен к ядам, содержащимся в газовой смеси. Даже ничтожно малые количества их, отравляя катализатор, резко снижают выход аммиака. К каталитическим ядам относятся сероводород и другие сернистые соединения, отравляющие его необратимо, а также кислород и кислородсодержащие соединения — окись углерода, водяные пары и т. п., отравляющие обратимо. Особенно резко снижается активность катализатора при низких температурах. [c.87]

    Наконец, при обратимой дезактивации катализатора необходимо периодическое восстановление его активности. Это возможно либо выводом дезактивированного катализатора из реактора и его регенерацией в отдельном аппарате, либо использованием системы из двух реакторов, в которой один находится в работе, а во втором в это время осушес-твляется регенерация катализатора (как, например, выжигание кокса в процессах каталитического крекинга или дегидрирования). [c.32]

    В недавно опубликованном исследовании [1] было найдено, что наблюдающаяся при ароматизации н-гексана разработка алюмохромокалиевого катализатора продолжается дольше, чем восстановление шестивалентного хрома, который всегда присутствует в хромовых катализаторах, подвергшихся регенерации воздухом. Там же было высказано предположение, что одна из причин отмеченного явления разработки заключается в обратимом отравлении катализатора парами воды, образующейся при окислении углеводорода кислородными соединениями Сг +. Это предположение нуждалось в экспериментальной проверке, что и явилось целью настоящего исследования. [c.364]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]

    Каков бы НИ был механизм, для активных центров катализаторов наиболее вероятны обратимые изменения координаций без изменения степени окисления центрального катиона. Одновременное изменение координационного числа и степени окисления, вероятно, связано с более значительными изменениями ЭСКП. Из рис. И.1 ясно, например, что октаэдрическая симметрия благоприятствует конфигурациям или а и, следовательно, окислению катионов й или сР и восстановлению катионов или (Р. [c.24]

    ЦИИ дегидрирования и гидрирования. При небольших дозировках и относительно непродолжительном воздействии отравление серой обратимо. При длительном воздействии сернистых соединений происходит закоксовывание катализатора, и для восстановления его активности требуется окислительная регенерация. (Следует отметить, что дозированная обработка платинорение-вых и платиноиридиевых катализаторов сернистыми соединениями в пусковой период является необходимым элементом технологии риформинга и используется для подавления реакций гидрогенолиза.) [c.122]

    Показано [196], что повышенпе температуры от 300 до 500 °С при обработке водородом катализатора Pt/AljO (предварительно восстановлен 500 С, затем окислен 0,j 450 °С), приводит к значи-тельно.му снижению хемосорбционной емкости платины по водороду, измеряемой отношением Н Pt. Размер кристаллов платины при это.м не увеличивается, что было установлено с помощью электронной микроскопии. Явление это, однако, обратимо, и первоначальное значение Н Pt можно получить, обработав катализатор кислородом при 450 X и проведя восстановление водородо.м при 30Q X. Снижение хемосорбционной емкости платины объясняют образованием сплава платины с алюминием, а ее восстановление разрушением этого сплава [c.86]

    Регенерация контактных масс столь же специфична, как и их отравление. Из возможных путей восстановления активности контактных масс наиболее существенными являются следующие [30]. Во-первых, летучий яд может быть удален с поверхности катализатора током чистого газа, жидкости или повыщением темйера-туры. Так, в реакции синтеза аммиака на железном катализаторе кислород и его соединения (НгО, СО) отравляют катализатор обратимо при действии очищенной смеси N2 + Нг яд вытесняется с активных центров и отравление снимается. Во-вторых, при химическом взаимодействии с реагентами яд может перейти в нетоксическую, слабо адсорбированную форму. Например, при разложении НгОг восстановление активности платины, отравленной окисью углерода, происходит выделяющимся при реакции кислородом, который окисляет адсорбированную СО до СОг. [c.69]

    В настоящее время получили широкое распространение щелочные варки с катализаторами типа антрахинона и его производных. Положительный эффект, достигаемый при добавке антрахинона в каталитических количествах (около 0,1 % от массы древесины), заключается в повышении выхода целлюлозы и ускорении делигнификации. Этот эффект наблюдается при натронной, сульфатной, полисульфидной и щелочно-сульфитной варках. Такую высокую эффективность антрахинона объясняют образованием в щелочном растворе окислительно-восстановительной системы (схема 13.8, а). Антрахинон (АХ) обратимо восстанавливается в антра-гидрохинон (9,10-дигидроксиантрацен)(АГХ). В щелочном растворе присутствуют две основные восстановленные формы катализатора дианион антрагидрохинона (АГХ и анион-радикал антрасемихинон (АСХ ). [c.481]

    Интенсивное изучение биологических катализаторов дало возможность составить целостное представление об этих, по сути, наиболее важньгх структурах живой материй. В частности, было установлено, что все ферменты являются макромолекулами белковой природы. (Каталитическая активность специфичных полинуклеотидов, принимающих участие в сплайсинге РНК, является исключением, подтверждающим общее правило.) Первостепенное значение для функций ферментов имеет первичная структура, определяющая тип катализируемых реакций. Гидролиз пептидных связей трипсином или пепсином необратимо инактивирует ферменты. Для проявления каталитического действия большое значение имеет также нативность высших белковых структур (гл. 3). Обратимая денатурация является фактором подавления или восстановления ферментативной активности. Физико-химические свойства ферментов соответствуют таковым для белков, причем заряд играет существенное значение для каталитического акта. Молекулярные массы ферментов лежат в пределах от 10 до 1000 kDa и более, т. е. в большинстве случаев фермент по размерам гораздо больше, чем субстрат. [c.61]

    С участием свободных радикалов, адсорбированных на поверхности. Гейлорд и Марк [96] предложили механизм разматывания мономеров, координирующихся вокруг иона титана. Хотя все это и объясняет частично ориентацию хвост к хвосту мономера Hz = HR при его присоединении к растущему полимерному радикалу, однако трудно понять, каким образом вступающие HR-грунпы ориентируются к уже имеющейся в полимере HR-rpynne, если группы R не связаны определенным образом с центрами, адсорбирующими — СНа -группы в мономере и полимере. Уэлзманн [87] предложил схему, которая отчасти удовлетворяет этому требованию, постулировав образование водородной связи между метильным углеродом пропилена и ионами хлора поверхности катализатора с мономером, активированным на ионе титана, и полимером, удерживаемым алюминиевым комплексом. Очевидно, необходима по крайней мере какая-то трехцентровая конфигурация, чтобы мономер входил в полимер в такой ориентации, которая дает изотактическую структуру. Может оказаться, что эта конфигурация является свойством комплекса катализатор — сокатализатор или свойством одного или обоих этих компонентов, адсорбированных в определенном соотношении на поверхности, например, восстановленного кристалла галогенида металла. Как и для всех каталитически активных поверхностей, эта адсорбция должна быть не слишком прочной и обратимой. [c.438]

    На рис. 1 представлены кинетические и потенциометрические кривые восстановления нитробензола, нитрозобензола и их смесей на ске-летном> никелевом катализаторе в 0,1 н. растворе NaOH в 50%-ном спирте при 25°С. Кинетическая кривая восстановления нитробензола (кривая /) проходила через минимум и максимум. Потенциал катализатора после внесения навески нитробензола смещается в анодную сторону на 380 мв. и не изменяется до тех пор, пока скорость восстанов-, ления не начнет расти. Возрастание скорости реакции сопровождается резким сдвигом потенциала, катализатора на 180—200 мв в катодную область. Участку почти постоянной максимальной Kopo jn соответствует участок. относительно мало изменяющегося потенциала катализатора. К концу опыта э. д. с. возвращается к исходному значению, соответствующему обратимому водородному потенциалу. [c.371]

    Было установлено, что губчатый палладий при длительном хранении в атмосфере водорода при обыкновенных температурах или кратковременной обработке водородом (— 2 часов) при 300—350° С в зависимости от режима обработки частично или полностью дезактивируется. Такая дезактивация является обратимой, и при удалении поглощенного палладием водорода активность катализатора вновь возрастает. Полнота восстановления активности катализатора зависит от полноты удаления водорода из палладия. Удаление его может быть произведено изменением режима хранения палладия в атмосфере водорода, гидрированием бензола на дезактивированном водородом палладии или обработкой такого пайла да воздухом. Было высказано мнение, что уменьшение или полное исчезновение активности палладия при растворении в нем водорода следует объяснить заполнением 5 — -электронных уровней палладия, оставшихся свободными после образования кристаллического пйлладия из атомов палладия в результате перераспределения 5 и 4(/-электронов, аналогично тому, как объясняется исчезновение парамагнетизма палладия при растворении в нем бодорода [1]. Если такое предположение верно, то взедение в Р(1 серебра, меди и золота также должно было привести к снижению и полному уничтожению каталитической активности палладия. Такой вывод напрашивался потому, что при введении этих металлов в Рс1, по мере увеличения их содержания в соответствующих системах, парамагнетизм системы снижается и наконец достигает нуля (при 53— 55 ат.% Ад, Си или Аи). Подробно часть соответствующих материалов опубликована в работах [10]. Наиболее общим выводом из этих работ является то, что по мере увеличения содержания серебра и/меди в Рс1-А и Рд-С Ц каз ализаторах,, катадатическая активность последних уменьшается, и при содержаний 65—70 ат. % Ад или Си в Р(1-Ад и Рб-Сй твердых растворах достигает нуля . Эти результаты приведены в виде кривых на рис. 2. Нам не удалось определить магнитные восприимчивости, наших катализаторов, и мы вынуждены пользоваться данными о магнитных свойствах изученных нами систем по литературным данным. Отдавая себе отчет в недостатках такого метода сравнения, тем не менее следует указать, что по мере увеличения Ag и Си в соответствующих твердых растворах парамагнетизм их постепенно снижается и достигает минимума при 53— 55 ат.% Ag и Си. Такое совпадение следует считать хорошим, учитывая методику пашей работы. [c.130]

    Различные органические амины, диамины, гидразин этилендиамин, пентаметилендиамин слабо влияют на скорость реакции цистин не влияет присутствие групп, способных к обратимому окислению—восстановлению, значительно увеличивает активность катализатора например I) р-фени-лендиамин и 2) ЛГ,Л -диметил-р-фенилендиамин первый имеет ббльшую каталитическую активность, чем второй в отношении гидрохлорида анилина, диметиланилина, дифениламина, тетра-метилдиаминодифенилметана, толидина, бензидина, аминоазобензола и р-аминофенола было найдено меньшее влияние на скорость реакции и это приводит к заключению, что каталитическая активность уменьшается, если присутствует одна аминогруппа или если расстояние между двумя аминогруппами становится больше диаметра бензольного цикла, даже когда соединение содержит обратимо окисляющуюся и восстанавливающуюся систему [c.229]


Смотреть страницы где упоминается термин Обратимое восстановление катализатора ВН: [c.391]    [c.446]    [c.127]    [c.655]    [c.339]    [c.187]    [c.383]    [c.44]    [c.375]    [c.168]   
Смотреть главы в:

Основы полярографии -> Обратимое восстановление катализатора ВН




ПОИСК





Смотрите так же термины и статьи:

Катализаторы обратимое



© 2024 chem21.info Реклама на сайте