Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции в статических системах

    Первый способ состоит в приведении дифференциальных кинетических уравнений к системе нелинейных алгебраических уравнений с последующей минимизацией среднеквадратичного критерия одним из методов нелинейного программирования, что в терминах теории динамических систем означает сведение динамической задачи идентификации к статической задаче наблюдения. При этом оперирование со скоростями химических реакций как с параметрами в статической задаче наблюдения осложняется значительными ошибками, неизбежно возникающими нри экспериментальном определении скоростей химических реакций. [c.461]


    Необходимо еще раз подчеркнуть, что мезомерия отражает распределение электроиов в молекуле, а не их движение. Это (статическое) распределение электронов характеризует прежде всего энергию основного состояния молекулы (низкий энергетический уровень). Однако прн химической реакции электроны должны быть определенным образом перегруппированы, и в этом случае мезомерия не может уже ничего объяснить. Для этого надо оценивать поляризуемость ) данной электронной системы, которая характеризует подвижность электронов (т. е. является динамической величиной). [c.203]

    Система уравнений (2) содержит дифференциальные уравнения материальных балансов и диффузии газообразных веществ, следовательно, математическая модель отражает динамические свойства гетерогенной химической реакции. При т = оо, когда производные параметров по времени равны нулю, математическая модель описывает зависимость между параметрами процесса в стационарных условиях, т. е. статические свойства процесса. [c.332]

    Таким образом, вдали от равновесия действительно могут возникать неустойчивые состояния диссипативной системы. Появление неустойчивости в некотором исходном состоянии означает переход системы в новый режим, которому может отвечать иной тип поведения. Допустим, что имеется нелинейная система химических реакций, в ходе которых исходные вещества А превращаются в конечные продукты Г. Систему можно охарактеризовать некоторым параметром Д, зависящим от общего сродства, т. е. от отношения концентраций А и и от константы равновесия. На рис. 9.4 стационарная концентрация промежуточного вещества представлена как функция Я. При малых отклонениях от равновесия Д— система перемещается плавно вдоль термодинамической (статической) ветви АВ на рис. 9.4. Все стационарные состояния на этой ветви устойчивы и согласуются с теоремой о минимумах производства энтропии. Однако на достаточно большом удалении от равновесия, при некотором пороговом значении Не избыточная продукция энтропии, равная [c.330]

    ХИМИЧЕСКИЕ РЕАКЦИИ В СТАТИЧЕСКИХ СИСТЕМАХ [c.194]

    Метод ударной трубы является одним из наиболее мощных в современной химической физике и предназначен для исследования быстрых процессов в газовой фазе. Особенно наглядно проявляются его преимущества при изучении процессов в режиме высоких температур, недоступных в статических лабораторных установках. В сочетании с разнообразными методами диагностики ударная труба позволяет изучать физико-химиче-ские превращения в широком диапазоне времен от 10 до 10 с. Описание ударных волн как метода исследования химических реакций появилось в литературе в 50—60-х годах нашего столетия. Методики измерений и наиболее важные экспериментальные результаты изложены в превосходных книгах [1] и обзорных статьях [2—4]. Даже несмотря на некоторую газодинамическую неидеальность потока за ударной волной, которой в последние годы уделяется большое внимание и которую при корректной постановке эксперимента необходимо учитывать, в настоящее время ударные трубы являются прекрасно зарекомендовавшим себя способом получения информации о скоростях высокотемпературных химических реакций в газовых системах. [c.108]


    В настоящее время имеется большая литература о гидродинамике и теплообмене при наличии химических реакций (например, [1,2]). В подавляющем большинстве этих работ рассматривается вопрос о том, как влияют эндо-или экзотермические реакции на обтекание потоком сравнительно высокотемпературных газов или жидкостей твердого препятствия, теплообмен в пограничном слое, истечение из сопла и т. п. При этом реальные конечные скорости химических реакций обычно не рассматриваются. Имеются и сравнительно немногочисленные работы по кинетике химических реакций прп высоких температурах, но либо в статических условиях, либо в потоке, изменение гидродинамических и температурных параметров которого не рассматривается (например, [3, 4]). В то же время для понимания химических процессов в плазменных струях и управления ими необходимо знать изменение во времени и пространстве концентраций отдельных компонентов с, реакций (при конечных скоростях реакций), скорости V и средней температуры Т струн. Поэтому следует ставить такую задачу, решение которой дало бы зависимости С = ср/(г) (/ = 1,. . . , п), и = Т = /2(0. Для этого требуется система уравнений гидродинамики при наличии химических реакций и решение ее относительно переменных V, Т, с/. [c.12]

    Поляризуемость системы по крайней мере так же важна для определения места и направления химической реакции, как статические эффекты. К сожалению, до сих пор не существует символа, с помощью которого можно было бы отражать в формулах поляризуемость. Для обозначения динамических влияний пока используются те же изогнутые стрелки, которые служат для обозначения мезомерных эффектов. Мы будем пользоваться этим, вообще говоря, неудовлетворительным и двусмысленным способом изображения. При этом выходящая за конец молекулы изогнутая стрелка будет указывать на поляризацию в процессе химической реакции, т. е. будет означать движение электронов. (См., например, (6,2), стр. 241.) [c.94]

    Когда вещества, содержащие сопряженные двойные связи, вступают в реакции, то наряду со статическим эффектом сопряжения проявляется также динамический эффект сопряжения, который играет обычно большую роль. Он выражается в перераспределении электронной плотности в системе с сопряженными связями (поляризуемость) в момент химической реакции под влиянием атакующего реагента. Так как динамические влияния в молекулах с сопряженными связями, по-видимому, ведут к тем же следствиям для реакционной способности вещества, как и статические, и так как их обычно нелегко отличить от статических, нх также изображают изогнутыми стрелками. Примером реакции, в которой проявляется динамическое сопряжение, может служить взаимодействие галоидоводородных кислот с бутадиеном, молекула которого неполярна  [c.56]

    Когда вещества, содержащие сопряженные двойные связи, вступают в реакции, то наряду со статическим эффектом сопряжения (см, стр. 139) проявляется также динамический эффект сопряжения, который обычно играет преобладающую роль. Он выражается в перераспределении электронной плотности в системе (поляризуемость молекулы) в момент химической реакции под влиянием атакующего реагента. Динамический эффект в молекулах с сопряженными связями, по-видимому, оказывает такое же влияние на реакционную способность вещества, как и статический эффект, и обычно их нелегко различить. Поэтому динамическое влияние также изображают изогнутыми стрелками. [c.450]

    Представление о времени внедрялось в химию медленнее. Это объяснялось двумя причинами во-первых, тем, что статическое изучение вещества, как уже отмечалось, исторически предшествовало исследованиям механизмов реакций, динамики во-вторых, учения о ходе химических реакций во времени — кинетика, теория переходных состояний, промежуточных стадий — возникли и развивались позднее. В. Оствальд еще в конце XIX в. заметил по поводу медленного внедрения в химию фактора времени Кинетика разработана значительно менее, чем статика. Причину этого следует искать в том, что в кинетике приходится принимать во внимание элемент времени, и потому в ней сравнительно со статикой одной переменной больше этим обусловливается большая сложность задач кинетики . Однако он тут же подчеркивал мысль о преобладании в будущем развития кинетики, ибо, по его мнению, путь химического процесса представляет более широкое поле для исследований о свойстве химической системы 2. [c.45]

    При обсуждении вопросов химического равновесия в гл. 11 указывалось, что система, находящаяся в химическом равновесии, не является статической, ибо химические реакции в ней протекают в прямом и обратном направлениях с равными скоростями, благодаря чему количества различных веществ, составляющих данную систему, остаются постоянными. Вначале полагали, что опытным путем невозможно определить скорости, с которыми протекают различные химические реакции при рав- [c.735]


    Следовательно, в полярографии, как и вообще в химических реакциях, наряду со статической поляризацией —полярностью большую роль играет динамическая поляризация — поляризуемость молекулы или отдельных ее частей. Последняя состоит в том, что под влиянием поля электрода в молекуле происходит, особенно при наличии системы сопряженных связей, перераспределение электронной плотности, и появляются места (атомы или группы атомов) с наведенным тем или иным способом положи- [c.10]

    Хотя фундаментальная роль гидрофобных взаимодействий связана с химическими процессами в клетках живых организмов, экспериментальное изучение этих эффектов проводится почти исключительно на модельных системах в статических условиях (т. е. в системах без химических реакций). Такое положение выглядит несколько парадоксальным и связано, скорее всего, с тем, что условия проведения той или иной реакции (необходимость поддержания определенных значений pH, ионной силы, введение катализатора и т. п.) делают зачастую крайне затруднительным выделение отдельных эффектов, в частности, эффекта гидрофобных взаимодействий. В предыдущих разделах говорилось, правда, о роли гидрофобной гидратации основного и переходного состояний. Однако работ, в которых бы изучалось непосредственно влияние неполярных радикалов взаимодействующих молекул на механизм и скорость [c.185]

    Система уравнений (1-43) включает дифференциальные уравнения материальных балансов и диффузии газообразных веществ следовательно, построенная на основе этой системы математическая модель элементарного процесса отражает динамические свойства протекания гетерогенной химической реакции в нестационарных условиях. При т->-сх), когда производные параметров по времени равны нулю, математическая модель описывает зависимость между параметрами процесса в стационарных условиях, т. е. статические свойства процесса. [c.48]

    Таким образом, статическую математическую модель процесса, в котором протекает гетерогенная химическая реакция (П-133), можно представить системой двух выражений — (П-134) и (П-136). Заметим, что если реакция (П-133) является гомогенной, то изменится лишь вид выражения (П-134). [c.153]

    Совместное использование химической реакции и адсорбции характерно и для методов очистки, применявшихся ранее. Однако в отличие от последних разделение адсорбционно-комплексообразовательным методом осуществляется не в статических условиях— в реакционном сосуде или аппарате, а в динамической системе — в колонке (рис. 103), через которую непрерывно протекает раствор. Как будет показано, это весьма существенно изменяет характер процесса и его результаты. [c.235]

    Влияние температуры на озонное растрескивание резин. Зависимость скорости озонного растрескивания от температуры является результатом суммарного влияния температуры на ряд факторов. При увеличении температуры стойкость к растрескиванию может уменьшаться вследствие увеличения скорости химической реакции , резкого уменьшения сопротивляемости статической усталости и замедления кристаллизации в определенной области температур. С другой стороны, стойкость к растрескиванию может увеличиваться вследствие увеличения скорости релаксационных процессов, что ведет к более быстрому спаду напряжения в системе, находящейся при постоянной деформации уменьшения хрупкости поверхностной пленки уменьшения адсорбции озона на поверхности резины. Какой из этих процессов является определяющим в общем случае, сказать трудно. [c.178]

    Экспериментальные данные по пиролизу фтористых алкилов (табл. 7.20) получены при исследовании химической активации (гл. 8) и при кинетических исследованиях в обычных статических системах [49] и в ударных трубах [50]. В работе [49] сообщается, что пиролиз является чисто мономолекулярной реакцией в сосудах, выдержанных в атмосфере фтористого этила. [c.230]

    С помощью системы уравнений (4.39) — (4.44) можно решать задачу Коши для адиабатической химической реакции при постоянной площади сечения канала. Хотя объем вычислений по сравнению со статическими случаями больше, реальная сложность заключается только в том, что при описании реакции добавляется еще одна переменная — скорость потока. [c.25]

    При исследовании кинетики реакций весьма важен вопрос о выборе контролируемого параметра. В простых газо-жидкостных процессах, в которых хорошо изучены направления химических превращений (например, реакции гидрирования непредельных соединений или восстановления нитросоединений водородом), контролируемым параметром может служить давление. Процесс в этом случав проводят статически в изохорических условиях, а скорости реакций измеряют по скорости изменения давления в системе. Математическая обработка полученных результатов достаточно проста. Для сравнительно простых реакций можно применять адиабатический метод исследования кинетики [4—6], когда контролируемым параметром является только температура. Метод основан на определении скорости разогрева (охлаждения) адиабатического реактора и применим для сильно экзотермических (или эндотермических) реакций. Для его использования нужно знать тепловые эффекты реакций и теплоемкости реагентов и продуктов. Надо, однако, иметь в виду, что при применении чисто адиабатического метода всегда есть опасность непредвиденного изменения направления реакции по мере повышения температуры, что сразу затрудняет расшифровку полученных данных. Гораздо большую перспективу имеет применение для исследования каталитических процессов метода неизотермического эксперимента, где наряду с анализом веществ производится замер профиля температуры по длине слоя катализатора или по ходу опыта. [c.403]

    Настоящая модель легко допускает обобщение на случай одновременного протекания в зерне катализатора нескольких реакций, сопровождающихся изменением объема исходной смеси. Математическим описанием в размерной форме всегда удобно пользоваться для расчета конкретных химических процессов, для которых количественно определены все параметры. Для исследований общих свойств системы, связанных, например, со статическими и динамическими характеристиками множественностью стационарных режимов и их устойчивостью, целесообразно использовать математическую модель, записанную в безразмерной форме. С учетом приведенных ранее допущений, определяющих область использования модели (3.22а) —(3.22к), для трубчатого реактора, в котором протекает одна реакция первого порядка, и температура хладоагента к межтрубном пространстве одинаковая по всей длине, можно записать такую систему  [c.75]

    На практике химические газофазные процессы обычно осуществляются непрерывно в проточных реакторах в так называемых динамических условиях. В отличие от рассматривавшихся до СИХ пор закрытых (статических или замкнутых) систем, в которых реакции протекают при постоянном объеме, в открытых (проточных) системах процессы протекают при постоянном давлении. Статический метод позволяет проследить в течение одного опыта зависимость скорости процесса от концентрации реагирующих веществ в широком интервале их изменений и потому особенно пригоден на начальной стадии исследования кинетики процесса. Динамический метод позволяет быстрее накапливать продукты реакции и при установлении стационарного состояния, когда состав выходящей из реактора смеси продуктов становится постоянным, получать пов-торимые кинетические данные, значительно более надежные, нежели единичная точка на кинетической кривой опыта в статических условиях. [c.251]

    При химическом равновесии концентрации исходных веществ и продуктов реакции остаются неизменными. Однако химическое равновесие не следует понимать как нечто статическое, напоминающее равновесие на весах. Следует помнить, что при равновесии непрерывно протекают как прямая, так и обратная реакции, но с одинаковой скоростью. Система в целом находится в движении, поэтому равновесие носит название динамического. [c.85]

    В химической кинетике различают также реакции, протекающие в закрытых или открытых системах. Примером реакции в закрытых системах могут служить реакции в замкнутых сосудах их называют также статическими, или реакциями в статических условиях. [c.236]

    Многие химические реакции не протекают до конца, другими словами, смесь реагентов не полностью превращае-гся в продукты. По прошествии некоторого времени изменение концентраций реагентов прекрашается. Реакционная система в таком состоянии представляет собой смесь реагентов и продуктов реакции. Химическая система в таких условиях находится в состоянии так называемого химического равновесия. Мы уже встречались с примерами простейших равновесий. Так, в замкнутом сосуде устанавливается равновесие между парами вещества над поверхностью его жидкой фазы и самой жидкостью. Скорость перехода молекул жидкости в газовую ф 1зу становится равной скорости перехода в жидкую фазу газовых молекул, ударяющихся о поверхность жидкости. Другим примером является равновесие между твердым хлоридом натрия и его ионами, растворенными в воде (разд. 12.2, ч. 1). В этом примере скорость, с которой ионы кристалла покидают его поверхность, переходя в раствор, равна скорости перехода ионов из раствора в кристаллическое вещество. Приведенные примеры показывают, что равновесие не является статическим состоянием, которое характеризуется отсутствием всяческих изменений. Наоборот, оно имеет динамический характер, т.е. представляет собой совокупность противоположно направленшэгх процессов, протекающих с одинаковой скоростью. Данная глава посвящена рассмотрению химического равновесия и изучению законов, на которых основано его описание. Чтобы продемонстрировать, какую роль играют в химии представления о равновесии, и сделать их более понятными, мы начнем с обсуждения одной из промышленно важных реакций-процесса Габера, применяемого для синтеза аммиака. [c.40]

    Следовательно, в полярографических процессах, как и в обычных химических реакциях, наряду со статической поляризацией (полярностью) большую роль играет динамическая поляризация (поляризуемость) молекулы или отдельных ее частей. Под влиянием поля электрода в молекуле происходит, особенно при наличии системы сопряженных связей, перераспределение электронной плотности, и появляются места (атомы или группы атомов) с наведенным тем или иным способом положительным зарядом (или вообще с меньшей электронной плотностью), способные принять электроны от электрода. Кроме поляризующего действия поля определенную роль играет и поляризующее действие находящихся в растворе (более точно — в двойном электрическом слое) заряженных частиц. Так, в кислой среде, как это показано во многих работах, особенно на примере карбонильных и нптросоединений, положительный заряд на одной из частей молекулы может усиливаться за счет взаимодействия отдельных электроотрицательных групп с ионами водорода Н+. Следовательно, факторами, определяющими способность молекул восстанавливаться на катоде, являются наличие определенных полярных связей и поляризуемость атомов или связей под влиянием электрического поля, а также под влиянием заряженных частиц, находящихся в растворе. [c.35]

    Состояние химической системы, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием. Последнее, как и термодинамическое равновесие, является истинным, но в отличие от него носит не статический, а динамический характер. Истинное химическое равновесие обусловлено не отсутствием процесса в системе, а полной компенсацией двух взаимно противоположных процессов. В зависимости от условий химическое равновесие может наступать при ничтожно малых концентрациях исходных веществ и при исчезающе малых концентрациях продуктов реакции. В первом случае реакция будет необратимой в прямом направлении, а во втором — в обратном. Между понятиями обратимая реакция и термодинамически сбратимый процесс нет ничего общего. Все реальные процессы, в том числе и обратимые химические реакции, являются термодинамически необратимыми процессами. О термодинамической обратимости той или иной реакции (обратимой или необратимой) можно говорить лишь с практической точки зрения. [c.244]

    Как правило, наблюдаемые реакции являются сложными, т. е. представляют собой сочетание нескольких простых реакций, называемых стадиями (или элементарными реакциями). В случае сложной реакции отличают исходные вещества и продукты реакции от промежуточных веществ. Последние входят только в химические уравнения стадий, но не в химические уравнения реакции, т. е. уравнения, описывающие непосредственно определяемые обычными химическими методами химические превращения в системе. Реакция стационарна, если при постоянных концентрациях исходных веществ и продуктов постоянны и концентрации промежуточных веществ. Такой режим реакции реализуется в проточной системе или в безградиент-ных реакторах [1]. Реакция квазистационарна, если при изменяющихся со временем концентрациях исходных веществ и продуктов концентрации промежуточных веществ изменяются так, что практически не отличаются от стационарных значений (т. е. значений, отвечающих стационарному течению реакции с постоянными концентрациями исходных веществ и продуктов, равными данным мгновенным концентрациям). Реакции в статической системе можно во многих случаях считать квазистационарными (метод Боденштейна). Условия применимости такой трактовки сформулированы Франк-Каменецким [2] и Семеновым [3]. [c.46]

    При обсуждении вопросов химетеского равновесия в гл. XX указывалось, что система, находящаяся в химическом равновесии, не является статической, ибо в ней химические реакции протекают в прямом и обратном направлениях с равными скоростями, благодаря чему количества различных веществ, составляющих данную систему, остаются постоянными. Вначале полагали, что невозможно опытным путем определить скорости, с которыми протекают различные химические реакции при равновесии. Однако теперь можно осуществить подобного рода опыты благодаря использованию изотонов в качестве меченых атомов. Можно привести следующий пример. Раствор мышьяковистой кислоты, содержащей некоторое количество радиоактивного мышьяка, смешивают с раствором мышьяковой кислоты, ионов иода Г и трииодид-ионов 1 в таких пропорциях, что смесь находится в состоянии равновесия. Через некоторое время этот раствор смешивают с раствором, содержащим ионы магния и аммония для осаждения мышьяковой кислоты в виде арсената магний-аммония MgNH4As04 12Н2О. Осадок промывают и высушивают, после чего определяют количество содержащегося в нем радиоактивного Аз, чтобы установить, сколько радиоактивного мышьяка присутствует теперь в виде мышьяковой кислоты. В данном случае рассматривается следующее равновесие  [c.547]

    Траверс и Пирс [19] определяли константы равновесия интересующей нас реакции в интервал температур 550 — 620° С при давлениях до 2,0 ат в статической системе. Разделение продуктов реакции проводилось путем дробного испарения и химического анализа фракций. Результаты получены как средние из большо1 0 числа опытов, часто превышавшего тридцать для одной температуры, время реакции в которых колебалось от до час. К равновесию подходи.ш с обеих сторон. Результаты определения приведены в табл. 60 и хорошо согласуются с расчетом по уравнению Пиза (37) и Байерса. [c.378]

    Переход от области, где лимитирующей является собственно химическая реакция, к диффузионной области, определяемой по изменению наклона кривой на графике Аррениуса, был отмечен во многих работах. Так, при окислении пиролитического графита на воздухе в статических условиях такой переход происходит при 840° [30]. Для системы спектрально чистый графит — кислород при тех же условиях обнаружена переходная область около 700° [31]. Однако при интенсивных потоках газа и малых размерах частиц эту область можно наблюдать при температурах 1400° и выше [19]. В реакции алмаз — кислород [29] наблюдается максимум на кривой Аррениуса при 1000—1050°, а при более высоких температурах происходит заметное уменьшение скорости. Наличие максимума объясняли уменьшением реакционной способности поверхности углерода при этих температурах и увеличением толщины диффузионного слоя, снижающим скорость реакции, Влайкели [32] сопоставил экспериментальные данные, полученные в широком интервале температур, и показал, что диффузия играет основную роль пои 1500° и почти не зависит от типа угля и газа-окислителя. Напротив, при температурах ниже 1100° истинная скорость химической реакции зависит от природы реагентов. [c.216]

    Помимо других целей, облучательные устройства предназначаются для изучения зависимости радиационного воздействия от времени облучения. Поэтому важно предусмотреть возможность отбора проб. Если, например, облучается одновременно ряд образцов из полиэтилена, то должно быть сконструировано специальное устройство для выведения определенных образцов в требуемое время из зоны радиации, для того чтобы можно было оценить изменения в их физических свойствах как функцию дозы. В химических системах, когда реакционная смесь циркулирует через зону радиации, часть проточной системы может располагаться вне поля радиации и отбор проб будет облегчен. В статических системах желательно иметь некоторые автоматические приборы, позволяющие прослеживать ход реакции во времени. [c.281]

    Выше нами было показано, что при нагревании во в e объеме ионитов протекают реакции электрофильного и нуклеофильного замещения функциональных групп с участием молекул растворителя и растворенных веществ в фазе ионита. Если реагентом является сорбированный растворитель, образующий практически гомогенный раствор сольватированных противоионов в осмотическом растворителе, то, как показано выше на примере диффузии воды и серной кислоты, диффузией растворителя и продуктов реакции на кинетику химической реакции можно пренебречь. В строгом смысле набухший ионит нельзя считать замкнутой системой, так как продукты реакции выходят из зоны реакции во внешний раствор и распределяются между сорбированным и внешним раствором (в статических условиях) или целиком удаляются (в проточной системе). В то же время относительно исходных реагентов — функциональных групп и сорбированного растворителя — набухший ионит является псевдозамкнутой системой, включающей полимерную матрицу, функциональные группы и сорбированный растворитель, [c.133]

    Размол взрывоопасных материалов. Некоторые материалы, например сера, крахмал, древесный порошок, мучная пыль, декстрин и уголь, имеют тенденцию при размоле воспламеняться или взрываться. Взрывы могут быть вызваны статическим электричеством, искрами из печей или искрами от случайно попавшего в мельниц> железа ши же теплом, образующимся при химических реакциях в загружаемом материале. Для предотвращения накопления статических зарядов мельница должна быть хорошо заземлена. Если имеется предположение, что отдельные части системы могут оказаться изолированными друг от друга, их следует соединить проводником. Иногда узкий про1М)елсуток между двумя тарелками заби" вается материалом и образуется конденсатор. Если эти две тарелки получат заряд, то между ними возможен проскок искры, В мель-, ницах рекомендуется применять бронзовые молотки и футеровку для уменьшения опасности пт искр, возникающих от случайно попавших кусков железа. Лучше всего при обработке взрывоопасных материалов — для предупреждения возможности взрыва—при- [c.79]

    Основной теоретической задачей в химической кинетике является создание такой системы взглядов и уравнений, которая позволила бы, исходя из молекулярных параметров реагирующих компонентов и внешних условий протекания процесса, вычислить его скорость. К молекулярным параметрам относятся масса реагирующих молекул, их форма и размеры, порядок связи отдельных атомов и атомных групп в молекуле, энергетическая характеристика отдельных связей, совокупность возможных энергетических состояний молекулы. Под внешними условиями понимается давление (или концентрации), температура, условия, в которых осуществляется процесс (например, проведение реакции в статических условиях или в потоке). В решении этой задачи важным этапом является применение молекулярно-кинетической теории к интерпретации кинетических закономерностей при химических превращениях, поэтому настоящая глава и посвящается тем основам молекулярно-кине-тической теории, которые будут использованы далее при решении поставленной задачи. [c.89]


Смотреть страницы где упоминается термин Химические реакции в статических системах: [c.18]    [c.382]    [c.865]    [c.865]    [c.451]    [c.64]    [c.42]   
Смотреть главы в:

Основы разработки комплексных химических процессов и проектирования реакторов -> Химические реакции в статических системах

Основы разработки комплексных химических процессов и проектирования реакторов -> Химические реакции в статических системах




ПОИСК





Смотрите так же термины и статьи:

Реакции система для

Система статическая



© 2025 chem21.info Реклама на сайте