Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Присоединение лигандов к ионам металлов

    Очевидно, эта картина носит еще довольно приближенный характер и требует определенных поправок и уточнений, прежде чем ее можно было бы считать за адекватную качественную иллюстрацию координационно--комплексной полимеризации. Прежде всего это вопрос инициирования и вместе с этим вопрос природы концевой группы цепи, с помощью которой цепь разматывается с катализатора . В формулах (II), (III) и (IV) этот конец цепи имеет характер свободного радикала типа СНз-группы, которая, что более вероятно, реально не существует . Первоначальное смещение электронной пары а может происходить как следствие присоединения отрицательного иона к левой СНа-группе лиганда А, что должно отвечать анионному инициированию роста цепи. Возможно также, что вместо одного из этиленовых лигандов иона металла присутствует этиль-ная группа и что начальное смещение электронной пары а начинается у этого лиганда вследствие термического активирования. Тогда удаленный конец цепи должен быть СНд-группой, а инициирование должно быть следствием присутствия алкила металла в координационном комплексе. [c.39]


    Второй способ установления причины рассматриваемого явления. Рассмотрим хелатный лиганд, присоединенный к иону металла одним донорным атомом. Другой донорный атом не может при этом удалиться на большое расстояние, и вероятность того, что он тоже образует связь с металлом, больше, чем если бы он находился в овеем другой молекуле, независимо находяш,ейся в остальном внешнем объеме раствора. Эта точка зрения легко позволяет понять, почему хелатный эффект уменьшается с ростом размера цикла. Он наибольший для пяти- и шестичленных циклов, еще заметен для семичленных и незначителен для всех циклов большего размера. Если размер образующегося цикла велик, то вероятность присоединения второго донорного атома лиганда к тому же иону металла уже не является столь большой по сравнению с вероятностью взаимодействия с другим ионом или вероятностью протекания диссоциации по первому донорному атому до того момента, пока будет достигнут эффективный контакт между вторым донорным атомом и ионом металла. [c.171]

    Комплексные соединения — сложные молекулярные или ионные соединения, которые образуются присоединением к иону металла (комплексообразователю) нейтральных молекул или ионов (лигандов или аддендов). [c.19]

    Здесь индекс / означает число лигандов, присоединенных к иону металла. Если ион металла свободный, то его мольная доля ао. Если к иону металла присоединен 1, 2, 3 и т. д. лиганда, то соответствующие мольные доли означают щ, аг, з и т. д. Допустим, что в системе, состоящей из иона металла и лиганда, образуется всего лишь один комплекс МЬ. Равновесию М Ь Ч м + ь [c.304]

    Рассмотрим вопросы, связанные с изменением константы равновесия (константы устойчивости) Кк процессов комплексообразования, т. е. процессов присоединения к иону металла иона (в частном случае нейтральной молекулы) лиганда [c.206]

    Полосы поглощения, относящиеся к валентным колебаниям металл— лиганд, лежат в области 100—800 см и мало характерны для различных типов связей. Поэтому основные сведения о структуре комплексов получают анализом положения полос, характерных для лигандов. Лигандные полосы поглощения подтверждают присутствие лиганда в комплексе, а иногда позволяют указать ту его таутомерную форму, которая участвует в комплексообразовании. В результате смещения электронной плотности в лиганде под действием иона металла кратность связей в лиганде изменяется. Это ведет к сдвигу полос валентных колебаний (увеличение кратности связи увеличивает частоту) и позволяет судить о способе присоединения лиганда. Наконец, по расщеплению некоторых полос можно судить о симметрии комплексной частицы и ее фрагментов или установить присутствие неэквивалентно связанных и несвязанных лигандов или функциональных групп. [c.27]


    Большинство реакций макроциклических соединений проходит без разрушения макрокольца К ним относятся процессы комплексообразования, замещения одного иона металла на другой, окислительновосстановительные превращения координированного иона металла и реакции присоединения, замещения или отщепления определенных групп атомов от молекул лиганда или комплекса. Они широко используются для получения новых макроциклических соединений. В тех случаях, когда проходящие процессы невозможны без участия нона металла, их следует рассматривать как реакции комплексов Если же происходящие превращения затрагивают только макроциклический лиганд и не приводят к изменению координационного числа или типа донорных атомов в координационной сфере металла, то такие процессы рассматриваются как реакции модификации лиганда. К ним же относятся и реакции свободных макроциклических соединений Проведенное разграничение позволяет отдельно рассмотреть реакции, для прохождения которых обязательно участие иона металла, и те реакции, которые могут проходить и без него [c.34]

    Процессы темплатного синтеза и замещения ионов металлов могут сопровождаться не только изомеризацией лигандов, но и присоединением молекул растворителя [349] [c.130]

    Таким образом, окисление алкильного радикала ионом металла происходит или как внешнесферный перенос электрона с образованием свободного К" , или как внутрисферный перенос с образованием К- в лигандной сфере меди с его последующим превращением, или как реакция К- с лигандом (отрыв или присоединение). В ряде случаев наблюдается конкуренция этих механизмов. [c.318]

    Реакцию комплексообразования в титрометрических целях можно использовать лишь при условии минимального числа лигандов в комплексе, например 2, как в процессе (Х.55), или еще лучше, —если образуется только один комплекс типа ML, в котором к Каждому иону металла присоединен только один лиганд. Для этого нужно, чтобы лиганд был полидентатным. и содержал донорные группы, способные занимать несколько мест в координационной сфере комплексообразователя. В подобных случаях благодаря хелатному эффекту образующиеся комплексы обладают высокой устойчивостью, которая обусловливает полное связывание иона металла при титровании. [c.269]

    В статистическом эффекте не учитывается взаимное влияние присоединенных лигандов и их влияние на силы связи лигандов с центральной группой. Причину лиганд-эффекта, определяемого уравнением (2), нужно, вероятно, искать в этом влиянии. Автор разделил лиганд-эффект на электростатический эффект, возникающий В том случае, когда лиганды электрически заряжены, и на остаточный эффект. В случае многоосновных кислот электростатический эффект обусловлен отрицательны.м зарядом, появляющимся в молекулах при отщеплении ионов водорода и препятствующим дальнейшему отщеплению водородных ионов. Аналогично в случае образования комплекса ионом металла и электрически заряженными молекулами лиганда электростатический эффект обусловлен электрическим отталкиванием между уже присоединившимися и присоединяющимися лигандами. [c.46]

    Для описания равновесий используются также общие константы устойчивости, обозначаемые р (где п —общее число лигандов, присоединившихся к иону металла). Например Р4 — константа устойчивости комплекса, образовавшегося в результате присоединения к Си (НгО) четырех молекул аммиака  [c.337]

    К. Ч.), ДЛЯ Со(1П) равна 6. Координационным числом называют число атомов или молекул, присоединенных непосредственно к атому металла. Молекулы аммиака используют побочную валентность. Говорят, что они координируются ионом металла их называют лигандами. Лиганды (в данном случае молекулы аммиака) присоединены непосредственно к атому металла они образуют координационную сферу металла. Ион кобальта(1П) уже [c.18]

    Когда атом лиганда присоединен к двум ионам металла, то лиганд называют мостиковой группой (см. мостиковые [c.28]

    Координационные, или комплексные, соединения содержат ионы металлов, связанные с несколькими окружающими их анионами или молекулами, которые называют лигандами. Ион металла и его лиганды образуют координационную сферу комплекса. Атом лиганда, присоединенный к иону металла, называется донорным атомом. Число донорных атомов, присоединенных к иону металла, называется координационным числом иона металла. Наиболее распространены координационные числа четыре и шесть наиболее распространенные типы структуры координационных комплексов - тетраэдрическая, плоско-ква-дратная и октаэдрическая. [c.400]


    Термин хелатный эффект был предложен в 1952 г. Шварценбахом [606] для обозначения выигрыша энергии Гиббса и соответственно повышенной устойчивости комплексных соединений при присоединении к иону металла бидентатного лиганда по сравнению с присоединением к нему двух монодентатных лигандов с теми же донорными атомами. При хелатации образуется цикл, в состав которого входят атом металла, два донор- [c.321]

    Таким путем удалось констатировать существование в водных растворах аммиакатов лптпя, магния, кальция и ряда других металлов, а также установить, что число присоединенных к иону металла молекул аммиака или этилендиамина (т. е. состав комплекса в растворе) зависит от концентрации добавленного лиганда. Очень пптерес-ные данные, полученные с помощью этого метода и характеризующие ступенчатую диссоциацию аммиакатов и аминатов разных металлов, будут подробнее рассмотрены в главе о равновесиях в растворах комплексов (стр. 442 и сл.). [c.35]

    НИЯ ЭТОГО механизма можно предложить две общих схемы. Согласно первой из них, арил в качестве соседней группы либо вытесняет литий, либо мигрирует к свободному анионному центру, образуя этиленовый фенанион (который может быть дискретным промежуточным продуктом или формой переходного состояния). Как известно из химии карбониевых ионов, аналогичным образом построенный фенониевый ион служит дискретным промежуточным продуктом при некоторых перегруппировках [33]. В результате перестройки фенаниона конечным продуктом анионной 1,2-перегруппировки является более устойчивое бензильное металлоорганическое соединение. Согласно второй схеме, перегруппировка происходит путем внутримолекулярного элиминирования — присоединения при этом компоненты удерживаются вместе, будучи лигандами иона металла внутри ионной пары. Сделать выбор между двумя этими схемами на основании экспериментальных данных пока не удалось. [c.261]

    Наше рассмотрение предполагает, что молекулы воды занимают координационные места, не занятые другими лигандами. Как было указано [35], природа лигандов, присоединенных к иону металла, влияет на его жесткость и мягкость. По-видимому, жесткие лиганды делают лиганд еще более жестким, а мягкие — более мягким по отношению ж дополнительным лигандам. Так, например, ионы металлов, связанные с серусодержащими лигандами или относительно мягкими порфириновыми кольцами, будут проявлять большую тенденцию к образованию комплексов с дополнительными мягкими лигандами по сравнению с гидратированным ионом металла [M(H20)g] +, связанным с молекулами воды, которые относятся к жестким лигандам. Именно влиянием лигандов можно объяснить тот факт, что железо в геме столь прочно координирует такие мягкие лиганды, как СО и N , даже в присутствии большого количества жесткого лиганда воды. Этим можно объяснить такое высокое сродство Fe + (и, по-видимому, даже Fe +) к сере в нетеминовых железо-серусодержащих белках [44, 45]. [c.100]

    К числу наиболее важных природных хелатирующих агентов относятся производные порфина, молекула которого схематически изображена на рис. 23.6. Порфин может образовывать координационные связи с ионом металла, роль доноров при этом выполняют четыре атома азота. При комплексообразовании с металлом происходит замещение двух указанных на рисунке протонов, которые связаны с атомами азота. Комплексы, полученные с участием производных порфина, называк тся шорфи-ринами. Различные порфирины отличаются друг от друга входящими в них металлами и фуппами заместителей, присоединенными к атомам углерода на периферии лиганда. Двумя важнейшими порфиринами являются гем, который содержит атом желе-за(П), и хлорофилл, который содержит атом магния(П). О свойствах гема мы уже говорили в разд. 10.5, ч. 1. Молекула гемоглобина-переносчика кислорода в крови (рис. 10.10)-содержит четыре гемовые структурные единицы. В геме четыре атома азота порфиринового лиганда, а также атом азота, который принадлежит бе1сковой структуре молекулы гемоглобина, координированы атомом железа, который может координировать еще молекулу кислорода (в красной форме гемоглобина, называемой оксигемоглобином) либо молекулу воды (в синей форме гемоглобина, называемой де-зоксигемоглобином). Схематическое изображение оксигемоглобина дано на рис. 23.7. Как отмечалось в разд. 10.5, ч. 1, некоторые группы, например СО, действуют на гемоглобин как яды, поскольку они образуют с железом более прочные связи, чем О2. [c.376]

    Комплексы полимерных лигандов. Особую группу многоядерных комплексов представляют комплексы полимерных лигандов. Они могут быть получены как непосредственным присоединением ионов металлов к растворимым полимерам, так и полимеризацией комплексов. Известны полимерные водорастворимые лиганды, имеющие функциональные группы, которые способны к координации поливиниловый спирт, поливинилпиридин, полиакриловая кислота. Разработано множество методов так называемой прививки — введения групп, способных к координации, — в структуру уже готовых полимеров, например полистирола. Так, прививают к бензольным кольцам этого полимера группу СНгС1  [c.136]

    I. Присоединение лиганда к изолированному атому, иону металла или к комплексной частице, например Ni-b4 0 = = Ni( O)4 или реакции плоского фосфипного комплекса иридия (0) с СО [c.373]

    Сейчас установлено, что при образовании комплексов ML первый лиганд (L), присоединяемый ионом М , как правило, координируется ионом металла прочнее, чем второй, третий и т. д. [2]. Таким образом, можно было ожидать, что и в комплексных цитратах РЗЭ первый остаток it будет координироваться ионом М + сильнее, чем второй, поскольку уже первый остаток it - в значительной мере нейтрализует заряд центрального иона. Действительно, определение констант устойчивости цитратов РЗЭ показало [И], что pKi присоединения первого иона it больше, чем рКг- Так, Ig последовательных /Сует цитратов одного из типичных РЗЭ цериевой подгруппы неодима имеют следующее значение [11]  [c.77]

    Зй-Орбитали начинают заполняться в атоме скандия, в Зс1-обо-лочке атома хрома уже пять электронов (на внешней оболочке всего один 5-электрон). В атоме меди З -оболочка заполнена десятью электронами. Волновые функции основного и возбужденного состояний не являются чистыми -функциями. Примесь р-функций приводит к тому, что становятся возможными такие электронные переходы, которые вообще запрещены. Это отпосится к переходам между уровнями с одним и тем же значением квантового числа I. Фактически по указанной причине в спектре поглощения соединений переходных металлов с неспаренными электронами наблюдаются максимумы поглощения ( пики ) в видимой и инфракрасной областях. Интенсивность их невелика, но они обусловлены й— -переходами. Многие комплексы дают также иитсн-сивные пики поглощения в ультрафиолетовый области, обусловленные переносом заряда иона металла на орбитали присоединенных к нему групп (лигандов). [c.200]

    Циклопентадиенид-анион и другие рассматриваемые лиганды являются амбидентатными и могут координироваться тремя спо собами. Присоединение лиганда- с использованием в качестве до норных его я-орбиталей называется я-координацией. Кроме того возможна координация через один мз атомов углерода при помо щи (Т-связи, т. е. ст-координация, а если лиганд является анионом то он может и координироваться при помощи электростатических сил. Способ координации указывают при построении названия ком плекса так, ферроцен называют бис-(я-циклопентадиенил)-желе зом. Ковалентная ст-связь осуществляется в бис-(ст-циклопентадие нил)-олове и в аналогичных соединениях сЬпнца, висмута, индия ртути — в общем, у ионов с электронной оболочкой или Ионные соединения, образуемые и[,елочными металлами, Mg Мп2+, называют циклопентадиенидами. [c.89]

    Удобно описывать комплексообразование как присоединение лигандов к свободному иону металла, хотя на самом деле пронсхсдит ступенчатое заме-щение в гидратированном ноне металла. [c.165]

    Уникальным органическим лигандом является цианид-ион нуклеофильные свойства этого аниона не должны проявляться у цианидов переходных металлов. В то же вре.мя, хотя цианистый водород обычно не присоединяется к неактивированным двойным связям, такое присоединение катализируется октакарбонилдикобальтом [274]. Однако, если принятый для этой реакции механизм (схемы 243, 244) справедлив, катализируемое кобальтом присоединение H N к изолированным двойным связям ничего общего не имеет с обычным нуклеофильным присоединением, а представляет собой последовательность известных стадий (1) присоединение алкена к координационно иеиасьпценному атому кобальта, (2) миграция присоединенного лиганда ( N) с одновременной л —а-пере-группировкои (четырехцентровая перегруппировка), (3) 01<исли-тельное присоединение (в этом случае H N) и (4) восстановительное элиминирование алкилциаинда с регенерацией каталитически активной частицы (СО)зСоСЫ. Однако возможно, что карбанион- [c.309]

    Весьма перспективным представляется новое направление, основанное на ирименении к гетерогенному катализу квантово-механических концепций кристаллического поля и поля лигандов [25]. Применительно к проблеме подбора это было впервые сделано Д. Дауденом [26], В полупроводниковых электронных теориях хемосорбции и катализа исходными являются макроскопические характеристики твердого тела и в первую очередь концентрации электронов и электронных дырок (выражаемые через ноложение уровня Ферми) и работа выхода электронов. В противоположность этому, по новой концепции, активация молекул в каталитических реакциях связана с образованием комплексов в результате присоединения к отдельным иопам металла (реже к анионам) решетки за счет тех же сил, что и связь лигандов в комплексных ионах в растворе или в кристаллической решетке. При таком подходе хемосорбционная связь и активация локальны, а макроскопические электронные свойства играют второстепенную роль. В то же время приобретает большое значение число -электронов в оболочке иона металла, играющего роль активного центра, так как это число определяет энергию образования комплексов и пространственное расположение лигандов. Мы не имеем здесь возможности подробнее разобрать эту концепцию отметим только, что она объясняет  [c.24]

    Существует линейная зависимость между теплотами гидратации ионов металлов, из которых вычтены части, обусловленные стабилизацией в Поле лигандов, и потенциалами ионизации, исправленными таким образом, чтобы они относились к одному и тому же основному состоянию. Это показывает, что более простое соответствие, которого искали Ирвинг и Уилльямс, в действительности не имеет места [108, 217]. Теория поля лигандов предсказывает последовательность изменений энтальпии от хрома до цинка. В первом приближении можно предположить, что рассмотрение методом теории поля лигандов, применимое для суммарного изменения энтальпии А может быть применено также для рассмотрения изменений АЯ в отдельных последовательных стадиях, а также при отсутствии данных по энтальпиям — к изменениям свободной энергии, Константы устойчивости с введением поправок на стабилизацию в поле лигандов могут быть оценены путем линейной интерполяции между значениями для кальция, марганца и цинка. Величины стабилизации в поле лигандов представляют собой разности между экспериментальными и исправленными значениями [32, 217]. Вычисленные таким путем величины стабилизации в поле лигандов приведены в табл. 9. Стабилизации для отдельных стадий для комплексов железа, кобальта и никеля и, следовательно, суммарные стабилизации для присоединения трех этилендиаминовых лигандов постепенно возрастают, причем приближенно выполняется предсказанное соотношение 1 2 3. Спектроскопическое значение [c.52]

    Правило ЭАН Сиджвика очень полезно при получении сандвичевых и олефиновых соединений. Ион С5Н5, как и молекулу бензола, рассматривают в качестве шестиэлектронного донора, а этилен — двухэлектронного. Присоединение лигандов, отдающих соответствующее число электронов атому металла для сообщения ему ЭАН, равного числу электронов в атоме инертного газа, часто приводит к образованию устойчивых соединений, например Fe(QH5)2, Mn(QH5)( eH6), v ,Heh. [c.123]

    Каталитические реакции окисления кислородом различных соединений, имеющие большое теоретическое и практическое значение, протекают по механизму, аналогичному только что рассмотренному для реакций гидрирования. Необходимой стадией этих реакций, которые обычно катализируются ионами металлов с конфигурациями d и является присоединение кислорода к комплексообразователю, что становится возможным при введении в комплекс стабилизируюптих лигандов-активаторов. [c.151]

    Приведенные доводы тем не менее не могут до конца объяснить наблюдаемой обратной зависимости между комплексообразующей способностью иона металла и его активностью в составе фермента. Интересное объяснение этой зависимости дал Айчхорн [64, 78], который считает, что присоединение иона металла к белковой молекуле вызывает не только ее активирование, но связано также с понижением свободной энергии системы. Количество донорных групп в биологических лигандах, к которым может присоединиться металл, очень велико. Обычно ион металла занимает в первую очередь те места в полидентат-ной молекуле лиганда, которые обусловливают каталитическую реакцию. Избыточные ионы М участвуют в комплексообразовании с другими донорными атомами белковой молекулы или субстрата, не имеющими отношения к каталитическому процессу, что приводит к его ингибированию. Поэтому зависимость ферментативной активности системы от концентрации М обычно проходит через максимум. Чем выше способность М к комплексообразованию, тем при более низких его концентрациях будет проявляться ингибирующее действие. В присутствии таких сильных комплексообразователей, как Си 2+ и Р(12+, ингибирующий эффект превалирует над каталитическим уже при очень низкой концентрации этих ионов, и дальнейшее повышение концентрации сопровождается только еще большим ингибированием реакции. В случае же слабых комплексообразователей необходим большой избыток М даже для координации с самыми активными центрами белка и суб- [c.259]

    Комплексы с переходами M L. Поскольку такой переход характеризуется переносом -электрона из центрального поля иона металла, этот металл должен быть в низшей степени окисления. В то же время должна существовать возможность того, что этот электрон займет свободную орбиталь лиганда. Такие лиганды можно найти среди органических соединений, содержащих одну двойную связь или цепь сопряженных двойных связей, присоединенную к донорному атому. В качестве примеров можно привести комплексы железа (И) со следующими лигандами 8-оксихиноли-ном, 2-пиколиновой кислотой, 2,2 -дипиридилом, 1,10-фенантроли-ном и т.д. Полосы поглощения всех этих комплексов раслолага-ются в видимой области и приписываются переходу одного электрона (во всех случаях микросимметрия системы оказывается октаэдрической) на свободную разрыхляющую я-орбиталь лиганда. Соответствующие этим переходам длины волн и коэффициенты погашения сведены в табл. 2.10. В связи с тем что введение [c.76]


Смотреть страницы где упоминается термин Присоединение лигандов к ионам металлов: [c.170]    [c.629]    [c.629]    [c.259]    [c.587]    [c.587]    [c.326]    [c.234]    [c.112]    [c.280]    [c.135]    [c.171]    [c.131]    [c.173]   
Смотреть главы в:

Высокотермостойкие полимеры -> Присоединение лигандов к ионам металлов




ПОИСК





Смотрите так же термины и статьи:

Металлы лигандами



© 2025 chem21.info Реклама на сайте