Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия каталитических реакций

    К, Фукуи развил теорию граничных молекулярных орбита-лей в применении к катализу осуществил расчеты и анализ поверхностей потенциальных энергий каталитических реакций с участием металлокомплексных систем. [c.700]

    РАСЧЕТ ПРОФИЛЯ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ КАТАЛИТИЧЕСКИХ РЕАКЦИЙ ИЗ СПЕКТРАЛЬНЫХ ДАННЫХ [c.7]

    К. Фукуи развил теорию граничных молекулярных орбиталей применительно к катализу осуществил расчеты и анализ поверхностей потенциальных энергий каталитических реакций с участием металлокомплексных систем. Р. Хофман провел стереохимические исследования моно-и биядерных комплексов переходных металлов с различными органическими лигандами. [c.621]


    Изменение свободной энергии процессов взаимодействия в каталитической реакционной системе должно быть менее отрица — те ьно, чем изменение свободной энергии катализируемой реакции, то есть соединения реагирующих веществ с катализатором должны быть термодинамически менее прочными, чем продукты реакции (ес1 и это требование не соблюдается, катализатор быстро выходит из строя, образуя нерегенерируемое прочное химическое соединение). [c.88]

    Большая часть из рассмотренного выше экспериментального материала указывает на то, что механизм каталитических реакций на твердых поверхностях включает реакцию атомов (или ионов) катализатора с адсорбатом, причем образуется мономолекулярный слой химически активных промежуточных веществ. Так как первичным актом хемосорбции является химическая реакция, то естественно ожидать, что она может иметь некоторую энергию активации. Вообще хемосорбция является очень быстрым процессом и осуществляется с большой вероятностью при соударении молекулы газа с поверхностью . Зачастую даже в тех случаях, когда поверхностный мономолекулярный слой близок к насыщению и можно было бы ожидать уменьшение скорости сорбции, скорость реакции уменьшается незначительно [46]. Этот факт объяснялся тем, что на поверхности мономолекулярного слоя образуется второй, слабо связанный слой сорбата, который способен быстро мигрировать к незанятым активным центрам поверхности. [c.550]

    Каталитические реакции в гомогенных системах (гомогенный катализ). В этом случае катализатор образует с реагентами одну фазу. Реакции такого типа могут проходить в газовой или жидкой фазах. Часто ход подобных реакций связан с образованием промежуточного соединения одного из исходных веществ с катализатором. Это соединение подвергается затем распаду с образованием продукта и восстановлением катализатора. Повышение скорости реакции в присутствии катализатора основано на уменьшении энергии активации этой реакции вследствие изменения механизма ее протекания. [c.227]

    В некоторых случаях (например, под влиянием незначительного изменения химического состава катализатора или небольших количеств примесей в реакционной системе) происходит одновременное изменение предэкспоненциального множителя и энергии активации в уравнении константы скорости каталитической реакции, [c.271]


    Этот процесс требует затраты определенной энергии ст. называемой истинной энергией активации гетерогенной каталитической реакции, [c.304]

    До настоящего времени мультиплетная теория Баландина [4] остается единственной, в которой конкретные каталитические реакции рассматриваются на атомарном уровне, т. е. с точки зрения конфигурации молекул и решеток твердых тел, а также длин и энергий химических связей. [c.11]

    Далеко не полный перечень упомянутых неоднородностей вносит значительные осложнения в однозначное истолкование механизмов адсорбционных и каталитических процессов. Обычно эти осложнения учитываются введением функций распределения участков поверхности по соответствуюш пм характеристикам (теп-лотам адсорбции, тепловым эффектам химических поверхностных реакций, энергиям активации хемосорбции и катализа). Иногда эффекты, воспринимаемые как следствие неоднородностей в кинетике и статике адсорбции и в кинетике каталитических реакций, объясняются как результат некоторого отталкивательного взаимодействия между адсорбированными молекулами [141. Однако до сих пор не выяснен вопрос о реальности и природе постулируемых сил отталкивания. Возникает проблема идентификации природы неоднородностей, разработки приемов их распознавания, позволяющих отличать географические неоднородности от влияния сил отталкивательного взаимодействия. [c.12]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]

    Вместе с тем, в фотохимических реакциях, когда осуществляется непрерывный подвод энергии к системе и форма термодинамических уравнений меняется, расчетные соотнощения так называемых темновых реакций неприменимы. Осуществляя фотохимическую циклизацию производных бутена, удалось с ощутимыми выходами получить производные циклобутана [39]. Этот случай интересен для химиков тем, что указывает пути поиска условий синтеза в таких ситуациях, когда термодинамика термических и каталитических реакций накладывает запрет на проведение реакции. Ясно также, что если образуется ненапряженный цикл (циклопентановый, циклогексановый), то циклизация олефинов возможна с высокими конверсиями и ей будут благоприятствовать невысокие температуры. [c.215]

    Шваб исследовал каталитическую активность сплавов серебра в реакции разложения муравьиной кислоты [13]. Им было показано, что с заполнением свободных электронных уровней в сплаве активность катализатора падает, а энергия активации реакции увеличивается. [c.21]

    Если энергия активации реакций (б) и (в) существенно меньще, чем реакции (а), то взаимодействие происходит с большей скоростью через образование промежуточного соединения АК, и К является положительным катализатором реакции (а). Однако общим для всех каталитических процессов является то, что катализаторы могут возбуждать реакцию или изменять скорость ее, но не предел ее протекания в данных условиях, т. е. они не изменяют состояния равновесия в реакционной системе, а лишь облегчают [c.492]

    Катализатор снижает энергию активации со 198 до 134 кДж/моль. Все гомогенные каталитические реакции в растворах с известной степенью условности можно разделить на три группы 1) кислотноосновной катализ, 2) окислительно-восстановительный катализ (катализ комплексными соединениями или координационный катализ), 3) ферментативный катализ. [c.623]

    Являясь донорами или акцепторами электронов, одни лиганды могут существенно влиять на распределение электронной плотности в других реагирующих молекулах, вошедших вместе с ними в состав комплекса, и изменять энергию отдельных связей. Эти свойства лигандов и ионов металла катализаторов дают возможность регулирования каталитической активности ионов введением в координационную сферу лигандов определенного строения. Лиганды, повышающие каталитическую активность иона металла в данной реакции, называют активаторами каталитической реакции. Лиганды, понижающие каталитическую активность иона металла, называют ингибиторами каталитической реакции. [c.627]


    Влияние температуры. Зависимость скорости каталитической реакции от температуры выражают эмпирическим уравнением типа уравнения Аррениуса и находят кажущуюся энергию активации реакции. Катализатор, для которого она мини- [c.55]

    Каталитические реакции разделяются на два основных класса гомогенные и гетерогенные. Гетерогенным катализатором является химическое соединение, нерастворимое в реакционной среде. Катализатор может быть индивидуальным, смешанным с другими катализаторами или нанесенным на инертный носитель. Распространенные гетерогенные катализаторы — металлы и их оксиды. Преимущества гетерогенных катализаторов заключаются в их низкой стоимости, простоте регенерации и пригодности к использованию в реакторах как периодического, так и проточного типа. К недостаткам этих катализаторов относятся обычно невысокая специфичность действия и во многих случаях большие затраты энергии на обогрев реакторов и создание повышенного давления. [c.35]

    Катализатор не влияет на термодинамическое равновесие реакции, если можно пренебречь изменением энергии Гиббса в результате образования стабильных продуктов взаимодействия реагентов или продуктов реакции с катализатором. Если же в ходе каталитической реакции помимо продуктов, получаемых в отсутствие катализатора, образуются продукты взаимодействия реагентов или продуктов реакции с катализатором, то АО каталитической реакции отличается от некаталитической. Обычно изменением ДО реакции под влиянием катализатора можно пренебречь, так как образование продуктов побочной реакции с катализатором очень мало относительно образования основных продуктов реакции. [c.132]

    Энергия активации каталитической реакции. Пусть протекает мономолекулярная реакция  [c.133]

    Снижение энергии активации в присутствии катализатора объясняется тем, что элементарная реакция становится сложной, причем энергия активации любой стадии каталитической реакции меньше энергии активации некаталитической реакции (рис. 4.1), или же тем, что сложная реакция в присутствии катализатора протекает по другому пути. [c.134]

    С изменением условий проведения каталитической реакции ее порядок, энергия активации и предэкспоненциальный множитель (если константа скорости может быть представлена в форме уравнения Аррениуса кт = могут сильно изменяться, поэтому активность различных катализаторов в данной реакции можно сравнивать только непосредственно по скорости реакции в данных условиях. [c.135]

    В последнее вреия физико-химики, pi OoiaromHe в об / исти гетерогенного катализа, обращают вникэкие не только на химическое взаимодействие реагентов с поверхност.-шми алоями катализаторов/ /, но и на те. лементарные физические процессы, которые протекают в них под влиягчем выделяющейся энергии каталитической реакции. [c.268]

    В кинетическом отношении каталитическая реакция будет идти с большей скоростью, если в результате промежуточного химического взаимодействия катализатор будет снижать энергию активации химической реакции (или одновременно повышать пред— экспонент Аррениуса). Это правило согласуется с принципом компенсации энергии разрывающихся связей в катализе. Оно согласуется также с принципом энергетического соответствия мультип — летной теории A.A. Баландина. [c.88]

    Наиболее легко регулируемым и значимым параметром каталитического крекинга является температура. С повышением температуры скорости всех реакций крекинга возрастают пропор — ционально энергий активаций их по за — кону Аррениуса, то есть температурным коэффициентам реакций. Следует еще отметить, что в процессе крекинга од — но временно с каталитическими реакциями может иметь место протекание и нежелательных термических реакций (энергия активации которых выше, чем для каталитических реакций). [c.131]

    Цепные процессы следует отличать от каталитических и ав-токаталитических, хотя развитие последних также носит циклический характер. Одно из основных отличий каталитических реакций от цепных — отсутствие реакции зарождения Ш51га , ТЗ 1< как один из промежуточных продуктов К присутствует в числе исходных веществ и носит название катализатора. Кроме того, для цепных реакций характерны реакции,.обрыва цепей. Отличительной особенностью цепных реакций являетсяЗ,Щ . Т что в них одна реакция, протекающая саиопройзвольно с уменьшением свободной энергии, может своим течением вызвать другие реакции, идущие с увеличением свободной энергии. [c.197]

    Дальнейшее развитие учения о катализе шло как по пути накопления экспериментальных данных, разработки способов приготовления активных катализаторов, открытия и изучения новых каталитических процессов, внедрения катализа в химическую промышленность, так и по пути развития теории гетерогенного катализа. Однако успехи теоретиков были значительно более скромными, чем успехи экспериментаторов. И это не случайно. Хотя принципиальной разницы между каталитическими и некаталитическими процессами нет, и те и другие подчиняются основным законам химической кинетики, в обоих случаях система реагирующих веществ проходит через некоторое особое, обладающее повышенной энергией активное состояние, в гетерогенных каталитических реакциях наблюдаются специфические особенности. Прежде всего появляется твердое тело, от свойств и состояния которого существенно зависят все явления в целом. Поэтому не случайно, что успехи теории гетерогенного катализа неразрывно связаны с развитием теории твердого тела. Поскольку процесс идет иа поверхности, знание строения поверхности катализатора оказывается решающим для развития теории катализа. Отсюда вытекает тесна я связь развития теории катализа с развитием экспериментального и теоретического изучения адсорбционных явлений. Сложность кетероген-ных процессов, присущие им специфические черты, приводят к тому, что теоретические исследования в этой области не завершилась еще построением теоретических концепций, на базе которых можно было бы обобщить имеющийся фактический ма-териал. Пока можно только говорить о наличии нескольких теорий, в первом приближении обобщающих те или иные экс- периментальные данные. [c.294]

    Остановимся сначала на вкладе, вносимом в изменение скорости изменением предэкспоненциального множителя, т. е. на физическом смысле величины ДЕ, представляющей разность энергий активации пекаталитнческой и каталитической реакций. [c.304]

    Аналогичным образом можно рассмотреть каталитические процессы, протекающие на поверхности, неоднород-иои по энергиям активации. Соответственно необходимо знать функцию распределения для активных центров по энергии активации реакции ЦЕ). На рис. ХИ1,8 показана функция распределения ( Е). Иногда нагл5Щ1ее функцию распределения выражать ч ерез так же зависящую от энергии активации константу скорости каталитического процесса к(Е)  [c.350]

    Изменения катализатора при воздействии реакционной смеси и каталитической реакции приводят к дополнительному уменьшению свободной энергии и увеличению энтропии системы в целом, В то же время энтропия собственно катализатора (подсистемы) уменьшается, а свободная энергия возрастает. Это положение становится очевидным уже из того, что, в рассмотренной системе при исключении катализа должен пойти самопроизвольный процесс К Кт. Другими словами, катализатор в таких системах играет роль своеобразной энергетической ловушки, в которой накапливается также отрицательная энтропия . Здесь просматривается интересная аналогия с биологическими системами, неотъемлемая функция которых — порождение отрицательной энтропии и свободной энергии за счет протекающих в организме процессов переработки питательных веществ [79]. Можно сказать, что в каталитических системах существует механизм молекулярной селекции, обусловленной устойчивостью различных активных состояний. Цапомним, что устойчивость активного состояния (соединения) в каталитической реакции тем выше, чем больше оно удалено от равновесного и чем больше, следовательно, его запас свободной энергии и отрицательной энтропии [80]. [c.303]

    Сначала рассмотрим более общий случай исключения влияния межфазного массопереноса. Характер температурной зависимости (энергия активации) не может служить в жидкофазных реакциях надежным критерием оценки по ряду причин. Вследствие возможного клеточного диффузионно-контролируемого механизма или ионного характера реакции истинная энергия активации реакции может быть малой. Далее, как указывалось в предыдущем разделе, наблюдаемая температурная зависимость может быть следствием изменения коэффициентов распределения реагентов между фазами. Вблизи критической области такое влияние может быть особенно сильным и сказывается такнлб на соотношении объемов фаз. Наконец, в жидкостях, в отличие от газов, сам коэффициент диффузии зависит от температуры экспоненциально, причем эффективная энергия активации диффузии в вязких жидкостях составляет заметную величину. Поэтому обычно о переходе в кинетическую область судят ио прекращению зависимости скорости реакции от интенсивности перемешивания или барботажа. Здесь, однако, есть опасность, что при больших скоростях перемешивания может наступить автомодельная область, а ири очень интенсивном барботаже измениться гидродинамический режим. В результате объемный коэффициент массопередачи может стать инвариантным к эффекту перемешивания и ввести, таким образом, в заблуждение исследователя. В трехфазных каталитических реакторах этот прием более надежен ири условии неизменности соотношения фаз в потоке. [c.74]

    Большое развитие вопросы связи каталитических свойств твердого тела с энергетическими характеристиками реакции и самого твердого тела юлучил 1 в работах Борескова [37], Ройтера [38] и Захтлера [34]. Боресков при этом исходит из предпосылки, что энерг я связи кислорода с катализатором в поверхностном слое окисла входит слагаемым в велич 1ну энергии активащш реакци окисления. Захтлер, изучая реакцию разложения муравьиной кислоты на металлах, получил четко выраженную вулканообразную кривую активности катализаторов 0 те Лоте образования формиатов металлов, промежуточное образование которых было доказано ИК С1 ектрами. Более подробно связь термодинамических араметров с каталитической активностью рассмотрена в главе IV в связи с про-блемо одбора катализаторов. [c.32]

    Пока нет теоретического объяснения такого увеличения скорости гетерогенных каталитических реакций в жидкой фазе по сравнению с газовой. Можно предполагать, что это явление в какой-то мере связано с тем, что жидкость является иолуупорядоченной системой , к которой неприменимы принципы классической химической кинетики, базирующейся на теории столкновений и кинетической теории газов. Вследствие существования ближнего порядка в расположении молекул, т. е. их определенной ориентации и взаимного влияния, возможно, что понижение энтропии АЗ при образовании активированного комплекса реагентов с катализатором составляет незначительную величину это резко сказывается на скорости процесса (см. раздел 1.1). Точно так же объединение молекул в сольватацион-ные комплексы может сопровождаться понижением энергии активации реакции, подобно тому, как это имеет место при интермолекулярных превращениях. [c.42]

    Кинетическая функция (11.89) при средних заполнениях поверхности не может быть разбита, как (П.6), на два сомножителя, один из которых зависел бы только от температуры, а другой — только от концентрации. Если же все-таки представить скорость реакции в каком-либо интервале температур и концентраций уравнением типа р = хС", то кажущаяся энергия активации реакции будет находиться в пределах Е — < Е < Е, а порядок реакции — в пределах О Са С 1. Лангмюровская теория адсорбции объясняет, таким образом, распространенность дробных порядков в каталитических реакциях. Кажущаяся энергия активации, как и кажущийся порядок реакции, физичёского смысла не имеют и пригодны лишь для аппроксимации кинетического уравнения в некоторой ограниченной области обе эти величины меняются с изменением температуры и концентрации реагирующего вещества. [c.82]

    Линейные корреляции формулируются как принцип линейных соотношений свободной энергии (ЛССЭ), который применяется для создания количественной теории органических реакций [29, 30]. Эта теория базируется на трех известных уравнениях уравнении Бренстеда, связывающем скорость каталитической реакции с константой диссоциации катализирующей кислоты (основания) уравнении Гаммета — Тафта, связывающем скорости однотипных реакций с индуктивными, стерическими и другими эффектами заместителей в гомологическом ряду соединений уравнении Поляни—Воеводского—Семенова, связывающем энергию активации взаимодействия радикала и молекулы с тепловым эффектом этой реакции в ряду однотипных превращений. [c.158]

    Модельные эксперименты по термодеструкции ВМС из атабасского битума в присутствии горных пород показали [1065], что энергия активации реакций отщепления коротких алифатических цепочек от макромолекул очень мала (25—60 кДж/моль). Авторы цитируемой работы объясняют это каталитическим влиянием минеральных веществ. Эти результаты подтверждают реальность протекания процессов такой деструкции в условиях недр. [c.201]

    На рнс. 2.17 схематически показано изменение энергии реакционной системы при бескаталитическом (кривые 1 — а — 2) и каталитическом путях реакции. Снижение энергии активации в присутствии катализаторов Д кат будет тем значительнее, чем активнее катализатор. Так, энергия активации реакции 2Н1 = Нз + Ь снижается при введении Аи со 184 до 105 кДж, а в присутствии Р1 — до 69 кДж. [c.224]

    Чтобы каталитическая реакция протекала быстрее гомогенной некаталитической, необходимо, чтобы катализатор повышал степень компенсации энергии разрывающихся связей энергией образую1цихся. На рис. 4.2 показано изменение энергии на различных стадиях простой экзотермической реакции. .ом> - адс> де это энергия активации гомогенной реакции, адсорбции реагентов на катализаторе, образования активированного комплекса и десорбции продуктов соответственно и Чдес - экзотермическая теплота адсорбции и эндотермическая теплота десорбции А Я - общее изменение энергии в реакции, ко- [c.86]

    Чтобы каталитическая реакция осуществлялась, энергия активации ее должна быть ниже, чем некаталитической. Таким обра- зом, энергия активации каталитической реакции всегда меньше [c.133]


Смотреть страницы где упоминается термин Энергия каталитических реакций: [c.304]    [c.306]    [c.341]    [c.346]    [c.11]    [c.63]    [c.159]    [c.562]    [c.134]   
Кинетика и катализ (1963) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Перекись водорода. Динамика многоатомных молекул. Молекулярная энергия, ее распределение по отдельным химическим связям, работа разрыва связи. Гетерогенные и гомогенные каталитические реакции распада молекул перекиси водорода

Реакции каталитические

Реакции энергия реакций

Энергия активации гетерогенно-каталитических реакций

Энергия активации каталитических реакций

Энергия активации некоторых каталитических реакций

Энергия гетерогенных каталитических реакций



© 2025 chem21.info Реклама на сайте