Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография определение колоночная

    При выделении и разделении смеси биологически активных веществ, полученных из лекарственного растительного сырья, с целью их идентификации и количественного определения чаще всего применяют тонкослойную, бу.мажную и колоночную хроматографию, Для исследования биологически активных веществ в сырье используют люминесцентный метод анализа, газожидкостную хроматографию, а также УФ, ИК и масс-спектроскопию. [c.3]


    Область применения тонкослойной хроматографии практически безгранична, что объясняется возможностью большого выбора слоев различных сорбентов. Для разделения полярных веществ применяют слои адсорбентов, для гидрофильных — распределительную хроматографию на целлюлозе или силикагеле, для гидрофобных — импрегнированные слои (обращенные фазы). Можно применять также ионообменную или гель-хроматографию в тонком слое. Метод тонкослойной хроматографии в настоящее время применяют в основном для целей качественного анализа. Количественное определение возможно в такой же степени, как и в бумажной хроматографии. При проведении определений можно работать с очень небольшими количествами веществ, разделение проходит быстро и с умеренными затратами. Тонкослойную хроматографию в связи с этим можно применять для предварительных опытов по выбору фаз для разделения больших количеств веществ методом колоночной хроматографии. [c.361]

    Количественное определение ионов методом осадочной хроматографии основано на прямолинейной зависимости между количеством хроматографируемого вещества и размером зоны. Характерным признаком осадочной хроматограммы являются четкие границы зон и одинаковая интенсивность окраски зон по длине, что свидетельствует об одинаковой плотности осадка, образующего зону (см. стр. 205). Этого не всегда можно достигнуть другими методами хроматографии. Это преимущество осадочной хроматографии (как колоночной, так и тонкослойной или бумажной) позволило достаточно эффективно использовать ее для количественного анализа разделяемых ионов. [c.210]

    С ПОМОЩЬЮ бумажной, колоночной, тонкослойной [83а], газовой и жидкостной хроматографии [84]. Например, рацемическую миндальную кислоту удалось разделить почти полностью колоночной хроматографией на крахмале [85]. Известно много примеров разделения газовой и жидкостной хроматографией на колонках с хиральными абсорбентами [86]. Такие колонки теперь выпускаются промышленностью, причем можно подобрать колонку для разделения энантиомеров определенных типов соединений [86а]. [c.160]

    Оценка разделения. Для определения состава пигмента листьев растений Цвет применил метод разделения на колонке, заполненной СаСОд. Он получил окрашенные зоны на сухом наполнителе, которые разделил механически, удалив наполнитель из колонки и разрезав его. Такой способ получения внутренней хроматограммы не типичен для современной техники проведения колоночной хроматографии. Его применяют лишь в особых случаях. Для удобного выделения вещества работу проводят с разъемными колонками или с колонками, снабженными пластмассовыми шлангами, отделяемыми после окончания процесса разделения. В случае разделения окрашенных веществ в самой колонке можно провести качественную оценку разделения (по значению определить ширину зоны и провести полу количественное определение концентраций растворов (применяя эталоны). Для количественного определения необходимо проэкстрагировать вещество из механически выделенных из колонны фракций и затем определить его содержание при помощи какого-либо метода. [c.353]


    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]

    Сравнивая тонкослойную хроматографию с колоночной, можно отметить следующие преимущества первого метода 1) простоту приемов и оборудования 2) невысокую стоимость анализа 3) большие потенциальные возможности (для управления процессом разделения используют не только жидкую, но и газовую фазу возможно качественное и количественное определение всех анализируемых соединений независимо от их хроматографической подвил<ности). Необходимо указать, однако, и на некоторые недостатки классического метода по сравнению с колоночной детекторной жидкостной хроматографией, а именно на существенную длительность высокая трудоемкость и продолжительность характерна также для методики количественного определения. [c.6]

    Замораживание и измельчение, экстракция диэтиловым эфиром, колоночная хроматография, определение на рефрактометре или УФ-детекторе [c.415]

    Преимуществом колоночной хроматографии является возможность количественного фракционирования больших количеств веществ без превращения их в какие-либо производные. Однако хорошее разделение часто возможно лишь при малых скоростях элюирования, поэтому были разработаны новые виды колоночной хроматографии. Методы аффинной и адсорбционной хроматографии основаны на избирательной адсорбции молекул на нерастворимом адсорбенте, который содержит группы (молекулы), специфически взаимодействующие с молекулами подлежащих очистке соединений, например ингибиторы (для очистки ферментов) или антитела (для очистки антигенов) в настоящее время эти методы нашли широкое применение и для разделения углеводов. Невзаимодействующие с адсорбентом примеси удаляются, а связанный с адсорбентом сахар затем десорбируют способом, не приводящим к его разрушению. Десорбцию можно осуществить, изменяя pH, ионную силу среды или применяя соответствующий ингибитор взаимодействия, удерживающего вещество на адсорбенте. Для разделения ряда полисахаридов были использованы иммобилизованные формы (см. разд. 26.3.7.6) конканавалина А [40], являющегося фитогемагглютинином (лектином), который специфически взаимодействует с разветвленными полисахаридами определенного строения в настоящее время применяют и другие иммобилизованные фитогемагглютинины. Колоночная хроматография на носителях, покрытых полиароматическими соединениями [41], также находит применение для разделения полисахаридов. Благодаря достижениям в производстве носителей для жидкостной хроматографии под высоким давлением можно осуществить хроматографическое разделение быстро и избирательно описаны методы фракционирования небольших олигосахаридов, продолжающегося менее 1 ч [42]. [c.224]

    Для организаций и предприятий выполнен ряд работ с доведением до аттестации и выдачи свидетельств на методики определения нефтепродуктов методом колоночной- хроматографии с [c.138]

    ТСХ следует применять и в тех случаях, когда колоночная. хроматография не позволяет с достаточной определенностью установить наличие и состав примесей в смеси. Решить эту задачу можно двумя путями. Первый путь состоит в том, что исследуемую смесь хроматографируют в колонке и снимают хроматограмму (рис. 1М.22,а). [c.157]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]


    Итак, адсорбционно-комплексообразовательная и окислительно-восстановительная хроматография (последняя в колоночном, диффузионном и тонкослойном пиковом вариантах) могут быть эффективно использованы для качественного и количественного определения неорганических веществ, их концентрирования, разделения, выделения, глубокой очистки и решения других задач аналитической химии. [c.225]

    В табл. 1 дана классификация хроматографических методов анализа, основанная на этих показателях. Как видно изданных, приведенных в таблице, при хроматографическом анализе наиболее часто используется колоночная техника работы. Один и тот же метод хроматографического анализа может применяться в различных вариантах, например, осадочную хроматограмму можно получить в колонке с сорбентом, на бумаге или в гелях. Определенный принцип разделения, например, распределение молекул между двумя фазами, лежит в основе различных методов хроматографического анализа. Необходимо также отметить, что в методах тонкослойной хроматографии возможен практически любой принцип разделения — сорбционный, распределительный, ионообменный и т. д. Однако чаще всего разделение в тонких слоях сорбента используется в адсорбционной, распределительной и ионообменной хроматографии жидкостей. [c.7]

    Технически хроматографическое разделение в колоночном варианте хроматографии весьма простое. Раствор образца, содержащий смесь разделяемых компонентов, вводят в колонку определенной длины, плотно заполненной неподвижной фазой (сорбентом), а затем фильтруют его через эту фазу. В процессе прохождения раствора отдельные компоненты смеси отделяются друг от друга вдоль колонки. В выходящем объеме подвижной фазы определяют каким-либо химическим или физико-химическим методом концентрацию каждого компонента. [c.41]

    В отличие от колоночной жидкостно-адсорбционной хроматографии в тонкослойной хроматографии не получают определенного объема элюата, содержащего компоненты анализируемых веществ, а заканчивают хроматографический процесс разделения, оставляя разделенные вещества на слое адсорбента. [c.128]

    В колоночной хроматографии НФ помещают в хроматографическую колонку, представляющую собой трубку определенной длины и внутреннего диаметра. В тонкослойной хроматографии (ТСХ) слой НФ наносят на инертную подложку. [c.581]

    В НИИнефтеотдаче группой авторов разработана методика определения химической стабильности НПАВ ОП-7, ОП-10 и АФд-12. С ее помощью можно определить качественно и даже количественно наличие не только молекул ПАВ, но и продуктов их деструкции. Контроль за химической стабильностью НПАВ осуществляется методом тонкослойной хроматографии. Сравнение хроматограмм исходного Неонола АФд-12 и продуктов деструкции, полученных в результате эксперимента, позволяет качественно оценить процесс химической деструкции для условий конкретного месторождения. Появление на хроматограмме зон, отличных от зоны исходного ПАВ, свидетельствует о нестабильности последнего исчезновение зоны, характерной для исходного ПАВ,— о химическом превращении всего ПАВ. Продукты химической деструкции и исходный НПАВ выделяли методом колоночной хроматографии. Для количественного определения Неонола и продуктов деструкции использовали растворители, имеющие различную элюирующую способность. [c.99]

    В раздел включены также задачи, знакомящие с методами выделения липидов из биологического материала, фракционированием их с помощью колоночной и тонкослойной хроматографии, с методами количественного определения. [c.5]

    Для определения К. используют бумажную и колоночную хроматографию (в отсутствие анзерина) или фотометрируют при 640 нм продукт его взаимод. с о-фталевым альдегидом. Последний метод используют для суммарного определения анзерина и К. [c.332]

    Это следует из того, что существует определенная связь между основными параметрами удерживания в ТСХ и в колоночной хроматографии  [c.333]

    Радиоизотопный анализ производных жирных и желчной кислот, приготовленных с использованием и разделенных методом хроматографии на бумаге, осуществляли путем непосредственного измерения радиоактивности пятен хроматограммы [91, 94, 95] или путем приготовления из бумажной хроматограммы авторадиограммы и последующего измерения интенсивности хроматографических зон с помощью записывающего микрофотометра [92, 93]. Использовали и жидкостные сцинтилляционные счетчики в комбинации с жидкостной колоночной хроматографией [96]. При использовании жидкостного сцинтилляционного счетчика в комбинации с тонкослойной хроматографией чувствительность метода, в котором применяется для определения динитрофенильных производных аминокислот [97], возрастала в сто раз, достигая 1 пМ 98] при воспроизводимости результатов d=6%. Анализируя аналогичным методом смеси кислот известного состава, можно идентифицировать анализируемые кислоты и оценить их количества. Определенным преимуществом диазометана является отсутствие пространственных эффектов при проведении вышеуказанных реакций. [c.154]

    КАЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ ГАЛОГЕНИДОВ МЕТОДОМ КОЛОНОЧНОЙ ОСАДОЧНОЙ ХРОМАТОГРАФИИ [4] [c.133]

    Кислоты этерифицируют диазометаном и анализируют смесь метиловых эфиров методом газожидкостной хроматографии. Для анализа кислот мол<ет быть исиользовап также метод колоночной хроматографии. Карбонильные соединения анализируют методом ГЖХ или переводят их в гидразоиы, которые затем идентифицируют методом тонкослойной хроматографии. Определение спиртов также можно проводить методом ГЖХ. [c.96]

    Для объективной оценки эффективности применения НПАВ в процессах повышения нефтеотдачи пластов был разработан метод определения химической стабильности НПАВ типа ОП-7, ОП-10 и АФ9-12 в условиях, приближенных к пластовым [32]. Метод позволяет судить о количественном и качественном присутствии НПАВ и продуктов их деструкции. Лабораторные испытания НПАВ на химическую стабильность проводились в присутствии пластовой воды и породы продуктивного пласта в герметических сосудах -автоклавах - в термобарических условиях конкретного месторождения при постоянном, контроле за температурой и давлением. Контроль за химической стабильностью НПАВ осуществлялся методом тонкослойной хроматографии. Сравнение хроматограмм исходного неонола и продуктов его деструкции, полученных в результате эксперимента, позволяет оценить процесс химической деструкции для условий конкретного месторождения. Появление на хроматограмме зон, отличных от исходного ПАВ, свидетельствует о возникновении продуктов деструкции НПАВ, а исчезновение зоны, характерной для исходной НПАВ - о полной химической деструкции последнего. Продукты химической деструкции и исходный НПАВ выделяли методом колоночной хроматографии с использованием растворителей, имеющих различную элюирующую способность, что позволило количественно разделить реакционную массу на фракции, содержащие отдельные продукты деструкции и исходный неонол. Выделенные индивидуальные продукты химической деструкции НПАВ идентифицировались методами ИК-, ЯМР-Н - и С - спектроскопии и элементного анализа. Степень химической деструкции рассчитывали по формуле  [c.19]

    Основа количпсщвениого анализа в колоночной хроматографии — определение высоты илн площади пика. В случае внутренних хроматограмм может быть измерена полная интенсивность пятна вещества, например в тонкослойной хроматографии (ТСХ). Хроматографические методы являются методами относительными, т. е. можно сказать, что градуировка проводится путем определения стандартных веществ. При этом можно использовать как внутренние, так и внешние стандарты. [c.244]

    Количественное определение многих веществ на полиамидном сорбенте еще более упрощается, если использовать хроматографирование не на колонках, а на незакрепленном тонком слое полиамида. В этом случае требуются очень небольшие количества исходных растворов, элюция производится тоже в микромасштабах, ускоряется ход анализа. Но, пожалуй, более важным преимуществом тонкослойной хроматографии перед колоночной в данном случае является возможность более четкого разделения исследуемых веществ, а следоватсльпо, н более точного их определения. Быстрота анализа на тонком слое и наглядность метода позволяют тщательно подобрать наиболее подходящие системы для лучшего разделения веществ. [c.124]

    Колоночная адсорбционная хроматография на силикагеле или оксиде алюминия позволяет выделить концентрат гетероатомных соединений. Лишь небольшая часть 2—10 % общего их количества может остаться в углеводородной фракции. Для адсорбционного выделения гетероатомных соединений можно воспользоваться стеклянными хроматографическими колонками, объемное отношение адсорбента к разделяемому сырью от 1 10 до 5 1. При максимальном отношении адсорбента к сырью получают фракции алкано-циклоалкановых, моноцикло- и бициклоаренов, а также адсорбционные смолы (концентрат гетероатомных соединений). Во фракции адсорбционных смол сосредотачивается подавляющая часть серу-, азот- и кислородсодержащих соединений нефтяной фракции. Элюентом углеводородных фракций служит изопентан, петролейный эфир или бензол, десорбентом смол — спирто-бен- зольная смесь (1 1) и некоторые другие полярные растворители. Например, выделение концентрата гетероатомных соединений из прямогонной высокосернистой, высокосмолистой фракции 150— 325 °С арланской нефти осуществлялось с помощью стеклянных хроматографических колонок с восходящим током сырья при объемном соотношении адсорбента силикагеля ШСМ к разделяемой фракции 5 1 [183]. С уменьшением размера частиц силикагеля четкость разделения возрастает, однако скорость перемещения компонентов сырья и растворителей уменьшается, удлиняется время разделения. Оперативный контроль хроматографического процесса и определение группового состава фракции осуществляется по адсорбтограмме, построенной в координатах показатель преломления — массовый выход узких фракций . Показатель преломления отдельных хроматографических фракций и гетероатомных [c.82]

    Как отмечалось выше, метод хромато-масс-спектрометр1Ии особенно удобен для определения следовых количеств суперэкотоксикантов в большинстве случаев его используют после вьщеления и концентрирования определяемых соединений из природных матриц. Так, в США и других странах для идентификации и измерения содержания ПХДД и ПХДФ в окружающей среде и промышленных выбросах приняты методики ЕРА № 1613. 8280, основанные на экстракционном вьщелении и очистке указанных соединений с помощью колоночной хроматографии и и> определении методом ГХ-МС, [c.268]

    Среди методов разделения веществ важное место занимают хроматографические методы, которые в последние годы находят все большее применение в аналитической химии. Хроматографию на бумаге и в тонких слоях применяют в качественном анллизе чаще, чем колоночную. Хотя основной областью применения хроматографии является органическая химия, в хроматографии неорганических веществ также достигнуты определенные успехи, о чем можно судить по постоянно растущему числу публикаций на эту тему. [c.85]

    Внутренние и внешние хроматограммы. Вопрос получения внутренних или внешних хроматограмм при разделении веществ имеет важное значение для последующего качественного и количественного определения веществ. Внутренние хроматограммы получают в случае разделения или идентификации веществ непосредственно на стационарной фазе. В этом случае прояви ление хроматограммы заканчивается прежде, чем подвижная фаза доходит до конца слоя сорбента. Если же элюирование продолжают до тех пор, пока вещество вместе с подвижной фазой не достигнет конца стационарной фазы, и исследуют затем небольшие порции элюата, то получают внешнюю хроматограмму при построении зависимости концентрации элюата от его объема, (мл). В случае окрашенных компонентов или при отличии свойств компонентов (различной радиоактивности, способности абсорбировать УФ- или ИК-излучение) от свойств стационарной фазы внутреннюю хроматограмму можно определить визуально или зарегистрировать на стационарной фазе. Хроматограммы такого типа получают в бумажной и тонкослойной хроматографии, отчасти и в колоночной. Бесцветные соединения можно проявлять, химическим путем. Качественный анализ веществ проводят, оценивая за медление передвижения анализируемого вещества относительно движения фронта растворителя. Для этого сравнивают путь, пройденный веществом, с путем, пройденным фронтом растворителя, и отношение между ними обозначают через [c.345]

    Метод колоночной хроматографии является более длительным по сравнению с другими хроматографическими методами, но обладает большей производительностью. Его можно применять для качественного обнаружения лишь окрашенных веществ, или веществ поглощающих УФ-излучение. В иных случаях нужно иметь детекторы или цветнь е реагенты. Однако> метод более пригоден для проведения количественных определений, так как использование проточных нагревателей и сборников фракций позволяет применять менее чувствительные методы определения. [c.354]

    Если разделение компонентов смеси происходит только по распределительному механизму, то, строго говоря, нельзя ожидать полного совпадения между величинами нерн-стовских коэффициентов распределения (а), найденными для той же пары растворителей в статических условиях, когда растворители находятся в свободном состоянии, и расчетным путем, после экспериментального определения R (для колоночной хроматографии) или Rf (для бумажной или тонкослойной хроматографии). Совпадения не может быть из-за сольватации носителя, так как частично связанный носителем неподвижный растворитель обладает меньшей растворяющей способностью. На это важное об- [c.169]

    В колоночной (в том числе газовой) хроматографии по достижении положения, показанного на рис. 61, б, подачу подвижной фазы не прегфащают. Хроматографирование продолжают до тех пор, пока подвижная фаза выносит из колонки разделяемые вещества. Этот процесс называют элюированием, а выходящую из колонки подвижную фазу, содержащую разделяемые вещества, — элюатом. Элюат обычно контролируют на содержание разделяемых веществ с помощью датчиков, которые называют детекторами. Сигналы детекторов принимаются измерительными приборами и передаются к самописцам. Получают хроматограммы, подобные той, которая показана на рис. 61, в. Если на оси абсцисс отложено время, по хроматограмме можно определять время удерживания вещества в колонке. Для 81 это 1, а для 83 — 2 (отсчет времени ведется с момента ввода смеси разделяемых веществ). Часто все же по оси абсцисс откладывают не время, а объем элюата. Нулевая точка тогда соответствует выходу той порции подвижной фазы, в которую была введена смесь разделяемых веществ. Потом в элюате меняются концентрации разделяемых веществ в соответствии с различными степенями их удерживания. По полученной хроматограмме определяют объем удерживания. Для 81 это v , а для 83 = а-Время (объем) удерживания при постоянных условиях хроматографирования представляет собой величину, характерную для данного вещества. Поэтому наряду с другими методами обнаружения для идентификации веществ можно использовать значения времени (объема) удерживания. Количества же разделенных веществ пропорциональны площадям их пиков. Это используют для проведения количественных определений. Можно также собрать отдельные порции элюата и определить содержание в них разделяемых веществ с помощью подходящих методов количественного анализа. [c.258]

    Ж. X. примен. для разделения и анализа р-ров в-в, имеющих небольшое давление насыщ. пара или неустойчивых при повышенных т-рах, а также для физ.-хим. исследований, напр, для определения констант Генри при адсорбции из р-ров. Миним. погрешность измерений составляет ок. 1%. Для разделения ионов металлов и неметаллов успешно использ. т. н. экстракц. хроматография, в к-рой неподвижной фазой служит орг. р-ритель (экстрагент), а недвижной — водные р-ры исследуемых соединений. К колоночной Ж. X. относятся также эксклюзионная хроматография, аффинная хроматография и ионообменная хроматография. Ж. X. предложил М. С. Цвет в 1903—06. [c.204]

    Тонкослойная хроматография (ТСХ английское TL ) и предшествовавший ей метод хродгатографии на бумаге до середины 70-х годов занимали центральное место в исследованиях структуры белков и нуклеиновых кислот. В последнее десятилетие эти методы были явно оттеснены электрофорезом и высокоэффективной жидкостной колоночной хроматографией при высоком давлении. Оба метода превосходят ТСХ но разрешающей способности, а второй из них — и по скорости анализа. Кроме того, в результате ЖХВД экспериментатор получает уже разделенные жидкие фракции исходного препарата, в то время как после ТСХ ему надо еш,е локализовать пятна на пластинке, а в случае необходимости дальнейшего анализа — выполнить длительные операции элюции из них веш,ества. Точное и проводимое в ходе самого фракционирования определение микроколичеств вещества во фракциях прп ЖХВД, которое позволяют осуществить высокочувствительные детекторы и интегрирующие устройства современных жидкостных хроматографов, оставляет далеко позади соответствующие возможности ТСХ — ввиду плохой воспроизводимости процессов элюции из пятен и высокого уровня фона или самопоглощения в слое носителя при использовании оптических, флюоресцентных и радиоактивных методов оценки количества вещества в пятнах на пластинке без его элюции. Наконец, в препаративном варианте фракционирования количественные возможности ТСХ на несколько порядков меньше, чем у обычной колоночной хроматографии и даже у электрофореза. [c.457]

    Адсорбционную хроматографию с использованием в качестве наполнителя колонок силикагеля очень широко применяют в классическом варианте жидкостной хроматографии. При однократном разделении силикагель оказывается достаточно удобным, эффективным и недорогим сорбентом. Очень интенсивно используют силикагель в качестве адсорбента для ТСХ (также однократно). Адсорбционная активность силикагеля достаточно легко воспроизводится путем определенных операций гидроксилирования, сушки, активации. Большой опыт применения силикагеля в ТСХ и колоночной хроматографии, естественно, стимулировал широкое его использование на ранних стадиях развития ВЭЖХ. [c.16]

    Из спектральных методов для анализа Ж. применяют УФ спектроскопию (напр., линолевую к-ту определяют при 231-233 нм, элеостеариновую-при 260-280 нм, октадекан-тетраеновую при 290-320 нм) спектрофотометрию (определение каротиноидов, ксантофилла) ИК спектроскопию (определение отранс-изомеров к-т, моно- и диглицеридов, продуктов окисления-гидропероксидов, карбонильных соединений) и др. Для установления состава и строения Ж, широко используют также жидкостную (бумажную, колоночную, тонкослойную) и газожидкостную хроматографии. [c.157]

    Такое радикальное усложнение технического сопровождения хроматографического процесса приводит к возьгикнопению рчда требований к свойствам подвижной фазы, отсутствующего в классической колоночной и планарной хроматографии. Жидкая фаза должна быть пригодна Ц1Я детектирования (быть прозрачной в заданной обласги спектра или иметь низкий показатель преломления, определенную электропроводность или диэлектрическую проницаемость и Т.Д.), инертна к материалам деталей хрома ографи-ческого тракта, не образовывать газовых пузырей в клапанах насоса и ячейке детек тора, не иметь механических примесей [13,57]. [c.120]

    Для ускорения количественного превращения эфиров в производные с целью их последующего ГХ-анализа широко используют переэтерификацию, особенно метанолиз. Весь процесс требует немного времени и позволяет отказаться от использования концентрированной щелочи, которая может вызывать частичную изомеризацию полиненасыщенных кислот. Для проведения метанолиза на эфир действуют метанолом, содержащим кислоту или основание в результате образуется метиловый эфир соответствующей кислоты. Для определения метиловых эфиров жирных кислот, полученных из липидов [47] и эфиров воска [48], использовали метанольный раствор хлористого водорода. При анализе эфиров, полученных из воска, спирты и метиловые эфиры разделяли с помощью колоночной хроматографии, а затем уже анализировали методом ГХ, причем спирты определяли в форме трифторацета-тов. Для определения метиловых эфиров жирных кислот от Си до Сго, выделенных из липидов сыворотки человека [49], использовали метанол и серную кислоту еще одним реагентом для анализа липидов является ВСЬ в метаноле [50]. В работе [51] описан удобный метод получения производных при комнатной температуре и без выпаривания. В этом методе раствор жира в бензоле переносят в закрытую колбу, добавляют в колбу 2,2-диметокси-пропан (ДМП), метанольный раствор хлористого водорода и оставляют на ночь. После нейтрализации порцию полученного раствора вводят в газовый хроматограф. Кроме пиков метиловых эфиров на получаемой хроматограмме присутствуют и пики изо-пропилиденгликоля, образованного из ДМП и глицерина. Эти пики являются удобными стандартами для определения времен удерживания. ДМП связывает воду и способствует тем самым полному прохождению реакции. [c.141]

    Высокая чувствительность метода обратного изотопного разбавления с радиореагентом, а также селективность, которую обеспечивает применение индикаторного изотопа, позволяют определять микроколичества смесей первичных и вторичных аминов. Эти методы широко применяли в определениях различных аминокислот в биологических образцах [85—88]. В работе [86], в частности, описано использование этих методов для оценки содержания одиннадцати таких соединений в 1 мг белка. Метод с пипсилхлоридом применялся для анализа гистамина, причем в этом анализе проводилось четыре цикла перекристаллизации соответствующего производного с целью его очистки до получения постоянного значения удельной радиоактивности. После проведения этого анализа было предложено [89] применять данный метод для определения любого амина, который дает кристаллический замещенный д-иод-бензолсульфамид. Этим же методом оценивались микрограммные количества 2,4-диоксипиримидина и его 5-метильного производного [90]. Для разделения пипсильных производных в дополнение к бумажной хроматографии применялись жидкофазная колоночная хроматография [91] и тонкослойная хроматография [92]. Хроматографию на бумаге применяли также для оценки радиохимической чистоты реагента [93]. [c.310]

    Р2) или фосфатидную кислоту, В реакциях по гидроксигруппе в остатке 2 дополнительные функциональные группы (амино- и карбоксигруппу) защищают. Исходя из соответствующих энантиомеров могут быть получены оптически активные соединения наиболее простой путь получения разнокислотных фосфатидиловых эфиров часто включает ферментативное деацилирование и повторное химическое ацилирование. Продукты реакции очищают кристаллизацией и(или) колоночной хроматографией степень их чистоты устанавливают тонкослойной хроматографией, гидролизом фосфолипазой А, определением общего состава жирных кислот, удельного вращения и отнощения содержания фосфора и азота. [c.95]


Смотреть страницы где упоминается термин Хроматография определение колоночная: [c.192]    [c.12]    [c.265]    [c.162]    [c.311]    [c.92]    [c.503]    [c.224]   
Курс газовой хроматографии (1967) -- [ c.25 ]

Курс газовой хроматографии Издание 2 (1974) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Качественное определение галогенидов методом колоночной осадочной хроматографии

Определение анионов колоночной хроматографией

Определение катионов четвертой и пятой аналитической группы колоночной ионообменной хроматографией

Определение катионов четвертой, пятой и шестой аналитических групп колоночной хроматографией

Определение количества кадмия колоночной хроматографией

Определение нуклеотидного состава РНК методом колоночной хроматографии

Определение радиоактивности полимеров после фракционирования в градиентах плотности, колоночной хроматографии и противоточного распределения

Хроматография колоночная

Хроматография определение



© 2025 chem21.info Реклама на сайте