Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория ультрафиолетовых спектров

    Теория ультрафиолетовых спектров [c.233]

    Значение р, найденное из наклона кривой на рис. 9.8, состав ляет —248 кДж моль 1 Корреляция между теорией и экспериментом очень хорошая, однако не следует придавать слишком большое значение численной величине р, особенно потому, что прямая не проходит через начало координат, как это должно было бы быть в рассматриваемой упрощенной форме теории Хюккеля. Аналогичную зависимость можно получить для ультрафиолетового спектра ароматических углеводородов, а также и для спектра ненасыщенных альдегидов, что несколько неожиданно. В последнем случае кислород более электроотрицателен, чем углерод, и нет оснований считать, что приближения, лежащие в основе метода Хюккеля,, выполняются. В обоих случаях полученные ЛИНИН достаточно близки к прямым, но имеют различные [c.203]


    Следующая гл. 4, посвященная спектрам поглощения комплексных соединений в видимой и ультрафиолетовой областях, сильно отличается от перечисленных выше. В ней отсутствует изложение техники эксперимента, та к как в основном при изучении спектров поглощения используются обычные методы спектроскопии, но зато очень серьезно и подробно изложены современные теоретические представления. Она содержит основы теории атомных спектров и изложение теории кристаллического поля. Чтение этой главы потребует от читателя несколько большего труда, чем чтение остальных глав однако, если проработать ее серьезно, можно получить полное представление о современных теоретических положениях и читать сложные оригинальные работы в данной области. Сводка экспериментальных данных носит в основном иллюстративный характер при этом разобрано большое число наиболее существенных примеров. [c.6]

    Полученные нами данные о спектрах поглощения сераорганических соединений в ультрафиолетовой области могут быть использованы для аналитических целей, а также могут оказаться полезными в разработке теории электронных спектров сераорганических соединений. [c.236]

    Следует отметить, однако, что теория, связывающая электронное состояние молекул с ее ультрафиолетовыми спектрами, в настоящее время разработана недостаточно. Отнесение полос поглощения к определенному типу электронных переходов производится обычно по направлению сдвига электронного спектра при растворении или с использованием полуэмпирических представлений. В настоящее время нет также и строгой теории, связывающей изменения в ультрафиолетовом спектре с характером межмолекулярного взаимодействия. [c.26]

    В настоящее время для некоторых целей довольно часто используют фотоэлектрическую и фото ионизационную регистрацию, а монохроматоры для вакуумного ультрафиолета начинают применять в качестве ионных источников для масс-спектрографа, в результате энергии диссоциации и ионизации определяются значительно точнее, чем методами электронного удара. Было установлено, что поглощение коротковолновой радиации в верхних слоях атмосферы играет важную роль, и для подтверждения теории происходящих при этом явлений фотодиссоциации и фотоионизации использовались данные по ультрафиолетовым спектрам газов, присутствующих в атмосфере. В области атомных спектров были изучены процессы автоионизации в атомных парах работы проводились на стандартных длинах волн. В настоящем обзоре будет, очевидно, удобнее сначала рассмотреть некоторые экспериментальные данные, а затем обсудить выводы, которые можно сделать на основе этих данных. [c.75]


    Однако для теории ультрафиолетовых и видимых спектров было недостаточно одного указания на то, что это электронные спектры. Необходима была более глубокая теория. Основой для такой теории стала гипотеза Бора (1913), которая, как он суммировал ее суть в 1916 г., сводится к предположению о том, что атомная система может сколь-нибудь долго существовать лишь в виде определенной последовательности состояний, которые соответствуют прерывному ряду значений энергии системы, причем каждое изменение энергии, связанное с поглощением или испусканием электромагнитного излучения, должно иметь место при переходе между такими стационарными состояниями [54, с. 123]. Конечно, даже переход от этой гипотезы Бора и его истолкования спектрального поведения атома водорода к общей теории электронных спектров атомов произошел не сразу, тем более это относится к электронным спектрам молекул. Основы этой теории, а именно понимание того, что образование электронных молекулярных спектров связано одновременно с изменением вращательного, колебательного и электронного квантовых чисел, были, однако, уже совершенно ясны в 1926 г, [55, с. 168] и были подготовлены, в частности, успешной разработкой теории вращательно-колебательных спектров в инфракрасной области. [c.235]

    Существующая общая теория электронных спектров не дает, так сказать, дедуктивного ответа на конкретные вопросы, интересующие химика-органика, ибо зависимость между поглощением в ультрафиолетовой и видимой области спектра, с одной стороны, и структурой сложных молекул, с другой, даже в наши дни остается сугубо эмпирической, и нужно довольно подробно изучать хромофоры, чтобы эффективно использовать спектры в решении структурных проблем [58, с. 190]. Неудивительно, что в руководствах по практическому применению ультрафиолетовой спектроскопии в органической химии ссылки на квантовохимическую теорию электронных спектров [c.235]

    Закон Мозли объясняет рассмотренная выше теория спектров Бора. Подобно тому как линии оптических видимых и ультрафиолетовых спектров элементов возникают в результате перескоков внешних электронов с более высоких к более низким уровням, линии характеристического рентгеновского спектра возникают в результате таких же перескоков внутренних, более близких к ядру электронов. Это отличие объясняет характерные различия между оптическими и рентгеновскими спектрами. Первые обнаруживают периодичность строения (например сходство спектров всех щелочных или всех щелочноземельных металлов), объясняемую сходством строения внешней оболочки электронов. Такая периодичность отсутствует в внутренних слоях электронов поэтому ее нет и в рентгеновских спектрах. Оптические спектры испытывают большие изменения при комбинации атомов в молекулы, так как при этом внешние электронные оболочки изменяют свое строение. Наоборот, при химических процессах не только ядро, но и внутренние электроны не затрагиваются, так как они экранированы от внешних воздействий слоем наружных электронов и, в соответствии с этим, на рентгеновские спектры мало влияют изменение агрегатного состояния элемента и его переход в то или иное соединение с другими элементами. Наконец, рентгеновские спектры значительно проще оптических потому, что для перескоков внутренних электронов предоставлено меньше возможностей, чем для внешних, ввиду того что большая часть внутренних уровней уже занята другими электронами. Теория Бора также легко объясняет, почему перескоки внутренних электронов дают значительно более коротковолновое излучение, чем перескоки внешних электронов. Действительно, как было показано в 62, энергия уровней обратно пропорциональна квадрату главного квантового числа п. Поэтому разность двух соседних уровней тем больше, чем меньше п. Внутренним электронам отвечают уровни с малыми п и согласно условию частот (32) их переходам отвечают более крупные фотоны Ь, т. е. более коротковолновое излучение. [c.109]

    Что касается селективного хода спектральной характеристики фотоэффекта, то в случае тонких плёнок на поверхности металлов и эксперимент и теория единогласно приходят к наличию селективного эффекта. В отношении поверхностей щелочных металлов высшей степени чистоты между современными теориями фотоэффекта и экспериментом имеется определённое разногласие. Отсутствие или наличие селективного фотоэффекта в случае других чистых металлов пока не установлено из-за необходимости экспериментировать в коротковолновой области ультрафиолетового спектра. [c.146]

    Значение р, найденное из наклона кривой на рис. 9.8, составляет —-248 кДж-моль . Корреляция между теорией и экспериментом очень хорошая, однако не следует придавать слишком большое значение численной величине р, особенно потому, что прямая не проходит через начало координат, как это должно было бы быть в рассматриваемой упрощенной форме теории Хюккеля. Аналогичную зависимость можно получить для ультрафиолетового спектра ароматических углеводородов, а также и для спектра ненасыщенных альдегидов, что несколько неожиданно. В последнем случае кислород более электроотрицателен, чем углерод, и нет оснований считать, что приближения, лежащие в основе метода Хюккеля, выполняются. В обоих случаях полученные линии достаточно близки к прямым, но имеют различные наклоны, дающие значения Р —260 кДж-моль и —296 кДж-моль соответственно ни одна из этих линий не проходит через начало координат. Вероятно, наибольший источник ошибок заключается в предположении, что все связи имеют одинаковую длину, тогда как известно, что в линейных полиенах связи попеременно длинные и короткие. [c.203]


    Электронографическое исследование структуры молекул МоР и WPg привело к заключению [60], что они имеют форму неправильных октаэдров. Исправление теории диффракции электронов молекулами [61 ] делает этот вывод сомнительным. Исследования спектров комбинационного рассеяния света [62, 63] и инфракрасного [63, 86] показывают, что эти молекулы являются правильными октаэдрами. Исследован [62] и ультрафиолетовый спектр поглощения. [c.640]

    Наряду с исследованием захваченных радикалов получило развитие и другое направление. Л етод электронного парамагнитного резонанса физики применили для изучения радиационных дефектов в неорганических твердых телах. Ранее одним из основных экспериментальных методов в области физики твердого тела было изучение ультрафиолетовых спектров таких кристаллов. В связи с этим дефектные центры часто называют центрами окраски . Наибольший интерес представляло исследование влияния таких центров на электрические свойства твердых тел, которые интерпретировались обычно в рамках зонной теории. [c.13]

    Не все молекулы поглощают в инфракрасной области. Из электромагнитной теории излучения следует, что поглощать световую энергию может лишь молекула, обладающая электрическим дипольным моментом, величина или направление которого изменяется в процессе колебания и вращения. Поэтому молекулы типа С1г, Ог и им подобные, лишенные дипольного момента и не приобретающие его в процессе колебания, в инфракрасном спектре неактивны. Они становятся активными в ультрафиолетовом спектре, так как при переходе молекулы из одного электронного состояния в другое первоначальная симметрия электронной оболочки нарушается. [c.56]

    Классическая физика затруднялась объяснить этот факт, так как, согласно ее законам, интенсивность излучения должна непрерывно возрастать по мере увеличения частоты, а не снижаться после прохождения максимума. Она предсказывала, что в спектре излучения должно быть гораздо больще синей и ультрафиолетовой компонент, чем наблюдается в действительности, и что, следовательно, все нагретые предметы должны казаться человеческому глазу синими. Такое полное противоречие теории экспериментально наблюдаемым фактам получило у физиков того времени название ультрафиолетовой катастрофы. [c.336]

    Можно ли применить подобные рассуждения к молекулам Да, можно, причем двояко. Во-первых, из спектроскопии известно, что характеристические частоты электронов в молекулярных системах лежат в видимой и ультрафиолетовой областях спектра, тогда как частоты колебаний ядер — в инфракрасной области, так что (oj / u ) 100 и критерий адиабатичности для молекул выполняется (правда, как мы увидим далее, — не всегда). Во-вторых, слоистое строение электронных оболочек атомов и молекул позволяет разделить электроны на группы в зависимости от скорости их движения, так как периоды движения оптических (валентных) электронов и электронов остова существенно различаются. В настоящее время адиабатическое разделение быстрых и медленных электронов применяется главным образом в теории атомов, и мы о нем в дальнейшем говорить не будем, сосредоточив внимание на адиабатическом разделении электронных и ядерных движений. [c.109]

    Бор не ограничился объяснением уже известных свойств спектра водорода, но на основе своей теории предсказал существование и местоположение неизвестных в то время спектральных серий водорода, находящихся в ультрафиолетовой и инфракрасной областях спектра и связанных с переходом электрона на ближайшую к ядру орбиту и на орбиты, более удаленные от ядра, чем вторая. Все эти спектральные серии были впоследствии экспериментально обнаружены в замечательном согласии с расчетами Бора. [c.44]

    Эмпирическая теория красителей получила разъяснение с позиций современных электронных представлении. Окраска — это избирательное поглощение света определенной длины волны. Все органические вещества обладают способностью к такому избирательному поглощению в ультрафиолетовой части спектра при этом происходит поглощение энергии и возбуждение электронов, их переход на более высокие орбитали. Хромофорные группировки сдвигают избирательное поглощение в видимую область. Это происходит за счет того, что электроны в сопряженных системах (а таковыми и являются хромофоры) обладают повышенной подвижностью, для их возбуждения достаточно квантов и видимого света с относительно небольшой энергией. [c.329]

    Лучше это можно проследить на соединениях, содержащих ароматические радикалы, так как их спектры лежат в области доступной обычным спектральным приборам, и они лучше изучены. Пока атом серы отделен от ароматического хромофора несколькими насыщенными углеводородными звеньями, спектр почти количественно является суммой спектров поглощения алкилсульфида и алкиларила. При непосредственной связи атома серы с ароматическим радикалом тонкая структура спектра, характерная для последнего, исчезает, интегральная интенсивность поглощения резко возрастает. В большинстве случаев изменяется не только форма и интенсивность полос поглощения, но и их положение относительно соответствующих параметров монофункциональных соединений (насыщенных соединений серы и ароматических или непредельных углеводородов). Отсутствие аддитивности в ультрафиолетовых спектрах непредельных (в.том числе ароматических) органических соединений двухвалентной серы свидетельствует о наличии более или менее значительного взаимодействия 1г-связей с неподеленными Зр-электронами атома серы, осложненного, вероятно, влиянием Зй-орбиталей серы. Фрагмент структуры, состоящий из ненасыщенного элемента с присоединенной к нему серой становится новым хромофором, с характерным для него спектром, а присоединенные к нему углеводородные насыщенные радикалы действуют на спектр поглощения как ауксохромы. Вопрос же о характере взаимодействия электронной оболочки атома серы с тг-электронами ненасыщенных хромофоров в настоящее время еще не решен, теория явления стала предметом оживленной дискуссии, по-видимому, еще далекой от завершения. [c.162]

    В гл. 7 было показано, что при решении уравнения Шрёдингера для молекул, обладающих симметрией, весьма удобны методы теории групп. В некоторых случаях оказывается полезным установить связь между решениями для молекулы с низкой симметрией и решениями для молекулы, обладающей высокой симметрией. Например, и пиридин СбНбМ, и толуол С6Н5СН3 обладают низкой симметрией, однако их можно связать с бензолом, обладающим высокой симметрией рассматривая в первом случае в качестве возмущения замену группы СН атомом К, а во втором — замену Н на группу СН3. Такой подход выявляет тесную связь некоторых физических и химических свойств этих трех молекул, например их ультрафиолетовых спектров поглощения. [c.238]

    Б теории Хюккеля донорно-акцепторные свойства зависят по крайней мере от двух факторов энергии орбиталей заместителя, обладающих я-симметрией, и величины соответствующего резонансного интеграла. В некоторых молекулах важность этих двух факторов можно оценить раздельно, путем смещения групп заместителей вне плоскости сопряженного углеводорода, так что ах остается постоянным, а 3сх изменяется, будучи приближенно пропорциональным углу изгиба. Таково, как показано на рис. 14.34, влияние введения больших групп R и R в орто-иоло-жение диметиламинозамещенных соединений, причем как ультрафиолетовый спектр, так и химические свойства таких молекул чувствительны к углу ф. [c.346]

    Конечно, рассчитанные теплоты реакций можно сопоставить с калориметрическими измерениями, но опять-таки полуколичественно В результате оказывается, что количественные сопоставления результатов квантово-химических расчетов возможно проводить пишь дпя таких экспериментов, в которых в хорошем приближении молекула выступает как индивидуальная система, слабо зависящая от окружения, влиянием которого можно пренебречь Это, во-первых, эксперименты по дифракции электронных пучков на молекулах в газовой фазе и, главное, спектральные эксперименты Последние особенно важны потому, что, в сошасии со вторым постулатом Бора, индивидуальные молекулы, если так можно сказать, ничего не умеют делать , кроме как поглощать или излучать электромагнит энергию и рассеивать падающие на нее частицы При этом наименьшее воздействие на моле оты оказывает именно взаимодействие с квантами электромагнитного излучения не очень высокой энергии В оптических и микроволновых спектрах молекул содержится вся информация, которую, в принципе, можно получить, решая соответствующее уравнение Шрёдингера Именно поэтому результаты теоретических расчетов молекулярных спектров дпя различных диапазонов шкалы электромагнитных волн (ультрафиолетовая и видимая обпасти, инфракрасная и микроволновая) дают наилучшую базу дпя контроля качества всех важнейших этапов квантово-химических вычислений путем сопоставления их с реальными спектрами Алгоритмы таких вычислений составляют содержание теории молекулярных спектров Эта теория образует отдельную главу теоретической фшики молекул, и поэтому ее более или менее подробное изложение не является нашей задачей Мы здесь [c.334]

    Сведения, получаемые из спектров кристаллов, могут быть использованы для решения разнообразных задач. Например, из сопоставления ультрафиолетовых спектров поглощения кристаллов различных гомологов бензола оказалось возможным спектральное определение числа и положения боковых цепей в молекулах этих соединений [5], а в ряде случаев — и структуры отдельных радикалов [6]. Кроме того, изучение спектров поглощения кристаллов позволяет идентифицировать состав твердой смеси дей-теросоединений различных изотопных форм [7]. Накопление спектральных данных и их систематизация чрезвычайно важны и для peuJeния ряда задач, поставленных в связи с бурным развитием химии и химического синтеза, и для развития общей теории твердого тела. [c.6]

    Применение методов ультрафиолетовой спектроскопии про-лсходило менее интенсивно, главным образом из-за сложности и малой разработанности теории электронных спектров, затруднявшей их интерпретацию, и благодаря методическим затрудне- [c.18]

    Ультрафиолетовые спектры. Растворы простых трет-алкильных катионов в пятифтористой сурьме обладают слабым поглощением (е менее 500) в области 300 ммк [1, 2]. Мы полагаем, что это поглощение обусловлено аллильными катионами, присутствующими в виде примеси в количестве до нескольких процентов и образующимися в процессе диффузии фтор-алкана в пятифтористую сурьму. Несомненно, положение Ямакс соответствует аллильным катионам [4, 7, 9], и именно такие катионы (от мономерных до тетрамерных) легко образуются при реакции алкенов с трет-алкильпыми катионами при таких значениях кислотности, когда концентрации обоих реагентов сравнимы [35, 36]. Более того, применяя цростой метод ЛКАО МО или теорию переноса заряда, мы пришли к заключению, что для простых алкильных катионов Ямакс не должна быть выше 220 ммк. [c.396]

    В настоящее время я-комплексы рассматривают также как комплексы с переносом заряда или внешние комплексы. Для них разработана квантовомеханическая теория типов связи и стабильности [7]. Известно, что эти комплексы образуются между ароматическими соединениями и большой группой акцепторов электронов, таких, как галогены, смешанные галогены, галогеноводороды, ионы серебра, тетрацианэтилеп нельзя не упомянуть также о таких известных комплексах, как пикраты, комплексы с тринитро-бензолом и т. д. [8, 9]. Изучены их УФ-спектры, во многих случаях измерены константы диссоциации, вычислены изменения энтропии и энтальпии их образования. Те комплексы, которые представляют интерес как возможные промежуточные соединения в реакциях ароматического замещения, например комплексы с галогенами, обычно нестабильны и, за некоторым исключением, не были выделены в твердом состоянии. Их существование подтверждается изменениями в ультрафиолетовом спектре при смешении компонентов, измерениями растворимости, давления пара или иногда изменением температуры замерзания [8, 9]. Поскольку они в ка-кой-то степени могут служить моделью промежуточного соединения, их стереохимия представляет значительный интерес и важность. Среди различных предложенных моделей для ароматических комплексов с галогенами на основании изучения ИК-спектров [10] предполагается аксиальная модель (V). В ней два атома галогена размещаются на оси шестого [c.449]

    Многие из наблюдаемых переходов в ультрафиолетовых спектрах простых молекул относятся к ридберговым состояниям. Возбужденный электрон находится на орбитали, подобной АО, для которой молекула выступает целиком в роли псевдоядра, либо единственный тяжелый атом может взять на себя роль ядра. Для таких состояний теория МО имеет небольшое значение, и валентная оболочка особой роли не играет. [c.526]

    В случае тонких плёнок на поверхности металлов эксперимент н теория единоптасно прпходят к наличию избирательного фотоэффекта. В отношении поверхностей ш елочных металлов высшей степени чистоты между современными теориями фотоэффекта и экспериментом имеется некоторое ещё не проверенное разногласие. Наличие избирательного фотоэффекта в случае других чистых металлов установлено пока лишь небольшим числом измерений для нескольких металлов из-за необходимости экспериментировать 1 коротковолновой области ультрафиолетового спектра. [c.64]

    Применяя метод молекулярных орбит к ультрафиолетовым спектрам поглощения для полиаценов от нафталина до пентацена, Ко-ульсон нашел, что самые длинные волны связаны с переходом подвижных электронов симметричных уровней Aig—>Вгц и поляризации вдоль высоты молекулы. Вторая полоса связана с переходом Aig—>-Bin и поляризацией по длинной части молекулы. Согласно теории Люиса — Кальвина, осцилляция с меньшей энергией должна распространяться по длине молекулы как видно из изложенного ранее, это хорошо согласуется с цветностью полиенов, но оказывается неверным для полиаценов. Метод валентных связей, в котором основное состояние и наинизшие возбужденные состояния рассматриваются как комбинация структур Кекуле, не может быть использован для оценки перехода в -направлении. Однако если в этом методе учесть ионные структуры (например А, В и С для антрацена), как широко представленные в возбужденном состоянии, выводы, получающиеся по методам валентных связей и молекулярных орбит, совпадают. Структуры типа А важны для /-поляризации В — главным образом для л-поляризации и С — для обеих. В то же время структура А содержит два бензоидные кольца, С — только одно и В — ни одного это указывает на относительно низкую энергию структуры А, вследствие чего /-переход имеет тенденцию к смещению в длинноволновую область. [c.419]

    Вводная статья посвящена вопросам теории водородной связи. В ней рассмотрены природа водородной связи, закономер-нссти для колебательных частот, для межатомных расстояний, для интенсивности и ширины полос колебательных спектров. Ограниченный объем статьи, естественно, не позволил затронуть все аспекты теории. Остались неосвещенными такие важные вопросы, как влияние среды на спектры водородных связей, влияние водородных связей на межмолекулярные переходы протона, на ультрафиолетовые спектры, на колебания атомов, непосредственно не участвующих в образовании водородной связи, и многие другие. Правда, эти пробелы вводной статьи частично компенсируются другими статьями сборника. [c.5]

    Еще один аргумент в пользу рассматриваемой теории, приведенный в первой статье Вудварда и Гофмана, состоит в том, что стереохимические правила для кольчато-ценной валентной таутомерии основных состояний л-электрон-ных систем будут обращаться при соответствующих фотохимических превращениях. Первая сильная (т. е. разренхенная различием в симметрии зарядов) полоса поглощения в ультрафиолетовом спектре сопряженной я-электронной системы соответствует переходу одного электрона с высшей занятой на низшую незанятую я-орбиталь. Эта новая орбиталь этого электрона будет иметь на одну нодальную поверхность, пересекающую линии связей, больше, чем старая орбиталь. В таком возбужденном электронном состоянии соотношение симметрии по концам я-системы для высшей занятой орбитали будет противоположным симметрии высшей занятой орбитали основного электронного состояния и поэтому в том случае, если стереохимия неадиабатической обратимой циклизации, проходящей через возбужденное состояние, контролируется орбитальной симметрией (заранее это предвидеть нельзя), стереохимические правила должны быть противоположны правилам, применимым к соответствующим реакциям, идущим через основное состояние. Другими словами, при фотохимической реакции бутадиен-1,3 должен переходить в циклобутен дисротаторно, а гексатриен-1,3,5 должен переходить в циклогексадиен-1,3 конротаторно. [c.720]

    При больших квантовых числах линии бальмеровской серии начинают располагаться теснее и сливаются в сплошной спектр ), который простирается несколько дальше теоретической границы серии. Квантовая теория дает объяснение тому факту, что граница серии не имеет никаких видимых особенностей. Сплошное водородное поглощение около границы бальмеровской серии может служить характерным признаком ультрафиолетового спектра звезд типа А его интенсивность имеет обратную корреляцию с абсолютной величиной. Численное значение интенсивности может быть получено сравнением наблюдаемой интенсивности в начале серии с интенсивностью, экстраполированной (на основе опытных данных или по закону излучения абсолютно черного тела) от точек с большей длиной волны, которые не подверглись поглощению (15,8 Р130, 213, 1124). Водородный континуум имеется в излучении планетарных туманностей и в некоторых звездах типа В с сильными линиями излучения в спектрах. [c.19]

    Вычисленные частоты излучений, возникающих при перескоках электрона с одних орбит на другие, оказались совпадающими с частотами линий наблюдаемого на опыте водородного спектра. Как видно из рис. П1-23, перескокам с различных бс лее удаленных от ядра орбит на отвечающую п=1 соответствуют линии серии, лежащей в ультрафиолетовой области, перескокам на орбиту с п — 2 — линии серии Бальмера (рис. П1-21), а перескокай на орбиты с л = 3, 4 и 5-т-линии трех серий, лежащих в инфракрасной области. Две последние серии были обнаружены экс-териментально уже после разработки теории водородного атома и именно на основе ее предсказаний. -  [c.79]

    И нтраконфигу рационные переходы й — (1 или /—/ чрезвычайно характерны для комплексов переходных металлов, лантаноидов и актиноидов. По энергии они захватывают видимую близкую ультрафиолетовую и близкую инфракрасную область спектра (рис. 50) и поэтому сильно влияют на окраску комплексов. Приближенный анализ возможных переходов может быть проведен при помощи теории кристаллического поля. [c.125]


Смотреть страницы где упоминается термин Теория ультрафиолетовых спектров: [c.562]    [c.203]    [c.567]    [c.419]    [c.68]   
История органической химии (1976) -- [ c.233 ]

История органической химии (1976) -- [ c.233 ]




ПОИСК





Смотрите так же термины и статьи:

спектры теория



© 2025 chem21.info Реклама на сайте