Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород азотистый свойства

    Пероксид водорода и азотистая кислота проявляют и окислительные и восстановительные свойства. Обсудите, какая реакция возможна при смешении растворов этих веществ, и проверьте предсказания опытом. Как влияет среда раствора на окислительно-восстановительные свойства веществ  [c.285]

    Гидрокрекинг ведут при температурах до 450 °С и давлении 15—20 МПа в присутствии избытка водорода на бифункциональных катализаторах. Катализаторы для гидрокрекинга должны одновременно обладать расщепляющими, изомеризующими и гидрирующими свойствами. Поэтому они, как правило, содержат в качестве гидрирующего компонента платину, кобальт, никель, вольфрам или молибден, а в качестве деструктирующего и изомеризующего — алюмосиликаты, а в последнее время и синтетические цеолиты. Наконец, катализаторы должны быть нечувствительными к содержащимся в сырье ядам — азотистым и сернистым соединениям, не должны вызывать коксообразования при крекинге и должны работать без регенерации до 4000 ч. [c.25]


    Сложные молекулы и ионы. К этой группе восстановителей относятся молекулы таких веществ, в которых элементы-восстановители обладают промежуточной степенью окисления моноксид азота, моноксид углерода, моноксиды железа и хрома, диоксиды серы и марганца, сернистая кислота и ее соли, азотистая кислота и ее соли, пероксид водорода и другие. Значительная часть этих соединений (диоксиды серы и марганца, сернистая и азотистая кислоты, пероксид водорода и др.) в зависимости от свойств веществ, с которыми они реагируют, могут проявлять как окислительные, так и восстановительные свойства. Так, диоксид серы или сернистая кислота при взаимодействии с окислителями (кислород, галогены) проявляют восстановительные свойства, а при взаимодействии с сероводородом — окислительные. [c.20]

    Бензол и ряд его гомологов, а затем и большая группа других соединений вскоре после их открытия были выделены в группу ароматических соединений, так как обладали особыми, ароматическими свойствами. Вопрос о причинах этих свойств почти со времени создания Бутлеровым теории химического строения — один из важнейших в теоретической органической химии. Главное затруднение было в том, что формула бензола указывает на высокую ненасыщенность, которая не обнаруживается в реакционной способности этого соединения. Бензол не обесцвечивает бромную воду, не окисляется раствором перманганата, не присоединяет серную кислоту. Лишь в особых и достаточно жестких условиях можно провести реакцию между бензолом и бромом, серной или азотной кислотой, причем в результате этих реакций происходит замещение атомов водорода, а не присоединение, характерное для олефинов. Другая особенность, отличающая ароматические соединения от олефинов,— их высокая устойчивость, способность образоваться даже в жестких пиролитических процессах и сравнительная трудность протекания реакций окисления. Наконец, весьма характерными являются свойства некоторых производных ароматических соединений. Так, ароматические амины менее основны, чем алифатические. При реакции с азотистой кислотой [c.12]

    По внешнему виду нефть — маслянистая жидкость от светло-зеленого до темно-коричневого или почти черного цвета, обладающая характерным запахом и заметной флуоресценцией. По химическому составу нефть представляет собой сложную смесь углеводородов, включающую значительные количества кислородных, сернистых и азотистых соединений. Несмотря на то что нефти различных месторождений резко отличаются по своему составу и свойствам, содержание некоторых элементов в них колеблется незначительно. В большинстве нефтей содержание углерода составляет 84—85%, водорода 12—14%, кислорода, серы и азота 1—2%. Плотность большинства нефтей 0,8—0,95. [c.147]


    К счастью, углекислотная коррозия не сопровождается водородным охрупчиванием (двуокись углерода в отличие от сероводорода не замедляет процесс молизации водорода), поэтому приходится думать лишь об уменьшении общей или локальной коррозии. Анализ показывает, что основным коррозионно-активным агентом является двуокись углерода. Карбоновые кислоты, хотя и усиливают коррозию, однако не так сильно, как можно было ожидать, исходя из чисто лабораторных экспериментов. В реальных газоконденсатах, по-видимому, содержатся азотистые соединения, которые обладают, как было выше показано, ингибирующими свойствами. [c.292]

    Удаление активных компонентов топлив. Для удаления незначительного количества неуглеводородных примесей, сильно ухудшающих химическую стабильность реактивных и дизельных топлив, их очищают серной кислотой, адсорбентом, водородом (гидроочистка) и др. Наилучшие результаты получены при сочетании гидроочистки с промывкой разбавленной серной кислотой [1, 2] (рис. 51). Гидроочистку без сернокислотной промывки считают вообще малоэффективной. Это объясняют тем, что при гидроочистке в отдельных топливах остаются следы азотистых соединений неустановленного строения ( 0,004%), которые резко ухудшают свойства топлива, но при промывке разбавленной серной кислотой удаляются. При промышленном производстве реактивных и дизельных топлив промывку кислотой после гидроочистки не проводят. [c.156]

    Состав и свойства нефтяных смол в сильной степени зависят от химической природы нефти, из которой они выделены, характера ее обработки и методов выделения их из нефти и нефтепродуктов. Так как разные исследователи имели дело с различными нефтями и нефтепродуктами и применяли для выделения из них смол весьма разнообразные методы, то вполне понятно и то различие в характеристике состава и свойств нефтяных смол, с которым мы встречаемся в работах,, опубликованных разными авторами. Смолы относятся к классу гетероорганических высокомолекулярных соединений, в состав которых входят, кроме углерода и водорода, кислород, сера, азот и большое число других элементов, в том числе металлов (Ре, №, V, Сг, Mg, Со и многие другие). Кислород и сера присутствуют в значительных количествах (от 1—2 до 7—10%) в смолах почти всех нефтей, тогда как азот является непостоянной составной частью нефтяных смол, хотя содержание его в смолах некоторых нефтей достигает 2% и больше. Смолы составляют от 70 до 90% всех гетероорганических соединений нефти, содержание которых в наиболее тяжелых высокосмолистых нефтях достигает 30—50%- По содержанию углерода (79—87 7о) нефтяные смолы почти не отличаются от асфальтенов, но они богаче водородом (на 1—2%), чем эти последние. В смолах сконцентрирована основная масса всех сернистых, кислородных, а в большинстве случаев и азотистых соединений нефти. В этом кроется причина высокой полярности и поверхностной активности нефтяных смол [191—195]. [c.362]

    Получение азота и нитрида магния.-2. Получение аммиака, его взаимодействие с водой и хлористым водородом. 3. Равновесие в водном растворе аммиака. 4. Восстановительные свойства аммиака. 5. Гидролиз солей аммония. 6. Качественная реакция на ЫН -ион. 7. Получение оксида и диоксида азота и исследование их свойств. 8. Оксид азота(П1) и соли азотистой кислоты. 9. Окислительные свойства азотной кислоты. 10. Окислительные свойства нитратов. 11. Термическое разложение нитратов. 12. Контрольный опыт [c.7]

    Натрий довольно широко применяется в качестве теплоносителя в различных энергетических установках. Он обладает достаточно хорошими физическими и теплофизическими свойствами, позволяющими осуществлять интенсивный теплосъем в различных теплообменных аппаратах (теплотворная способность 2180ккал/кг коэффициент теплопроводности, кал (см-с-град), 0,317 при 21 °С и 0,205 при 100 °С). Вместе с тем натрий характеризуется и существенными недостатками. Он обладает высокой химической активностью, благодаря которой он реагирует со многими химическими элементами и соединениями. При его горении выделяется большое количество тепла, что приводит к росту температуры и давления в помещениях. Он обладает большой реакционной способностью [температура горения около 900 °С, температура самовоспламенения в воздухе 330—360 °С, температура самовоспламенения в кислороде 118°С, минимальное содержание кислорода, необходимое для горения, 5 % объема, скорость выгорания 0,7—0,9 кг/ /(м2-мин)]. При сгорании в избытке кислорода образуется перекись NaaOa, которая с легкоокисляющимися веществами (порошками алюминия, серой, углем и др.) реагирует очень энергично, иногда со взрывом. Карбиды щелочных металлов обладают большой химической активностью в атмосфере углекислого и сернистого газов они самовоспламеняются энергично и взаимодействуют с водой со взрывом. Твердая углекислота взрывается с расплавленным натрием при температуре 350 °С. Реакция с водой начинается при температуре —98 °С с выделением водорода. Азотистое соединение NaNa взрывается при температуре, близкой к плавлению. В хлоре и фторе натрий воспламеняется при обычной температуре, с бромом взаимодействует при темпера- [c.115]


    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]

    В 1916 г. Бергиус построил первый экспе )иментальный завод вблизи Маннгейма однако до 1921 г. успехи были сравнительно незначительными. На этой установке угольную пасту гидрировали в горизонтальиы.х реакторах, в которых для предотвращения коррозии стальных стенок водородом при высоких давлениях и подвода необходимого тепла между внешней стенкой реактора и внутренней камерой циркулировал нагретый азот, сжатый до давления реакции. Полученные на этой установке продукты содержали бензин, дизельное и котельное топливо. Свойства этих продуктов были сходны со свойствами смолы, образовавшейся при полукоксовании того же угля. Пределы кипения свойства масла мo жнo было менять только в очень узких пределах, а полученные топлива по своим свойствам уступали продуктам переработки нефти. Присутствие в маслах, полученных гидрогенизацией угля, фенолов и азотистых оснований, являвшееся недостатком при применении их в качестве топлива. [c.255]

    Активированными частицами в перекиси водорода являются озон Оз и атомы кислорода О, а в азотной кислоте двуокись азота NO2 и азотистая кислота HNO3. Равновесные концентрации активированных частиц в обоих окислителях примерно одинаковы, и с этой точки зрения трудно объяснить различия в свойствах перекисных и азотнокислых травителей. [c.113]

    Мочевая кислота вместе с мочевиной является главным продуктом азотистого обмена веществ в животном организме. Она содержится в небольших количествах в моче человека. У птиц и пресмыкающихся мочевая кислота является основной составной частью экскрементов в экскрементах удава ее количество достигает 90%. При подагре мочевая кислота отлагается в суставах мочевые камни состоят главным образом из мочевой кислоты. В технике мочевая кислота обычно добывается из гуано— скопления экскрементов птии на островах Южной Америки. Мочевая кислота—бесцветный кристаллический порошок, очень мало растворимый в воде. Она обладает слабыми кислотным свойствами в ее молекуле два атома водорода способны замещаться металлом. Если к мочевой кислоте прибавить азотную кислоту и смесь упаривать, то получается желтовато-коричневый остаток, который после прибавления небольшого количества аммиака дает красивое пурпурное окрашивание. Эта мурексидная реакция служит для качественного определения мочевой кислоты. Она объясняется образованием мурексида С НдЫвОд—аммонийной соли пурпуровой кислоты pH5N50в. [c.619]

    К соединениям, окислительные и восстановительные свойства которых проявляются практически одинаково часто, относятся азотистая кислота и ее соли и в несколько меньшей степенй пероксид водорода и пероксиды (для пероксида водорода и его производных более характерно применение в качестве окислителей). [c.245]

    Шестичленные цикланы частью изомеризуются в нятнчленные, частью распадаются. При недостаточном парциальном давлении водорода и высокой температуре идет их дегидрогенизация. Полицикланы в оперативных условиях гидрогенизации превращаются в более простые цикланы. Сернистые, азотистые и кислородные соединения претерпевают ряд превращений. В конечном счете процесс гидрогенизации приводит обычно к отщеплению серы в виде сероводорода, азота в виде аммиака и кислорода в виде воды 1. В последнем случае, нанример нри гидрогенизации фенола, реакция в зависимости от свойств 1 атализатора и режима процесса может пойти в направлении превращения фенола нли в циклогексанол, или в бензол. [c.314]

    Третичные амины, за исключением ароматических с незамещенным водородом в р-положении, в описанных условиях не реагируют с азотистой кислотой и могут быть выделены в неизмененном состоянии. Однако нельзя считать доказанным, что исследуемый продукт является третичным а.мином до того, как подтверждены его основные свойства, т. е. получены его соли и установлено, что продукт реагирует с хлорангидридами и ангидридами кислот,. Кроме того, надо проверить, реагирует ли продукт с иодистым метилом с образованием четвертичной аммониевой соли. [c.535]

    Рассмотрим еще генерирование активных частиц при участии молекул, обладающих свойствами радикала. Такими молекулами являются молекулы окислов азота N0 и КОа- В частности, не исключена возможность, что каталитическое действие окислов азота в условиях медленного окисления углеводородов может быть обусловлено процессом КН + МОа = = К + НКОа- Энергия связи атома водорода н молекуле азотистой кислоты НМОа, равная 78 ккал, дает выигрыш энергии по сравнению с простым распадом молекулы КН на К и Н, в результате чего радикалы К в присутствии N02 рождаются с большей легкостью. Так, энергия активации реакции КОа + СН4 = НКОа Н- СНд составляет 35,5 ккал [355], реакции N0 + СНзСНО = НКОа + СН3СО — около 13 ккал [178]. [c.404]

    Известно, что большинство азотистых оснований является составной частью нефтяных смол и имеет высокие молекулярные массы, гидрофобность углеводородной части которых не позволяет использовать для их выделения водные растворы минеральных кислот. Частичная замена водной фазы в таких экстрагентах на неводную способствует увеличению степени извлечения оснований, но переход на полностью безводные растворы кислот в данном случае невозможен вследствие образования гомогенной фазы. Применение для этих целей комплексообразования, по-видимому, наиболее приемлемый путь, хотя из-за многообразия лигандов различного типа в нефти селективность используемых комплексо-образователей не очень высокая, и поэтому получаемые концентраты, как правило, содержат большой набор гетероатомных соединений. Это объясняется способностью галогенидов металлов, используемых в качестве комплексообразователя (например, Т1С14, РеС1з и др.), давать смешанные комплексы как с П-, так и я-донорами электронов вследствие высокого координационного числа атома металла. Применение реагента-комплексообразователя с более низким координационным числом, по-видимому, позволит повысить селективность извлечения лигандов сходного электронного строения в виде более простых комплексов. Такими реагентами, вероятно, могут быть галогеноводороды, обладающие сильными кислотными свойствами и способные взаимодействовать в первую очередь с сильными оспованиями [23]. Исходя из этих предпосылок, нами разработан метод выделения азотистых оснований с помощью сухого газообразного хлористого водорода непосредственно из нефти или деасфальтенизата [24]. Методически процесс осуществляют путем пропускания хлористого водорода че- [c.121]

    МИНАЧЕВ Хабиб Миначевич (р, 24,ХП 1908) Советский химик-органик, акаде МИК (с 1979), Р, в с. Новые Бик шики (ныне Чувашской АССР)) Окончил Московский ун-т (1939) С 1939 работает в Ин-те органи ческой химии АН СССР (в 1942— 1945 служил в Советской Армии) Научные работы посвящены ка талитическим превращениям угле водородов На основе систематиче ских исследований каталитических свойств редкоземельных элементов и их окислов установил связь между электронной структурой и каталитическими свойствами этих веществ. Разработал способы промотирования алюмохромовых катализаторов дегидрирования углеводородов (окислами редкоземельных элементов). Совместно с Н. И. Шуйкиным показал (1953), что наибольщую дегидрирующую способность имеет никелевый катализатор на окиси алюминия или окиси цинка. Предложил новые катализаторы для риформинга бензинов, гидрирования керосинов, селективного гидрирования поли-функциональных гетероциклических азотистых соединений, димеризации и полимеризации этилена, гидратации олефинов и др. Изучал каталитические свойства цеолитов, в результате чего создал промышленные катализаторы. [c.337]

    Основные свойства и химия М-моноалкиламинокислот аналогичны их незамещенным предшественникам, за очевидным исключением тех реакций, в которых участвуют оба водорода аминогруппы. Так, пролин и другие Ы-алкил-а-аминокислоты не дают типичного пурпурного окрашивания с нингидрином (пролин дает желтое окрашивание). При действии азотистой кислоты образуются М-нитрозо-М-алкил-а-аминокислоты, которые интересны тем, что из них можно получать сидноны (см. раздел 20.4), и, кроме того, в силу беспокойства [76] об их образовании при хранении пищевых продуктов (нитрозамины канцерогенны). М,М-Диалкил-а- аминокислоты не имеют большого значения, однако их четвертичные производные достаточно важны в биохимии [77]. М,М,М-Три-метилглицин имеет тривиальное название бетаин это название используется также для обозначения всего этого класса соединений. Сам бетаин хорошо растворим в воде, не растворим в эфире, плавится с разложением около 200 °С. Его можно рассматривать как локализованный цвиттерион, лишенный возможности образовать анион, хотя он может протонироваться по карбоксильной группе сильной кислотой с образованием ярко выраженных солей. Бетаины можно получать из соответствующих а-аминокислот с помощью различных методов метилирования, в частности рекомендуется обработка метилиодидом и бикарбонатом натрия в метаноле [78]. [c.246]

    В состав молекулы гуминовых кислот входят ароматические, безазо-тистые и азотсодержащие гетероциклические шести- и пятичленные кольца они соединены между собой мостиками — NH—, — СНг— и др. Имеются данные о наличии в гуминовой кислоте углеводных остатков (гексоз, пентоз и др.) и органических азотистых соединений (различных аминокислот и др.), которые, по-видимому, связаны с ее ароматическим ядром в форме боковых периферических цепей. Однако имеющиеся данные пока еще не позволяют построить структурную формулу гуминовой кислоты. Наличие в составе ее молекулы функциональных групп 3—6 фенольных гидроксилов (ОН), 3—4 карбоксильных (СООН), а также метоксильных (О — СНз) и карбонильных (—С—О) групп, определяет свойства гуминовых кислот и характер взаимодействия их с почвой. Фенольные гидроксильные и карбоксильные группы в гуминовой кислоте обусловливают участие ее в процессах обменного поглощения катионов, определяют кислотные свойства этой кислоты. Водород карбоксильных групп способен замещаться различными катионами с образованием солей, получивших название гуматов, например [c.102]

    ГИДРОКСИЛАМИНА ПРОИЗВОДНЫЕ — азотистые соединения, содержащие органич. радикалы вместо водорода в NI1, 0H при атоме кислорода (ПО—NH ) или атоме азота (RNH—ОИ, R2N—ОН). ]3 табл. приведены физич. свойства нек-рых алкил-и арилгидроксиламинов для сравнения приведены данные о гидроксиламние. [c.458]

    Смешанные жирноароматические третичные амины обладают сильно выраженными основными свойствами. В отличие от третичных аминов жирного ряда третичные амины ароматического ряда взаимодействуют с азотистой кислотой. В случае смешанных жирноароматических алшнов происходит реакция нитрози-рования, т. е, замещение атома водорода в бензольном ядре на ни-трогруппу—N=0. В этих ароматических аминах атом водорода в бензольном ядре, находящийся в пара-положении к замещенной аминогруппе, отличается большой подвижностью и легко замещается, в частности, иитрозогруппой. Так, при действии азотистой кислоты на диметиланилин получается нитрозсдиметиланилин  [c.345]

    Азот представляет газообразное вещество, не отличающееся на вид от воздуха плотность его по отношению к водороду 13,9, т.-е. азот немного легче воздуха, и один литр азота весит (при 0° и 760 мм) 1,251 i. В смеси с кислородом, немного более тяжелым, чем воздух, азот образует этот последний. Азот есть газ, трудно сгущаемый в жидкость, подобно кислороду, и мало растворимый в воде и других жидкостях. Температура абсолютного кипения определена около —146°. Сжиженный азот кипит при —193°, уд. вес при этой температуре около 0,89. Около —213°, испаряясь при уменьшенном давлении, азот затвердевает в бесцветную снегообразную массу. Азот сам прямо не горит, не поддерживает горения, не поглощается (химически) ни одним из реагентов при обыкновенной температуре, одним словом, представляет целый ряд отрицательных химических признаков. Это выражают, говоря, что этот газ не обладает энергиею для образования соединений. Хотя он способен образовать соединения как с водородом, так и с кислородом, углеродом и некоторыми металлами, но эти соединения образуются при особых условиях, к которым мы тотчас обратимся. При накаливании азот прямо соединяется с бором, титаном, кремнием, барием, магнием и литием, образуя очень прочные азотистые соединения [154], показывающие совершенно иные свойства азота, чем в соединениях с Н, О и С. Прямое соединение азота с углем, хотя и не совершается при накаливании их одних, происходит сравнительно легко при накаливании смеси угля с углещелочными солями, особенно с К СО и ВаСО на воздухе, причем образуются (до некоторого предела) углеазотистые или синеродистые металлы, напр. К2СОЗ + 4С +N2 = 2K N + 3 O. [c.156]

    По общей схеме, муравьиной кислоте НСО Н отвечает свой амид—формамид H ON№ и свой нитрил — синеродистый водород H N, а потому муравьиноаммиачная соль H O NH и формамид при нагревании и действии водуотнимающих веществ (фосфорного ангидрида) дают синеродистый водород, а он во многих обстоятельствах (напр., соединившись с НС1 при действии воды) образует муравьиную кислоту и аммиак. Содержа водород при двух кислотных элементах углероде и азоте, синеродистый водород хотя и не обладает кислою реакциею на лакмус (у циановой кислоты кислотные свойства очень ясно развиты), но дает соли M N, а потому представляет свойства слабой кислоты, оттого и называется синильною кислотою. Малая ее энергичность видна также в том, что синеродистые щелочные металлы, напр., синеродистый калий (КНО - H N = НЮ + K N), в растворах имеют сильную щелочную реакцию [269]. Если пропускать аммиак чрез накаленный уголь, в присутствии щелочей, или газообразный азот чрез смесь угля со щелочью, а также если накаливать смесь азотистых органических веществ со щелочью, то щелочной металл соединяется с углеродом и азотом, образуя синеродистый металл M N, напр., K N [270]. Синеродистый калий употребляется в практике в большом количестве и образуется, судя по вышесказанному, во многих обстоятельствах, как, напр., при выплавке железа, в особенности с помощью [c.290]

    Кальций или металл извести и его соединения представляют во многих отношениях большое сходство с соединениями магния, но также и не мало ясных отличительных свойств [385]. Вообще Са относится к Mg, как калий к натрию. Металлический кальций получен Деви, подобно калию, в ртутном растворе, при действии гальванического тока, но ни уголь, ни железо не разлагают окиси кальция, даже натрий трудно разлагает СаС1 , но гальванический ток легко разлагает сплавленный СаС1 , и металлический натрий при накаливании довольно легко разлагает иодистый кальций. Как для водорода, калия и магния, так и для кальция, связь иода слабее, чем хлора (и кислорода), а потому немудрено, что иодистый кальций подвергается тому разложению, в какое хлористый кальций и его окись вступают с трудом. Металлический кальций имеет желтый [серебристо-белый, на воздухе быстро желтеющий вследствие образования пленки азотистого соединения] цвет и обладает значительным блеском, который сохраняет в сухом воздухе. Уд. вес его = 1,58. Кальций отличается значительною тягучестью он плавится при краснокалильном жаре и тогда на воздухе воспламеняется, отделяя весьма яркий свет, что зависит от того, что при этом образуется порошкообразная, не плавящаяся в жару окись кальция. Судя по тому, что при горении кальция получается весьма большое пламя, должно думать, что он летуч. Кальций туго, но разлагает воду при обыкновенной температуре и во влажном воздухе окисляется, но не столь быстро, как натрий. Сгорая, кальций дает свою окись, или известь СаО, вещество всем известное, о котором нам уже приходилось многократно [c.59]

    Если чрез окись меди, накаленную до 265°, пропускать сухой аммиачный газ, то часть ее дает азотистую медь, причем кислород окиси меди с водородом аммиака образует воду. Окись меди, остающуюся неизменною, легко удалить посредством промывания водным аммиаком. Азотистая медь очень прочна, в воде нерастворима, она имеет состав u N (т. е. Си здесь, как в СиЮ, одноатомна) и представляет аморфный зеленый порошок, разлагающийся при сильном накаливании, а при действии хлористоводородной кислоты дающий однохлористую медь и нашатырь. Как и другие азотистые металлы, СиЭД доныне мало исследована. При накаливании меди в парах фосфора Гранже (1892) получил шестигранные призмы Си Р, переходящие при накаливании в азоте в Си Р (ранее получено Эбелем). Мышьяк легко поглощается медью, и его подмесь (как и Р) даже в малом количестве сильно изменяет свойства металлической меди. [c.637]

    Органические соединения различного типа с группами, содержащими азот и кислород, обладают одним и тем же характерным свойством они выделяют азотистую кислоту при нагревании их в сухом виде. К таким соединениям относятся нитро- и нитрозосоединения, оксимы, гидроксамовые кислоты, нитриты и нитраты, нитрамины, азоксисоединения, аминооксиды. Азотистую кислоту можно легко обнаружить по реакции Грисса (стр. 225). Вероятно сначала с участием кислорода воздуха образуется N263 или N204. При пиролизе органических соединений, содержащих водород и кислород, образуется вода, которая может действовать как перегретый пар при температуре и в месте ее образования, в результате чего может происходить гидролитическое образование азотистой кислоты из нитро- и нитрозосоединений, обычно недостижимое в водных растворах. [c.207]

    В настояще время изучаются модели следующих групп ферментов дегидрогеназ, оксидаз, некоторых гидролаз и, пожалуй, наиболее часто моделировавшегося фермента — каталазы. Все они (за исключением гидролаз) представляют собой комплексы (соединения) белка с определенной простетической группой изучение их шло по пути моделирования ее. Ряд ферментов содержит в своем активном центре атом металла, например каталаза — железо (в геме), полифенолоксидаза — медь. Естественно, что многие исследования были направлены на изучение каталитических свойств различных соединений металлов. Были получены модели каталазы — комплексные соединения кобальта, свинца, марганца, но наиболее эффективной при разрушении перекиси водорода оказалась медь. Известно, что некоторые комплексные соединения ее с азотистыми веществами, сравнительно простые по своему составу, типа, скажем, комплекса с диамином [c.329]

    Азотистая кислота является слабой и очень непрочной кислотой она известна только в разбавленных водных растворах. HNOg обладает окислительными свойствами, например, она окисляет иодистый водород в свободный иод, восстанавливаясь при этом в окись азота [c.268]

    Нитрокамфен — бесцветное масло с характерным запахом высших представителей вторичных нитросоединений жирного ряда. Оно нацело растворяется в ш елочи, сообш ая раствору интенсивный желтый цвет. Этот раствор моментально обесцвечивает водный раствор брома с образованием бесцветного тяжелого масла — бромнитросоединения, равным образом энергично реагирует с азотистой кислотой, образуя характерный псевдонитрол (см. ниже). Наряду с этим свободное нитросоединение также обнаруживает явно непредельные свойства быстро обесцвечивает хамелеон , а также х ороформенный раствор брома, причем в последнем случае наблюдается обильное выделение бромистого водорода. В отличие от хамелеона азотная кислота уд.в. 1,4 на холоду вовсе не реагирует с нитросоединением, при нагревании же жидкость становится однородной, а затем начинается реакция, протекаюш ая с саморазогреванием и равномерным выделением окислов азота. После выпаривания кислотного слоя образования кристаллического вещества не замечено. [c.23]


Смотреть страницы где упоминается термин Водород азотистый свойства: [c.251]    [c.101]    [c.3]    [c.103]    [c.84]    [c.147]    [c.559]    [c.184]    [c.288]    [c.79]    [c.200]    [c.412]    [c.286]    [c.92]    [c.68]   
Неоргонические синтезы Сборник 3 (1952) -- [ c.151 , c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Водород свойства



© 2024 chem21.info Реклама на сайте