Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический потенциал и комплексообразование

    Как уже отмечалось выше, в этом методе, который в литературе называют также титрованием по предельному току, полярографическим и поляриметрическим титрованием, замеряют силу тока, протекающего между электродами, в зависимости от количества добавленного титранта. Амперометрическое титрование может быть основано на любой стехиометрической химической реакции осаждения, окисления-восстановления, кислотноосновной, комплексообразования. Если применяется только один поляризованный электрод, а потенциал второго электрода остается постоянным, то метод называется амперометрическим титрованием с одним поляризованным электродом. Если же используется двухэлектродная система с двумя идентичными (обычно платиновыми) индикаторными электродами, между которыми создается небольшая разность потенциалов ( 10-50 мВ), то такой метод называется амперометрическим титрованием с двумя поляризованными электродами. Он удобен тем, что не требует применения сложного оборудования, а электрохимическая ячейка имеет простую конструкцию. Однако кривые титрования в этом случае имеют сложную форму. [c.508]


    Потенциометрический анализ широко применяют для непосредственного определения активности ионов, находящихся в растворе (прямая потенциометрия — ионометрия), а также для индикации точки эквивалентности при титровании по изменению потенциала индикаторного электрода в ходе титрования (потенциометрическое титрование). При потенциометрическом титровании могут быть использованы следующие типы химических реакций, в ходе которых изменяется концентрация потенциалопределяющих ионов реакции кислотно-основного взаимодействия, реакции окисления — восстановления, реакции осаждения и комплексообразования. [c.116]

    Конкурирующие реакции. Существенное влияние на потенциал оказывают любые побочные химические реакции, в которых участвуют окисленная и восстановленная формы. Наиболее часто такими реакциями являются реакции комплексообразования, при которых возможно существование в растворе ряда комплексных соединений. Довольно часто более склонна к реакциям комплексообразования окисленная форма, в результате чего потенциал системы и, следовательно, окислительные свойства уменьшаются. [c.267]

    На рис. 2.18 представлена полярографическая волна. При низких значениях потенциала (участок А), величина которого не достаточна для того, чтобы на рабочем микроэлектроде происходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток, обусловленный, прежде всего, током заряжения двойного электрического слоя и присутствием в растворе электрохимически более активных, чем анализируемое вещество, примесей. При увеличении потенциала электрохимически активное вещество (называемое деполяризатором) вступает в электрохимическую реакцию на электроде и ток в результате этого резко возрастает (участок В). Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок С). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии в этих условиях контролирует скорость электрохимического процесса в целом. Такой ток называют предельным диффузионным. Для того чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление в ячейке, измерения проводят в присутствии большого избытка сильного электролита, называемого фоном. Являясь электрохимически индифферентным, вещество фонового раствора может вступать в химические реакции (часто это реакции комплексообразования) с определяемым веществом. Иногда фоновый электролит одновременно играет роль буферного раствора. Например, при полярографическом определении ионов 0(1 +, Си +, N +1 o + в качестве фона используют аммиачный буфер- [c.139]


    Вследствие электростатического взаимодействия между ионами и взаимодействия ионов с молекулами растворителя даже сильно разбавленные растворы электролитов испытывают значительные отклонения от идеального поведения. Для концентрированных растворов пренебрежение неидеальностью поведения может приводить к ошибкам в расчетах химических равновесий (например, констант диссоциации, комплексообразования, распределения и т. д.) в сотни и даже тысячи раз. Для сохранения внешнего вида уравнений, выведенных в предположении идеального поведения системы, концентрации в таких уравнениях заменяют формальными величинами — активностями (а) компонентов системы. Обычно исходят из выражения для химического потенциала ( д)  [c.755]

    В литературе по ионообменным процессам рассматриваются многочисленные случаи кинетики внутреннего переноса в зернах ионитов при влиянии не только диффузионного переноса, но и переноса за счет электродиффузионного потенциала, с учетом влияния двойного электрического слоя на внешней границе зерна, с заметной ролью внешнедиффузионного сопротивления и т. д. Многочисленность кинетических вариантов здесь определяется тем обстоятельством, что для различных структур ионитов и разнообразных условий проведения процесса возможны различные комбинации существенно влияющих на суммарный процесс эффектов, а те или иные эффекты могут быть приняты пренебрежимо малыми. Действительно, только при чисто диффузионной определяющей кинетике возможны режимы, когда заметное влияние на суммарную скорость процесса оказывает только сопротивление внутренней диффузии в других случаях скорость процесса ионного обмена определяется суммарным сопротивлением наружного и внутреннего переноса компонента, а в иных случаях определяющим фактором может стать одно только наружное сопротивление в различных комбинациях могут рассматриваться обратимые или необратимые химические реакции, комплексообразования и т. д. Так, при [c.251]

    Действие смесей электролитов на коллоидные системы крайне специфично, и явления, ими вызываемые, не подчиняются какому-либо одному закону. При изучении указанных явлений следует исходить из электростатического взаимодействия между ионами в растворе на основе теории сильных электролитов Дебая и Гюккеля. В некоторых случаях на этот процесс накладываются параллельно идущие химические реакции комплексообразования, явление адсорбции ионов и происходящее при этом изменение С-потенциала. Отрицательный антагонизм ионов получил название синергизма. [c.131]

    Ускорение реакции анионами С1 и аналогичными нонами обусловлено комплексообразованием с Ре2+ и (или) Ре + (льюисова кислотно-основная реакция, см. т. 2, стр. 41), которое снижает химический потенциал ионов железа и приводит к более отрицательному значению изменения свободной энергии при окислении. [c.72]

    Изучение частных зависимостей окислительного потенциала,, включая зависимости потенциала электродов типа М + М, и зависимостей потенциала ИСЭ от независимых концентрационных переменных позволяет количественно описать химические реакции — протолитические, комплексообразования и др. [c.633]

    Определение термодинамических функций по изобаре химической реакции сводится к определению констант равновесия реакций комплексообразования или коэффициентов раснределения (Я) при нескольких температурах. По экспериментальным результатам рассчитывают изменение изобарного термодинамического потенциала АО, кДж/моль [c.142]

    Большая роль в развитии и использовании электрохимического метода измерения окислительно-восстановительного потенциала в биохимических системах, комплексообразования в различных химических процессах и т. д. принадлежит М. С. Захарьевскому[7]. [c.52]

    Таким образом, процедура качественного химического анализа представляет собой последовательное отделение анаштических групп с дальнейшим откры-таем входящих в них ионов систематическим или дробным методами. В ходе выполнения анализа как систематическим, так и дробным методами аналитик управляет поведением ионов в растворе, прежде всего их концентрациями. Такое управление возможно на основе равновесных реакций путем смещения равновесий. В распоряжении аналитика два типа рав1ювеспых процессов — гомогенные и гетерогенные равновесия. Гомогенные равновесия — это диссоциация — ассоциация, окисление — восстановление, гидролиз, нейтрализация, комплексообразование. Количественное описание этих равновесий основано на законе действующих масс и уравнении Нернста для окислительновосстановительного потенциала системы. К гетероген-ныи равновесиям относятся, прежде всего, растворение и осаждение осадков, экстракционное распределение между двумя жидкими фазами и хроматографические процессы. Расчеты положения гетерогенного равновесия возможны на основе констант межфазных распределений, в первую очередь правила произведения растворимости. [c.72]


    Из (П. 4) следует, что измерение окислительного потенциала должно нести количественную информацию о названных выше химических реакциях. По существу это обстоятельство уже учитывалось в цитированных работах определяли в растворах хлорной кислоты, чтобы исключить гидролиз редокс-компонентов и избежать комплексообразования.  [c.86]

    Более 100 лет назад русский ученый М. Якоби [13] впервые показал, что при помощи комплексообразования можно не только сблизить потенциалы значительно отличающихся друг от друга по электрохимическим свойствам металлов, но даже изменить их последовательность. Так, например, в цианистом растворе можно добиться, что потенциал выделения серебра будет отрицательнее, чем цинка, хотя в растворах простых солей серебро на 1,5 в положительнее цинка. Этот метод воздействия на величину потенциала химическим путем, открытый М. Якоби, в дальнейшем нашел применение при электроосаждении металлов с целью получения электролитических сплавов. Из растворов цианистых солей [14], например, получают сплавы Zn— u, Zn— d, Ag— d. [c.181]

    Со смешанными предельными пЬтенциалами всегда сталкиваются в процессе потенциометрического титрования (например, по методу окисления - восстановления), когда концентрация одной из форм редокс пары в растворе вблизи к.т.т. становится исчезающе малой ( 10 М) согласно /fpaBH химической реакции. Такой же предельный потенциал возникает с самого начала титрования по методам осаждения и комплексообразования при определении одного компонента обратимой редокс системы в отсутствие другой формы. В таких случаях достаточно создать в растворе небольшую концентрацию ( > 10 М) сопряженной формы, не участвующей в химической реакции, чтобы электрод приобрел устойчивый равновесный потенциал. [c.25]

    По величине электродного потенциала (Фм= —0,25 в) никель занимает промежуточное положение между железом и медью. Он пассивируется легче, чем медь, менее склонен к комплексообразованию и поэтому обладает более высокой коррозионной стойкостью, чем медь, превосходя последнюю также по механическим свойствам. Ниже приводятся физико-химическое свойства никеля  [c.38]

    Так как электролит влияет на свойства электрохимических полимерных покрытий, то при его выборе необходимо учитывать его физико-химические характеристики. Растворимость электролитов в различных растворителях и мономерах можно найти в справочной литературе, напри.лер в [94, с. 179]. При отсутствии этих данных в справочной литературе растворимость электролита определяется экспериментально. Значения потенциалов восстановления или окисления ионов электролитов в различных растворителях, характеризующие сродство к электрону и потенциал ионизации, определяются электрохимическими методами и указаны в работе [67, с. 404]. Данные о способности катионов электролита к комплексообразованию приведены в работах [94, с. 119 104, с. 6]. Однако необходимо помнить, пто поведение электролита при электрохимически инициирован-пой (со)полимеризации зависит не только от его физико-хими-песких характеристик, но и от плотности тока или потенциала, эти величины должны иметь оптимальные значения. [c.67]

    Как уже говорилось, протекание в окислительно-восстановительных системах комплексообразования, протолитических или других химических процессов, изменяющих состояние компонентов этой системы,, приводит к изменению величины окислительного потенциала и, как следствие, к изменению э. д. с. гальванического элемента. Последний должен быть составлен из таких полуэлементов, чтобы измеренная э. д. с. была источником сведений о концентрациях взаимодействующих в растворе веществ, которые могут находиться в ионной или молекулярной формах. [c.60]

    Полярография широко используется для изучения равновесия химических реакций. Начало этих исследований было связано с изучением равновесия комплексообразования в растворах и состава комплексных частиц на основе обратимых, квазиобратимых и необратимых волн [4]. При этом находят широкое применение оба важнейших параметра полярографии — потенциал полуволны и предельный ток, в том числе предельный каталитический ток [10]. Предельный ток был использован также для изучения ступенчатого равновесия в растворах [36]. [c.27]

    На опыте влияние строения двойного слоя на процессы с предшествующей химической реакцией проявляется главным образом в виде зависимости констант скорости от состава раствора (при этом следует, конечно, учитывать возможное комплексообразование с компонентами раствора или другие виды взаимодействия с ними), так как при изменении состава раствора изменяются свойства двойного электрического слоя. Помимо этого, наблюдается также и изменение предельного тока с потенциалом его величина падает при увеличении потенциала, если заряд деполяризатора совпадает по знаку с поляризацией электрода, и возрастает, если знаки их зарядов противоположные. Примерами первого случая могут служить спады на площадке предельного тока фенилглиоксалевой кислоты, ограниченного скоростью рекомбинации ее анионов (процесс этот, очевидно, очень сложен, и, кроме строения двойного слоя, здесь играют роль также другие факторы, о которых речь будет идти ниже), а также уменьшение последней волны восстановления цианида кадмия [78], предельный ток [c.330]

    Сложность химического состава природных вод обусловлена и тем, что один и тот же элемент может находиться в воде в разных формах в зависимости от степени растворимости его соединений, валентного состояния, способности и комплексообразованию и других химических свойств. Так, железо в зависимости от pH и окислительно-восстановительного потенциала встречается в природных водах в двух- и трехвалентном состояниях. Для каждого из валентных состояний характерны гидрологические моно- и полиядерные формы  [c.132]

    Как видно из рис. 4, с увеличением 5 скорость прогрессивно растет, а индукционный период резко падает вблизи 8 = 0,5 для циклогексана и 0,85 для декалина. Можно предположить, что эти значения близки к концентрации тиомочевины, отвечающей началу комплексообразования, при котором И. П.->со. Графическое изображение зависимости Д1 = 1(з) при 5< 1 дает прямую линию рис 3), при экстраполяции которой до пересечения с осью 5 получено значение, совпадающее с равновесной концентрацией тиомочевины в растворе в долях от концентрации насыщения. Это же значение можно получить и построением графика зависимости изменения изобарного потенциала от концентрации 5. Изменение изобарного потенциала Дг определяли по уравнению изотермы химической реакции [c.263]

    Граница раздела фаз почти всегда представляет собой особенный случай. Во-первых, переход иона через границу может быть замедленной стадией переноса [3, 8], связанной с химической реакцией (например, комплексообразованием), с перестройкой гидратной оболочки, с преодолением многозарядными противоионами кулоновского барьера (случай модификации поверхности тонким слоем, содержащим фиксированные ионы с зарядом того же знака, что и заряд противоионов) и др. В этом случае высота потенциального барьера может быть значительно выше, чем при переносе в объеме фазы, а межфазный скачок потенциала, необ- [c.149]

    Таким образом, варьируя химический состав, изменяя химический потенциал катализатора можно попытаться осуществлять переход от раздельного механизма к высококомпенсационному слитному механизму кроме того, возможно предвидение каталитической активности на основе значений энергии связи реагентов с катализатором [19, с. 495]. Это трудный путь, однако определенные успехи в его реализации имеются, особенно в металлкомплексном гомогенном катализе. В этом случае реагенты входят в координационную сферу иона металла (т. е. становятся дополнительными лигандами), благодаря чему существенно облегчаются их взаимная ориентация, поляризация реагента в поле центрального иона металла и лигандов, электронные переходы в комплексе наконец, такое комплексообразование легко контролировать, варьируя природу исходных лигандов и центрального иона металла. Отметим, что в последнее время возникла и успешно реализуется идея ге-терогенизации катализа металлкомплексными соединениями, закрепленными (иммобилизованными) на полимерных гелях при этом остается возможность перехода к слитному механизму, а также удается использовать в качестве катализаторов соединения, нерастворимые в реакционной среде (основное преимущество классического гетерогенного катализа). [c.99]

    Ионы щелочноземельных металлов Са MawMg встречаются в основном внутри клеточной мембраны, Са " " - в осдавном снаружи. В число биологических функций этих ионов входят поддержание химического потенциала, посылка и передача нервных сигналов кроме того, путем комплексообразования они усиливают такие функции лигандов, как активация ферментов и поддержание структуры тканей. Это усиливающая способность есть результат сильного взаимодействия Mg и Са с присущими биоло- [c.269]

    Физические методы исследования могут основываться на интегральных характеристиках состояния системы, содержащей комплексы (тепловой эффект реакции комплексообразования, или термодеструкции, оптическая плотность, время магнитной релаксации, потенциал водородного электрода смеси кислот с близкими по значению константами диссоциации, химический сдвиг сигналов ЯМР лабильных систем) или же на регистрации дискретных комплексов (ЯМР высокого разрешения в условиях медленного обмена, спектрография /—/-переходов лаптаиои-Дов) [c.397]

    Наконец, в четвертом типе смесей расплавленных солей изобарный потенциа.т имеет отртцательную величину, а энтропия — положительную (zf <0 и sf>0). Как мы видели выше, отрицательное значение изобарного потенциала свидетельствует о сильном взаимодействии разнородных ионов в расплаве, приводящем к комплексообразованию. Сочетание положительной 5f и отрицательного zf дает своеобразное изменение избыточной энтальпии ) для систем с химическим взаимодействием компонентов типична синусоидная форма кривой. Примерами четвертого типа расплавов смесей солей могут служить расплавы систем РЬСЬ — K l и Mg b — K l (рис. 77, дне). [c.154]

    Поскольку ИСЭ относятся к группе ионообменных,механизм перемещения ионов через мембрану нельзя расоматривать как чисто механическое явление,связанное с переносом заряда.Ионный обмен в зтом случае сопровождается,как правило,химическими реакциями обмена,комплексообразования, осаждения и др. в зависимости от материала мембраны и прйроды потенциалопредез1яющего иона. В общем случае мембранный потенциал определяется активностью ионов в мембране и растворе,их под-В14жнастью в мембране и константой ионного обмена.  [c.40]

    Можно ли делать подобные предсказания, основываясь на уравнении Нернста, для чего же необходимо снимать кривые ток — потенциал Дело в том, что реальная химическая система гораздо сложнее рассмотренных идеальных случаев. Данные о влиянии на стандартные потенциалы комплексообразования, pH, температуры, ионной силы и других факторов довольно скудны. Кроме того, невозможно предсказать, значения активационных сверхпотенциалов электродных реакций. Однако кривые ток — потенциал дают необходимую информацию о действительных условиях для корректного выбора электродного потенциала,, постоянство которого следует поддерживать при практическом разделении и определении методом кулонометрии с контролируемым потенциалом. [c.424]

    В растворе, содержащем окислительно-восстановительную систему, могут протекать различные химические процессы, внешним проявлением которых является изменение окислительного потенциала системы. Происходит это прежде всего при изменении соотношения между концентрациями окислителя и восстановителя, а также в случае, когда окислительновосстановительная система изолирована в смысле окислительно-восстановительного взаимодействия. При условии постоянства ионной силы величина окислительного потенциала определяется отношением концентраций (активностей) частиц, участвующих в электродной окислительно-восстановительной реакции. То, что она меняется, отражает взаимодействие этих частиц с компонентами раствора, которое приводит к изменению их состояния вследствие протолитических процессов, комплексообразования, ассоциации и др. Образование частиц нового вида приводит к изменению активности электроноактивных частиц, а, значит, и электронов и, как следствие, окислительного потенциала системы. Отсюда следует принципиальная возможность изучения любых равновесных процессов, течение которых вызывает изменение. окислительного потенциала системы. [c.43]

    Сущность метода окислительного потенциала [112] заключается в изучении частных зависимостей окислительного потенциала от концентрационных параметров. Эти зависимости объективно отражают химические взаимодействия в растворе, приводящие к образованию Ткомплексных соединений, протолитическим и другим процессам. Метод позволяет выявить общие закономерности равновесий в окислительно-восстановительных системах, включая такие сложные процессы, как смешанное и полиядерное комплексообразование и ассоциация (подробнее см. гл. V). [c.63]

    Распространено мнение, что при использовании потенциалов для изучения равновесия химических реакций, особенно реакций комплексообразования, полярография заметно уступает потенциометрии. С этим мнением согласиться нельзя, так как каждый из этих методов имеет и преимущества, и недостатки. Действительно, точность измерения потенциалов в потенциометрическом методе выше, однако это преимущество не так велико, учитывая, что во многих случаях трудно полностью устранить искажающее влияние диффузионного скачка потенциала. Более существенно другое преимущество потенциометрического метода, свободного, как было показано недавно Бондом и Хефтером [1], в отличие от полярографии, от погрешностей, связанных со значительной адсорбцией реагирующих компонентов. Подробнее этот вопрос рассмотрен в гл. 2. В то же время, по сравнению с полярографией, потенциометрия имеет ряд недостатков. Во-первых, надежное потенциометрическое изучение равновеспя химических реакций возможно только при обратимом электродном процессе, в то время как в полярографии с этой целью успешно используются и необратимые процессы. Во-вторых, обратимость электродного процесса в потенциометрии, [c.14]

    Доказательства локализации спиновой плотности на молекулах, образующих комплексы с радикалом, можно получить не только при измерении химических сдвигов ядер в спектрах ЯМР радикалов в различных растворителях, но и при изучении аномалий в отнощении времен ядерной магнитной релаксации Т1/Т2 (Т — время спин-рещеточной релаксации. Гг — время спин-спиновой релаксации). В ряде случаев удалось отчетливо наблюдать отклонение Т1/Т2 от единицы при изучении ядерной магнитной релаксации протонов или ядер фтора растворителей в присутствии различных радикалов [34—36]. Так, по данным измерения времен протонной релаксации Ту и Т2 методом спинового эха в хлороформе, ацетонитриле, 1,1-дихлорэтане, диоксане, бензоле, 1,3,5-трифторбензоле, нитробензоле и нитрометане, содержащих дифенилпикрилгидра-зильные радикалы, величйна Г1/Г2 изменяется от 1,12 до 2,6 [36]. Это вызвано комплексообразованием между радикалом и растворителем, что подтверждается также симбатностью между изменением Т11Т2 и потенциалом ионизации растворителя чем ниже потенциал ионизации растворителя, тем больще степень смещения электрона с радикала на лиганд. [c.364]

    Иная ситуация наблюдается в кислородсодержащих подземных водах с высокими концентрациями органических веществ гумусового ряда. Г.А. Соломин показал, что в равновесии с осадком гидрокиси железа в растворе может быть всего 2,9-10" моль/л РеОНз. Это означает, что при pH > 5 после осаждения гидрокисей железа в равновесии с этим осадком в растворе может присутствовать только 17 мкг/л Ее. Но в подземных водах, содержащих высокие концентрации органических веществ гумусового ряда (фульво- и гуминовые кислоты), концентрации железа всегда превышают эти расчетные концентрации и достигают п - п-10 мг/л. При этом установлено, что в тех случаях, когда не учитывается комплексообразование железа с органическими веществами, степень отклонения реальных концентраций железа в подземных водах от расчетных и соответственно степень отклонения реальных ЕЬ от расчетных зависят от концентраций этих органических веществ. Причина заключается в том, что в результате образования устойчивых комплексных соединений с органическими веществами все меньшая часть активности Ре " становится доступной для процессов гидролиза и его кислотно-щелочные и окислительно-восстановительные диапазоны существования в подземных водах расширяются. Известно, что в присутствии оксалат-иона, образующего с Ре устойчивые комплексные соединения Ре(Ох) , стандартный потенциал системы основательно снижается, а pH существования геохимически значимых концентраций Ре в растворе расширяется до 7. Аналогично фульвокислоты могут удерживать Ре " в околонейтральных подземных водах. Таким образом, в присутствии органических веществ значения окислительно-восстановительного потенциала системы железа достаточно сильно снижаются. Физико-химическими причинами являются следующие окислительные потенциалы, положенные в основу построения ЕЬ-рН-диаграмм Ре—НгО, относятся только к равновесным условиям, когда в растворе присутствуют только Ре , Ре"", ЬТ, ОН". Под влиянием присутствующих в подземных водах органических веществ, способных образовывать с окисленной или восстановленной формой железа комплексные соединения, концентрации этих форм изменяются в неравной степени. В этом случае формула (1) приобретает вид [c.44]

    Менее однозначно интерпретируется влияние на сорбцию химической природы доминирующего аниона. Однако, если априорно допустимо пренебречь ролью комплексообразования как процесса, удерживающего в растворе дополнительное (по сравнению с равновесной ионной ч рмой) количество компонента в химически связанной с анионом форме, то наиболее сильное влияние оказывает специфическая сорбция этого аниона. Среди традиционно рассматриваемых анионов — макрокомпонентов к такой сорбции склонны сульфат-ионы (804 ). Сорбируемость 804 зависит от pH (в том случае, когда процесс протекает по анионообменному механизму, т.е. из обменного комплекса вытесняется гидроксильная группа) и содержания в породе органического вещества [34] — см. также разд. 5.2.1.3. Сорбция 8О4 может увеличить поверхностный потенциал породы и тем самым интенсифицировать сорбцию [c.242]

    Анализ модельных решений показывает, что комплексообразование увеличивает общий потенциал массопереноса, способствует более высоким скоростям движения сорбирующихся катионов. Объяснение тому — нарушение физико-химического равновесия в растворе при сорбции свободных катионов, приводящее к распаду части комплексов, что обусловливает, в свою очередь. [c.448]


Смотреть страницы где упоминается термин Химический потенциал и комплексообразование: [c.78]    [c.26]    [c.351]    [c.22]    [c.33]    [c.137]    [c.262]    [c.152]    [c.53]    [c.50]    [c.85]   
Кинетика полимеризационных процессов (1978) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне

Потенциал химическии

Потенциал химический

Химический потенция



© 2025 chem21.info Реклама на сайте