Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный спин вращательные спектры

    Описанное чередование интенсивностей действительно наблюдается во вращательных спектрах ряда молекул. Например, в спектре Нг более интенсивными являются нечетные линии, а более слабыми — четные. Отсюда можно заключить, что спин ядра Н (протона) равен /г- Для молекулы водорода собственная электронная функция симметрична [60], т. е. четные вращательные уровни симметричны, а нечетные — антисимметричны. Отсюда следует, что поскольку нечетные линии интенсивнее, то антисимметричные уровни имеют больший статистический вес, т. е. имеют параллельные ядерные спины. Анализ спектра Рг [79] показал, что ядро также имеет спин 1/2. [c.138]


    Ядерный квадрупольный момент. Разнообразные переходы между энергетическими уровнями, связанные с вращательным движением молекул, проявляются в далекой инфракрасной области (в интервале длин волн 30 нм — 1 мм), при этом у соединений некоторых элементов в далеких инфракрасных спектрах поглощения наблюдаются группы линий с очень небольшим расщеплением (тонкая структура). У нуклидов с ядерным спином, равным 1 и более, из-за деформации ядра электрические заряды распределяются неравномерно — образуется электрический квадруполь. Атомные ядра принимают форму, приближающуюся к эллипсоиду вращения, обозначаемому знаком плюс, если на большой оси расположен положительный заряд, а на малой — отрицательный, и знаком минус, если на большой оси заряд отрицательный, а на малой — положительный. Величина -этих зарядов выражается через электрический заряд электрона и площадь поверхности ядра и составляет в этих единицах 10-26—10-2 e/ м . Вблизи от значений магических чисел нейтронов и протонов эта величина крайне мала, по мере отдаления от них она возрастает по модулю, оставаясь положительной до достижения магического числа и отрицательной — лосле него. [c.52]

    Разделенные изотопы также находят применение в спектроскопии и в физике твердого тела [1169]. Разницы в массах изотопов вызывают колебательные и вращательные изотопные эффекты в молекулярных спектрах. Разнообразные интересные спектроскопические эффекты вызваны разницей в значениях ядерного спина, магнитного момента и электрического квадрупольного момента для различных изотопов. Изучение этих эффектов очень трудно и иногда невозможно без наличия образцов, сильно обогащенных определенным изотопом. Исследование изотопных сдвигов в оптических спектрах атомов [670, 1170, 1847] дает возможность получить информацию о распределении заряда в ядрах различных изотопов и, следовательно, о размере, форме и структуре ядра. Многие из объемных свойств твердых тел зависят от масс атомов, и хотя эти эффекты малы и трудноопределимы, они изучались при рассмотрении электрической проводимости, температуры плавления, удельного объема, удельной теплоемкости и термоэлектродвижущей силы [1346]. Исследование в области сверхпроводимости показало, что критическая температура обратно пропорциональна атомной массе [ИЗО]. Методом дифракции рентгеновских лучей было рассмотрено различие кристаллических решеток LiF и LiF. Оказалось, что решетка LiF меньше на коэффициент 1,0002. Образцы разделенных изотопов нашли применение в качестве источников излучения. Они могут быть использованы для получения монохроматического излучения и, таким образом, пригодны в качестве эталонов длин волн и точного измерения длины. [c.462]


    В общем случае это невозможно в микроволновой области. Однако значения длин связей и валентных углов, определенные в микроволновых исследованиях, как правило, более точны и достоверны, нежели находимые из исследований колебательно-вращательных спектров (см. ниже). Большое преимущество метода заключается в том, что он дает возможность измерить величины дипольных моментов (штарк-эффект) и ядерных спинов. Однако, за исключением особых случаев (например, молекулы О ), этот метод может быть применен только к исследованию молекул, обладающих постоянным дипольным моментом. Но это само по себе позволяет судить о форме молекулы. Так, например, из того факта, что молекуле HjO соответствует чистый вращательный спектр, следует наличие дипольного момента, а следовательно, и вывод о нелинейной конфигурации молекулы. [c.13]

    В действительности во вращательных спектрах комбинационного рассеяния в некоторых случаях каждая вторая линия не исчезает полностью, но лишь заметно уменьшается ее интенсивность. Эго чередование интенсивностей имеет место, например, для N2 (рис. 23). Чередование интенсивностей связано с наличием у атомных ядер спина подобно электрону некоторые атомные ядра обладают собственным моментом импульса — ядерным спином. Ядерный спин оказывает лишь очень небольшое прямое влияние на энергетические уровни молекул, приводя к небольшому расщеплению уровней. Однако он оказывает существенное косвенное влияние на эти уровни, благодаря чему вращательные спектры могут служить для измерения спинов ядер. [c.136]

    Если ядерный спин равен 1, то результирующий спин молекулы может принимать значения 2, 1, 0. Статистические веса этих трех состояний равны 5, 3, 1. Более подробный анализ показывает, что отношение интенсивностей линий во вращательном спектре таких молекул равно 1 2. Спектры с таким отношением интенсивностей наблюдаются у молекул N2 и Ог. Таким образом, ядра N и О имеют спин 1. [c.138]

    Межъядерное расстояние в молекулярном азоте составляет 1,0945 А. Изучение колебательных и вращательных спектров молекулярного азота показывает, что имеется два типа молекул азота, а именно с симметричным и несимметричным ядерным спином. При обычных температурах обе эти формы присутствуют в соотношении 2 1. Вследствие симметрии молекулы азота и стабильности его электронных состояний межмолекулярные силы чрезвычайно малы. [c.14]

    Вследствие ограничений переходов между симметричными и антисимметричными вращательными уровнями спектры комбинационного рассеяния молекул с одинаковыми ядрами должны обнаруживать изменения интенсивности чередующихся вращательных линий, так же как это наблюдается в электронных спектрах этих веществ. Если ядерный спин равен нулю, линии с чередующейся интенсивностью должны исчезнуть, что действительно и происходит в комбинационных вращательных полосах молекулы кислорода Если исчезают четные вращатель- [c.251]

    До сих пор мы не учитывали, однако, что полное определение внутреннего состояния молекулы включает задание не только ее вращательного, колебательного и электронного состояний, но также и задание спинового состояния ядер. Ядерный спин величины s может принимать 2s + 1 ориентаций по отношению к некоторой оси в пространстве, т. е. для атома возможны 2s + 1 различных спиновых состояний. Но энергия состояний, отличающихся лишь по ориентации спина, практически одна и та же имеются лишь очень небольшие различия в уровнях энергии, которые проявляются в сверхтонкой структуре атомных спектров. Наличие ненулевого ядер ного спина имеет следствием лишь дополнительное вырождение каждого энергетического уровня атома в 2s + 1 раз. Общее число спиновых состояний моле- [c.232]

    Ядерные спины и магнитные моменты иногда могут быть определены на основании изучения сверхтонкой структуры атомных спектров. Сверхтонкая структура обусловлена тем обстоятельством, что вследствие взаимодействия между магнитным моментом ядра и магнитными моментами электронов энергия атома несколько различна для различных квантованных взаимных ориентаций векторов спина ядра и вращательных моментов электронов. Таким образом, при соответствующих условиях ядерный спин I может быть определен по числу линий в спектроскопических гипер-мультиплетах . Этим методом были определены спины многих ядер, например спины В (/ = /г) и (/ = /г). [c.44]

    Особенности атомных спектров некоторых элементов можно объяснить только исходя из предположения, что их ядра, подобно электронам, обладают спином. Влияние ядерного спина заметно сказывается также на молекулярных вращательных спектрах. Молекула, состоящая из двух одинаковых атомов, каждый из которых обладает ядерным спином, может существовать в двух формах в зависимости от того, параллельны ядерные спины или антипараллельны. Такие две формы известны под названиями орто- и параводорода соответственно. Уровни вращательной энергии квантуются, и установлено, что четные квантовые состояния соответствуют спектру одной формы, а нечетные квантовые состояния — спектру другой формы. Если орто- и параформы находятся в смеси в [c.178]


    Молекула окиси азота N0 представляет как раз обратный случай. Она содержит один неспаренный электрон и обладает орбитальным моментом, направленным вдоль ее оси. Таким образом, основным состоянием ее является П. Сильная спин-орбитальная связь расщепляет его на два уровня с расстоянием между ними 120 слг" . Из них нижний — П1д диамагнитен,так как для него проекции спинового и орбитального моментов вдоль оси равны и противоположны по направлению, верхний уровень — Пз/, парамагнитен. Благодаря вращению молекулы он расщепляется на 2/ 1 вращательных подуровней с проекциями J на направление поля /г, /г, —Уг, — /2- Поскольку, согласно правилам отбора, для вращательных переходов АМ/ = 4 1, возможны три перехода между этими четырьмя подуровнями, которые и наблюдаются в спектре. На каждый из этих переходов накладываются спин-ядерные переходы, вызывающие расщепление линий вращательно-магнитной структуры на триплеты с расстоянием между ними 14,2 э, что значительно меньше, чем в N02 и свидетельствует о меньшей доле 5-орбиты в волновой функции неспаренного электрона [34]. [c.107]

    Вращательную подвижность можно определить из спектров ЭПР разбавленных растворов радикалов. Из теории ЭПР известно , что анизотропное сверхтонкое электронно-ядерное взаимодействие и анизотропное спин-орбитальное взаимодействие в радикале зависят [c.31]

    Расчет вращательных сумм состояний для молекул, радикалов и активированных комплексов производился по формуле (123), требующей, знания произведений главных моментов инерции [1а 1в1с), числа симметрии частиц, равного числу неразличимых конфигураций, получаемых при вращении, квантовых весов или степени вырождения электронного и ядерного спинов gg и gn) Экспериментальных данных по инфракрасным спектрам в принципе достаточно для оценки моментов инерции молекул, но они отсутствуют для радикалов и не всегда известны для молекул. Поэтому главные моменты инерции и их произведение находились расчетным путем, на основе определенных геометрических моделей молекул, радикалов и предположительных геометрических конфигураций активированного комплекса. Необходимые для подобных расчетов геометрические параметры молекул (длины связей, валентные углы) изгаестны на основании результатов электронографических измерений, либо определяются путем расчета расстояний и энергий связей в радикалах [251]. Геометрическое строение образующихся активированных комплексов в реакциях между радикалами и молекулами в случае Н-атомов и СНз-радикалов выбирается близким к геометрическому строению исходных молекул. При этом предполагается, что изменения в активированном состоянии носят локализованный характер, в соответствии с пунктом г . [c.191]

    Ядра изолированы от окружающей их решетки электронными оболочками и не могут отдать избыточную энергию путем соударений. Вероятность спонтанного (самопроизвольного) излучения в радиоволновом диапазоне ничтожно мала (например, время жизни протона в возбужденном состоянии равно лет). Существует, однако, безызлучательный путь отдачи энергии ядрами, называемый релаксацией. Дело в том, что в каждом образце, содержащем магнитные ядра, возникают слабые флуктуирующие (хаотически меняющиеся) локальные магнитные поля, обусловленные межмолекулярными и внутримолекулярными движениями. Эти магнитные поля содержат весь спектр колебаний, в том числе и тех, которые совпадают с частотой ларморовой прецессии магнитных ядер данного изотопа. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с верхнего уровня на нижний путем резонансного взаимодействия с ним. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергии, т. е. превращается в тепловую энергию образца. Такой процесс охлаждения ядерных спинов называется спин-решеточной релаксацией. Он будет происходить довольно часто, поскольку, как показывает расчет, вероятность вынужденного излучения или ядерного магнитного резонанса велика (в противоположность спонтанному излучению). Система возбужденных ядер получает возмож- [c.22]

    Константы ядерной квадрупольной связи определяют из сверхтонкой структуры вращательных спектров полярных молекул. Так как константы eQq зависят от градиента поля, создаваемого электронами вблизи ядра, то по ним можно судить о распределении электронной плотности в атоме или в молекуле вблизи ядра. Ядро становится тем инструментом, при помощи которого исследуется электронная оболочка. Различные электроны и электронные конфигурации по-разному взаимодечствуют со спином ядра, вносят разный вклад в величину eQq. [c.135]

    Спектры атомов. При сообщении атому энергии изменяется по крайней мере одно квантовое число. Появляющиеся при этом сигналы относятся к видимой (800—200 нм) и рентгеновской (1 —10 А) областям спектра. В рентгеновской области спектра для аналитических целей используют сигналы, связанные с изменением главного квантового числа п. Интересные для аналитиков оптические спектры связаны в основном с изменением побочного квантового числа I (наряду с изменением и или т ). Ввиду большего разнообразия переходов оптические спектры имеют значительно большее число линий, чем рентгеновские. Если вырождение спинового момента электрона /Пз снимается внешним магнитным полем, то становятся возможными энергетические переходы с изменением т , дающие сигналы в микроволновой области (10 —10 Гц). Эти сигналы образуют спектр электронного парамагнитного резонанса (ЭПР). Атомное ядро подобно электрону может обладать собственным вращательным моменгом, ядерным спином. Воздействие внешнего магнитного поля также снимает его вырождение, что делает возможным энергетические переходы в области радиочастот (10 —10 Гц). Получающиеся при этом спектры называют спектрами ядерного магнитного резонанса (ЯМР). Оба метода, ЭПР и ЯМР, относят к резонансной магнитной спектроскопии [c.177]

    Излучат. К. п. классифицируют по типам квантовых состояний, между к-рыми происходит переход. Электронные К.п, обусловлены изменением электронного распределения-переходами внеш. (валентных) электронов между орбиталями (типичные энергии я 2,6-10 Дж/моль, частоты излучения лежат в видимой и УФ областях спектра), ионизацией внутр. электронов (для элементов с зарядом ядра 2 т 10 А я 1,3 -10 Дж/моль, излучение в рентгеновском диапазоне), аннигиляцией электронно-позитронных пар (Д % 1,3 10 Дж/моль, излучение в /-диапазоне). При переходах из возбужденных электронных состояний в основное различают флуоресценцию (оба состояния, связанные К. п., имеют одинаковую мульти-метность) и фосфоресценцию (мультиплетность возбужденного состояния отличается от мультиплетности основного) (см. Люминесценция). Колебат. К. п. связаны с внутримол. процессами, сопровождающимися перестройкой ядерной подсистемы (Д % 1 10 -5-Ю Дж/моль, излучение в ИК диапазоне), вращат. К. п.-с из.менением вращат. состояний молекул (10-10 см я 1,2-10 -1,2 х X 10 Дж/моль, излучение в микроволновой и радиочастотной областях спектра). Как правило, в мол. системах при электронных К. п. происходит изменение колебат. состояний, поэтому соответствующие К. п. наз. электронно-колебательными. Отдельно выделяют К. п., связанные с изменением ориентации спина электрона или атомных ядер (эти переходы оказываются возможными благодаря расщеплению энергетич. уровней системы в магн. поле), изменением ориентации квадрупольного электрич. момента ядер в электрич. поле. Об использовании указанных К. п. в хим. анализе и для изучения структуры молекул см. Вращательные спектры. Колебательные спектры. Электронные спектры, Мёссбауэровская спектроскопия, Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия. [c.368]

    Ранее мы уже отмечали, что стимулированные резонансные переходы ядер между уровнями энергии могут происходить под действием локальных полей, флуктуируюш их вследствие теплового движения атомов и молекул, если в спектре флуктуаций присутствуют частоты, соответствуюш ие резонансной частоте. Этими переходами обеспечивается энергетическая связь между спиновой системой и решеткой, в результате которой происходит выравнивание их температур. Мы рассматривали один из основных механизмов релаксации — магнитные диполь-диполь-ные взаимодействия. Однако, суш ествуют и другие физические взаимодействия, посредством которых энергия ядерных спинов может передаваться тепловому резервуару — решетке. Это электрические квадрупольные взаимодействия-, пространственная анизотропия электронного окружения ядра (анизотропия химического сдвига) скалярное ядерное или электронно-ядерное взаимодействие спин-вращательное взаимодействие, т. е. все те виды взаимодействия, которые обеспечивают возникновение на ядрах флуктуируюш его магнитного (или на квадруполь-ном ядре — флуктуируюш его градиента электрического поля) в результате движения атомов или молекул. Эти виды взаимодействий детально рассмотрены в [168, 171]. [c.257]

    Разработанные программы предназначены для расчета спектров 5ПР нитроксильных радикалов (электронный спин 5=1/2, ядерный спин /=1) в изотропной жидкости в отсутствие эффектов СВЧ-насыщения. Предполагается, что главные оси тензоров магнитной анизотропии (т. е. 4 и б-тензоров) совпадают между собой. и определяют молекулярную систему координат. Система главных осей тензора вращательной диффузии i в общем случае не совпадает с молекулярной системой координат. Тензор вращательной диффузии считается аксиальным Л=(Д , Д, ). Кроме того, в приближении сильного поля учитываются только секулярные и нсевдосекулярные члены спин-гамильтониана. [c.225]

    Расчеты Томпсона [3971] основывались на отнесении основных частот колебаний молекулы С2Н4, рекомендованном Конном и Сезерлендом [1160] (см. табл. 156). При этом для частоты крутильного колебания V4 было принято значение, равное 820 см , основанное на результатах экспериментальных измерений теплоемкости газообразного этилена и его энтропии при 298° К (см. ниже). Произведение главных моментов инерции С2Н4 в расчетах [3971J принималось равным 5,22(г-см ) на основании результатов анализа вращательной структуры ряда полос в инфракрасном спектре, полученных в работах [3968, 3790]. Если исключить из значений Ф и S , вычисленных Томпсоном [3971], составляющую ядерных спинов (4 1п 2), то значения этих величин станут весьма близкими к значениям, приведенным в табл. 213 (II). Различие значений Ф1,и Ф составляет соответственно 0,02 и [c.583]

    Вращательная структура системы полос при 4050 А молекулы Сд в общем достаточно сложна. Однако наиболее сильная полоса с кантом при 4049,77 Л имеет относительно простую структуру, состоящую из простых Р-, Q- и Р-вет-вей. Фотография ее спектра приведена на рис. 6. Анализ этой полосы был проведен Дугласом [24], который предположил, что она обусловлена 2 — П переходом в линейной трехатомной молекуле углерода. Чередование интенсивностей вращательных линий считалось отсутствующим, так как ядерный спин атома равен нулю. Вращательные постоянныеданывтабл. 2. Они приводят к хорошо приемлемым величинам 1,281 и 1,305 Л для длин С—С связи соответственно в нижнем и верхнем состояниях. Подтверждение этого анализа было получено Клузиусом и Дугласом [20], возбуждавшими эти полосы, используя чистый изотоп и наблюдавшими промежуточные вращательные линии с ожидаемым 3 1 изменением интенсивности. Более [c.37]

    Предметом высокоразрешенной спектроскопии комбинационного рассеяния является изучение вращательной структуры спектров газообразных веществ. Исследование проводится в первую очередь для получения данных о структуре молекул. Если вращательная структура на полученном спектре оказывается разрешенной, то анализ спектра позволяет в принципе вычислить моменты инер-ции, а следовательно, межъядерные расстояния и углы между связями в молекуле. Такие исследования дают также информацию о симметрии молекул, вращательно-колебательном взаимодействии и, в некоторых случаях, о ядерном спине и статистике, которой подчиняются ядра. В настоящей статье делается попытка обобщить успехи, достигнутые в этой области, рассказать о технике эксперимента, о возможностях и ограничениях метода и дать краткий очерк теории вопроса. [c.115]

    В газовой фазе молекулы свободно вращаются. Это вращательное движение квантовано, и в микроволновом спектре можно обнаружить переходы между вращательными уровнями энергии, если молекула имеет постоянный электрический ди-польный момент. В таких молекулах вращательное движение приводит к возникновению магнитного момента, так как электроны не совсем жестко связаны в своем движении с ядерным остовом. Если у молекулы имеется магнитный электронный спиновый момент, то последний будет взаимодействовать с вращательным моментом по механизму диполь-дипольного взаимодействия. Влияние этого взаимодействия такое же, как и влияние днполь-дипольных взаимодействий между электронами в твердых телах. Однако это взаимодействие в газовой фазе не усредняется до нуля, поскольку векторы вращательного углового и магнитного моментов коллинеарны и фиксированы в пространстве. Из-за спин-вращательного взаимодействия газофазные спектры ЭПР оказываются весьма сложными (разд. 12-6). [c.234]

    Такое чередование интенсивностей в отношении 3 1 было наблюдено в спектре обычной молекулы водорода На. В основном состоянии молекула имеет Е -терм, и поэтому вращательные уровни с четным значением / должны быть симметричными, а с нечетным/—антисимметричными (сравн. с табл. 11). Найдено, что самыми интенсивными линиями в снектре являются те, для которых в основном состоянии / нечетно. Следовательно, антисимметричные вращательные уровни связаны с той формой молекулярного водорода, у которой два ядра имеют параллельные спины, т. е. 1 = 1. Для удобства обозначения принято называть состояние молекулы, у которой статистический вес в равновесном состоянии больше, трто-состояниямт, а состояния с меньшим статистическим весом—тара-состояниямт. Так, обычный молекулярный водород при нормальной температуре состоит из трех частей о/ то-водор6да и одной части пара-водо ода, причем пара-состояниям молекулы соответствуют только четные уровни, а о/ то-состояниям—только нечетные. Если бы отсутствовало взаимодействие между ядерным спином и остальными движениями молекулы, то переход между симметричными и антисимметричными уровнями был бы полностью запрещен. Другими словами, было бы невозможно изменить спин одного из ядер так, чтобы орто-состояние молекулы перешло в иаро-состояние, и наоборот. Существует, однако, обычно небольшое взаимодействие между магнитным моментом, связанным с ядерным спином, и молекулой в целом. Таким образом, имеется малая вероятность перехода между симметричными и антисимметричными уровнями. Но скорость обращения спина настолько мала, что в отсутствии катализатора чистый пя/)а-водород может продолжительное время сохраняться без перехода в о/ /гео-форму, хотя система при равновесии должна состоять из одной части, первой и трех частей второй. [c.223]

    Другой метод определения ядерных спинов основан на явлении чередующейся интенсивности линий, обнаруженном во вращательных спектрах двухатомных молекул с одинаковыми ядрами. Молекулы, в которых ядерные спины параллельны, и молекулы, в которых спины антипараллель-ны, дают во вращательном спектре два ряда чередующихся линий. Отношение интенсивностей двух следующих друг за другом линий является мерой отношения распространенности двух типов молекул. Можно показать, что при равновесии, за исключением случая очень низких температур, это отношение равно (/ -Ь 1)//. В случае водорода отношение интенсивностей равно 3 1, что подтверждает наличие у протона спина I = /г. Два типа молекул водорода — ортоводород (спины двух ядер параллельны) и параводород (спины антипараллельны) — могут быть разделены. В обычном водороде при средних и высоких температурах отношение количеств этих молекул действительно равно 3 1. [c.44]

    Другим спектром в радиочастотной области, который следует отметить здесь, является спектр переориентации спина он состоит из переходов между различными спиновыми компонентами состояний 2 или при неизменном значении квантового числа N. Эти переходы запрещены для электрического дипольного излучения, так как уровни, между которыми происходят переходы, имеют одинаковую симметрию (+, —), но разрешены для магнитного дипольного излучения. Подобные переходы впервые наблюдались для молекулы Ог и недавно были обнаружены Джеффертсом [76] в спектре молекулярного иона Н . Рассмотрим здесь только последний спектр. Ион Нг имеет основное электронное состояние Вращательные уровни расщеплены согласно формуле (51а). Предсказанное теорией значение постоянной расщепления Y составляет 0,00153 см . И вновь ситуация осложняется благодаря наличию ядерного спина. Однако, так как ядерные спины антипараллельны и, следовательно, полный ядерный спин равен нулю, для четных вращательных уровней подобное осложнение не возникает. Для уровня N = 2 Джеффертс наблюдал две радиочастотные линии, которые, по его оценке, соответствуют колебательным уровням у = 5 1 и у = 6 1. Частоты наблюдаемых линий, равные 75,598 и 70,231 МГц, согласно формуле (51а), дают непосредственно значение 2,5у. Люк [87] рассчитал недавно зависимость [c.60]

    Наиболее низкими частотами в молекулах воды характеризуются колебания ядерных спинов. Протон обладает механическим, илп спиновым (т. е. вращательным), моментом количества движения и магнитным моментом, создающим магнитное- поле вокруг протона. Величина напряженности этого поля в точке расположения второго протона достигает 10 9 (заметим, что поле на поверхности Земли около 1 9).ЯсНо, что у такой, как принято говорить, двухспиновой системы (ядро кислорода 0 ни механического, ни маг-иитного момента не имеет) существуют два состоянии основное, когда два спина антипараллельны, и возбужденное, когда они параллельны. Переходам между двумя состояниями в молекуле воды отвечает частота всего 4-10 Гц. Интересно отметить, что описанным переходам (называемым пара —орто ) в молекулах воды точно соответствует пара — орто-конверсия в молекулярном водороде. Другая фундаментальная, предельно низкая частота в спектре воды связана с наличием тяжелого изотопа водорода — дейтерия Н. Ядро дейтерия — дейтрон отличается от протона примерно в два раза большей массой. Заряд дейтрона, равный заряду протона, равномерно размазан между двумя составляющими его частицами — протоном и нейтроном, так что в итоге заряд дейтрона оказывается несферическим. Сигарообразная форма распределения положительного заряда ядра дейтерия приводит к тому, что энергия дейтрона зависит от того, как ось [c.109]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально неодинакова. Так, излучение уквантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ- и видимого излучения или взаимодействие вещества с ними — следствие перехода внешних валентных электронов (сфера оптических методов анализа), поглощение ИК- и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в ра-диоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. Для решения разнообразных задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением рентгеновского, оптического, ИК- и радиоволнового диапазонов. В данном практическом руководстве по физико-химическим методам анализа рассматриваются оптические методы, которые традиционно делятся па оптическую атомную и оптическую молекулярную спектроскопию. В первом случае аналитические сигналы в области спектра от 100 до 800 нм являются следствием электронных переходов в атомах, во втором — в молекулах. [c.7]

    В ЭПР-спектроскопии фазовое состояние замороженных растворов и молекулярную подвижность в них обычно исследуют с использованием в качестве парамагнитного зонда стабильных ради-. калов (например, азотокисного радикала-метки 2,2,6,6-тетраметил-4-оксипиперидин-1-оксила). Применение стабильных радикалов для исследования молекулярной подвижности основано на зависимости ширины линий спектров ЭПР от степени вращательной и поступательной подвижности этих радикалов [212, 570, 571]. Вращательную подвижность можно определить из спектров ЭПР разбавленных растворов радикалов. Из теории ЭПР известно [572], что анизотропные сверхтонкое электронно-ядерное и спин-орбитальное взаимодействия в радикале зависят от взаимной ориентации направлений внешнего магнитного поля и орбитали неспаренного электрона. Вращение радикала модулирует эти взаимодействия, вызывая флуктуации локальных магнитных полей и уширяя линии ЭПР. Это уширение зависит от характера орбитали неспаренного электрона (анизотропии константы СТВ и g-фактора) и определяется временем корреляции тк. Время корреляции является характеристикой. интенсивности вращательного движения радикала. Порядок этой величины соответствует времени, которое необходимо радикалу, чтобы изменить ориентацию на угол около одного радиана. [c.179]

    Если вращательное движение частиц является очень быстрым, на отдельный спин накладывается за короткое время большое число беспорядочных полей. Вследствие того что уширяющие поля усредняются до нуля, происходит трансляционное сужение линий. При этом в спектре наблюдают узкие линии. Электронной аналогией указанного процесса является перекрываиие орбиталей неспаренных электронов, когда радикалы расположены достаточно близко друг от друга. Неспаренные электроны в таком случае делокализованы по всему кристаллу. Поэтому на отдельный спин за время, малое по сравнению с временем наблюдения, накладывается большое число беспорядочных полей. В результате возникает очень узкая линия ( обменное сужение ). В этом случае любая сверхтонкая структура, обусловленная взаимодействием с ядрами, исчезает, так как ядерные поля распределены беспорядочно и взакмодействие с ними в среднем равно нулю. [c.45]


Смотреть страницы где упоминается термин Ядерный спин вращательные спектры: [c.60]    [c.75]    [c.37]    [c.310]    [c.133]    [c.52]    [c.224]    [c.38]    [c.6]    [c.310]    [c.58]    [c.75]    [c.107]    [c.394]    [c.148]   
Теоретическая химия (1950) -- [ c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Спектр ядерные

Спектры вращательные

Спин-эхо

Спины

Спины ядерные



© 2025 chem21.info Реклама на сайте