Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллическое поле энергия стабилизации ионов переходных металлов

    Опубликовано большое число констант устойчивости комплексов двухзарядных катионов переходных металлов, находящихся в высокоспиновом состоянии, с различными лигандами. Для лигандов, стоящих перед водой в спектрохимическом ряду (см. разд. 14.3.2), константы устойчивости комплексов с данным лигандом изменяются в последовательности Mn Zn (табл. 14.3), называемой рядом Ирвинга— Уильямса в честь исследователей, впервые обнаруживших эту закономерность [29]. Правило Ирвинга — Уильямса в основном отражает изменение в данном ряду теплот образования комплексов (см. табл. 14.3), и такой характер изменения устойчивости хелатов объясняется совместным эффектом изменяющейся в ряду Mn"Zn" поляризуемости ионов металлов, определяемой отношением заряда к ионному радиусу, и энергии стабилизации кристаллическим полем, которая изменяется следующим образом Mn -Zn (см. табл. 14.1) [c.256]


    Нецелесообразно сравнивать рассмотренные выше ионы металлов с ионами переходных элементов, у которых важную роль при комплексообразовании играют незаполненные -орбитали. Более того, даже довольно трудно сравнивать эти ионы между собой. Устойчивость комплексов, образуемых ионами элементов переходных рядов, зависит не только от ионного потенциала, но и от таких переменных, как энергия стабилизации кристаллическим полем, наличие пустых -орбиталей для принятия л-электронов лиганда, наличие пар -электронов для обратной дативной я-связи. Все эти факторы можно объединить, сказав, что устойчивость комплекса в значительной мере зависит от числа -электронов в ионе или атоме переходного металла. Ясно, что те лиганды, которые способны образовывать я-связи, такие, как СМ", СО, РНз, АзНз, и т. д., не могут образовывать устойчивые комплексы с ионами металлов, имеюш,их заполненные уровни с прочно [c.289]

    При заполнении первыми -электронами нижних орбит (см. рис. 21) в кристаллическом поле происходит выигрыш энергии по сравнению с изолированным ионом переходного металла или так называемая стабилизация кристаллическим полем . Если ион переходного металла имеет в октаэдрическом поле конфигурацию -орбит (где т я п соответственно число электронов на орбитах), тогда энергия стабилизации кристаллическим полем равна А (4т—6п)/10, для тетраэдрической конфигурации (е) она равна (6р—4 )/10. В табл. 1 показано расположение -электронов па орбитах в комплексах октаэдрической конфигурации и энергия стабилизации кристаллическим полем в долях А. [c.49]

    Теория кристаллического поля позволяет также понять магнитные и некоторые важные химические свойства ионов переходных металлов. Прежде чем перейти к обсуждению этих свойств, полезно ввести представление об энергии стабилизации кристал- [c.394]

    Для ионов переходных металлов следует также учитывать (глава 1, 6) стабилизацию энергии кристаллическим полем. В общем можно сказать, что при прочих равных условиях системы с большей стабилизацией кристаллическим полем должны быть более слабыми кислотами. Так ион r +-aq (структура (Р) — более слабая кислота, чем Fe -aq (структура d ). Ниже приводится порядок возрастания кислотности ионов металла в комплексах, определенный [176] по константам ионизации в водной среде для реакции Ме(Н20)"+ Ме(0Н)(Н20) " + Н+  [c.74]

    Механизм реакций комплексных соединений. В гл. 5 говорилось о том, что интервал скоростей обмена лигандами в различных комплексных соединениях необычайно широк. Для непереходных металлов можно найти удовлетворительное соотношение, связывающее скорость реакции с размером и зарядом катиона. Однако у комплексов переходных металлов скорости реакций изменяются в очень широких пределах (более чем на 6 порядков) независимо от раз> ера или заряда соответствующих ионов. В настоящее время не существует количественной теории, способной объяснить столь большие различия в скорости реакций различных комплексов. Несомненно, что такая теория должна учитывать целый ряд факторов. Однако некоторые результаты приближенных расчетов позволяют полагать, что различия в энергиях активации у разных комплексов во многом, если не в основном, определяются разницей в энергии стабилизации ионов в кристаллическом поле. Не исключено, что величина ЭСПЛ является в этом отношении решающим фактором. Так, для комплексов Ре +(/ е ) характерны быстрые реакции, тогда как аналогичные комплексы Сг + (и Со + (реагируют медленно. Размеры и число лигандов в координационной сфере иона Ре + не оказывают никакого влияния на величину ЭСПЛ, поскольку для высокоспинового иона с конфигурацией она всегда равна нулю. У ионов Сг + и Со +, координированных по октаэдру, энергия стабилизации очень велика, тогда как у всех возможных переходных состояний в реакциях этих комплексов энергия стабилизации мала и, по данным ориентировочных расчетов, составляет лишь небольшую часть от ЭСПЛ исходных ионов. Аналогичная ситуация возникает при сравнении иона N1 + с другими двухзарядными ионами первого ряда переходных элементов. Действительно, комплексы двухвалентного никеля реагируют значительно медленнее комплексов остальных двухзарядных ионов этого ряда. [c.85]


    При характеристике свойств ионов переходных металлов, в частности их способности к комплексообразованию, следует учитывать влияние электростатического поля лигандов на /-элект-рон центрального атома. Установлено, что для переходных элементов, у которых достигается большая энергия стабилизации кристаллическим полем, образуются более прочные комплексные соединения. Так, у аминов эффект кристаллического поля больше, чем у кислородсодержащих лигандов, и комплексы с первой группой лигандов более прочны, чем со второй. Это подтверждается значениями констант нестойкости этих соединений. [c.6]

    Устойчивость комплексов, образуемых ионами переходных металлов, зависит не только от ионного потенциала, но и от таких факторов, как энергия стабилизации кристаллическим полем [6] (рис. 1Х-3), наличие ва- [c.190]

Рис. 7-7. Теплоты гидратации двух-зарядных (/,/ ) и трехзарядных (2,2 ) ионов переходных металлов. Кривые Г к 2 — экспериментальные кривые 1, 2 соединяют значения — АН для й , й и Р -ионов, обладающих сферической симметрией. Точки X получены вычитанием энергии стабилизации кристаллическим полем из величин —АН. Рис. 7-7. <a href="/info/2440">Теплоты гидратации</a> <a href="/info/1696521">двух</a>-зарядных (/,/ ) и трехзарядных (2,2 ) <a href="/info/31476">ионов переходных металлов</a>. Кривые Г к 2 — <a href="/info/330316">экспериментальные кривые</a> 1, 2 соединяют значения — АН для й , й и Р -ионов, обладающих <a href="/info/92937">сферической симметрией</a>. Точки X получены вычитанием <a href="/info/18758">энергии стабилизации кристаллическим полем</a> из величин —АН.
    В случае ионов переходных металлов другим важным фактором является энергия стабилизации кристаллическим полем. Можно ожидать, что благодаря увеличению прочности решетки эта энергия будет приводить к уменьшению растворимости простых ионных солей. Это может быть справедливо только в том [c.202]

    К первой группе относятся главным образом ионы металлов, которые имеют конфигурацию инертного газа или содержат мало d-электронов, а в третью группу входят ионы металлов с заполненной или почти заполненной -оболочкой. Значительно большая склонность ионов металлов последней группы к деформации и повышенная поляризуемость атома азота объясняют большее сродство этих ионов к азоту. Поляризующее действие лиганда на центральный ион металла возрастает с уменьшением заряда и увеличением радиуса иона металла, и, следовательно, наибольшие различия наблюдаются у членов отдельных групп периодической системы, например в подгруппе щелочных металлов и подгруппе меди (медь, серебро, золото), тогда как способность к комплексообразованию, например у четырехвалентных ионов обеих подгрупп четвертой группы, почти одинакова, и они присоединяются прочнее к кислороду, чем к азоту. Ион Ре(И1) принадлежит к первой группе, а другие трехвалентные ионы переходных металлов — ко второй и третьей группам. Вследствие сферически симметричной конфигурации -электронов ион Ре(П1) не обладает энергией стабилизации кристаллического поля 330], тогда как у других трехвалентных ионов переходных металлов константа устойчивости значительна (см. также разд. И этой главы). Другими словами, трехвалентные ионы переходных металлов присоединяются более прочно к атому азота благодаря большей силе поля. Сиджвик исследовал силы связи между ионами металлов и донорными атомами кислорода и серы. Он нашел, что ионы Ве(П), Си(И) и Аи(И1) соединяются намного прочнее с лигандами, содержащими кислород, а ионы u(I), Ag(I), Au(I), Hg(I) и Hg(II) предпочитают лиганды с донорным атомом серы. [c.14]

    Таким образом, различными методами показано, что шпинели отличаются от других оксидов легкостью перестройки структуры, наличием в ней дефектов и особым механизмом электронного обмена- перескока электронов между соседними ионами. Эти свойства и приводят к повышенной активности шпинелей в окислительных реакциях. В окислении углеводородов особенно активны шпинели, содержащие ион кобальта. Трехвалентный кобальт в октаэдре находится в сильном поле лигандов (конфигурация и имеет максимальную энергию стабилизации кристаллическим полем. При переносе электрона в результате окислительно-восстановительного процесса (такой перенос может быть облегчен благодаря присутствию в системе другого катиона переходного металла) Со переходит в Со. После осуществления каталитического цикла система воз-. вращается в устойчивое состояние Со [26, с. 120-124]. Электронный обмен между ионами Со по механизму перескока позволяет передать заряд адсорбированной молекуле кислорода, превратить ее в активный ион-радикал. Условия быстрого подвода кислорода облегчены на поверхности катализатора, способного быстро перестраивать поверхностный слой с сохранением объема катализатора в устойчивом состоянии. Эти условия осуществляются в шпинелях, содержащих ион Со, в которых, как указано выше, энергия разупорядочения в объеме относительно невелика (см. табл. 2.8), а на поверхности должна быть еще меньше. [c.58]


    Первое подтверждается тем, что среди активных в изомеризации окислов преобладают те, в которых ионы металла имеют электронную конфигурацию, обеспечивающую снижение энергии поверхностных комплексов за счет их стабилизации кристаллическим полем. Двуокиси титана и циркония, не отвечающие этому условию, неактивны в виде индивидуальных соединений и используются в реакциях изомеризации только в составе сложных катализаторов. С другой стороны, всем активным в изомеризации окислам присущи высокие значения работы выхода электронов и большая ширина запрещенной зоны. Единственное исключение представляет окись кобальта, но и она неактивна в виде индивидуального соединения, так же как окислы титана и циркония. Важное влияние полупроводниковых свойств окислов переходных металлов на их каталитическую активность подтверждается и тем, что окислы с благоприятными для комплексообразования внешними оболочками центральных ионов д , (Р, остаются неактивными в изомеризации при малых [c.30]

    Заметим, что стабилизация в кристаллическом поле (в ноле лигандов) — это лишь один из факторов, обеспечивающих устойчивость комплексов переходных металлов. На рис. 23 изображены экспериментальные данные по теплотам гидратации водных комплексов двухвалентных и трехвалентных ионов первого большого периода [164, 166, 170]. Точки (крестики) располагаются па кривой с двумя максимумами и минимумом на Мп + и Fe +. Если же вычесть энергию стабилизации кристаллического поля, исправленные значения (зачерненные точки) расположатся на плавной кривой, поднимающейся к концу периода. Этот основной вклад в устойчивость комплекса определяется притяжением лигандов к остову иона металла сферической симметрии. Он растет с увеличением заряда и уменьшением радиуса иона. Порядок устойчивости комплексов двухвалентных ионов металлов первого большого периода почти со всеми лигандами [164] растет в ряду Мп < Fe + Со + > Zn +. [c.52]

    Непригодность теории валентных связей для описания энергетических свойств соединений покажем на примере энергий гидратации ионов переходных металлов. Согласно этой теории, следовало бы ожидать значительно больших теплот гидратации для ионов с конфигурацией сР-, (р и й , поскольку они должны образовывать впутриорбитальные комплексы даже с молекулами воды в качестве лигандов (не требуется спаривания электронов). За исключением иона Со(1П), гидраты всех других ионов должны быть менее устойчивы, так как они являются внешнеорбитальными или ионными комплексами. Однако эти предсказания совсем не соответствуют действительности. Энергии гидратации ионов с конфигурациями и меньше, чем энергии гидратации любого другого иона данного переходного ряда. Для энергии гидратации иона с конфигурацией обнаружена значительная стабилизация, однако это легко объясняется в теории кристаллического поля. [c.100]

    Согласно теории кристаллического поля взаимодействие лиганда с ионом переходного металла приводит к расщеплению вырожденных -уровней (рис. 113, а). При увеличении числа -электронов ь ионе переходного металла сначала происходит заполнение трех нижних ( 5 ) подуровней по одному электрону на каждый подуровень. При заполненных нижних подуровнях энергия системы понижается. Это понижение энергии называют энергией стабилизации кристаллическим полем (ЭСКП). С ростом ее энергия адсорбции молекулы на поверхности катализатора увеличивается, а реакционная способность повышается. Таким образом, следует ожидать, что в ряду окислов переходных металлов с одним, двумя и тремя -электронами каталитическая активность будет увеличиваться. [c.458]

    О ТОМ, насколько оправданно введение представления об энергии стабилизации кристаллическим полем (ЭСКП), можно судить, рассматривая энтальпии гидратации двухзарядпых ионов переходных металлов. Энтальпия гидратации ДЯ др двухзарядного иона металла представляет собой количество тепла, выделяемое в процессе следующей реакции  [c.396]

    Продемонстрируем метод на наиболее симметричных конфигурациях и простейших системах. Рассмотрим сушность эффекта расщепления терма. В качестве центрального иона возьмем ион переходного металла, внешняя оболочка которого содержит один -электрон, терм /). В свободном ионе -состояние вырождено пятикратно, т. е. имеется пять /-орбиталей, эквивалентных по энергии, на которых может находиться рассматриваемый э.тектрон (см. 7). Если поместить ион в центр поля лигандов, имеющего сферическую симметрию, энергия внешних электронов иона повысится из-за дополнительного отталкивания от отрицательных лигандов, создающих цоле, но в поле любой другой симметрии вдобавок произойдет расщепление -уровня на подуровни. Последнее зависит от симметрии поля. В октаэдрическом поле шести отрицательных лигандов (симметрия Он) две из пяти -орбиталей направлены в сторону расположения лигандов, именно -орбитали (рис. 100). Отталкивание электронов на этих орбиталях от отрицательных лигандов значительнее, чем на трех оставшихся орбиталях (1 у, ,.. и ,, лепестки которых направлены к ребрам октаэдра, т. е. между лигандами. Поэтому энергия электрона на первых двух орбиталях оказывается вьипе, чем на трех последних. Таким образом, первоначальный -уровень ( О терм) расщепляется на два подуровня — более низкий,трижды вырожденный, и более высокий, дважды вырожденный (е ). При заполнении электронами более низких уровней (здесь г ) система стабилизируется по сравнению с произвольным заполнением -орбиталей. Достигаемый за счет этого выигрыш энергии, называемый энергией стабилизации кристаллическим полем (ЭСКП), упрочняет химическую связь. [c.238]

    Ход изменения каталитической активности окислов металлов четвертого периода в изотопном обмене На—Оз и дегидрировании, как было показано Дауде-ном с сотрудниками [95], повторяет ход изменения энергии стабилизации кристаллическим полем (ЭСКП) центральных ионов металлов в их координационных соединениях. Такая стабилизация отсутствует у ионов переходных металлов с электронными конфигурациями d , а для остальных зависит от координационного числа, симметрии комплекса и степени заполнения -уровней. [c.29]

    В тригональных бипирамидальных комплексах переходных металлов простые лиганды удерживаются наиболее сильно в аксиальных положениях (разд. 3.2). Это следствие неполного заполнения -оболочки. Рис. 21 показывает, что стабилизация кристаллическим полем больше для коротких аксиальных связей. Это означает, что энергия свободной орбитали а увеличивается, а вместе с ней увеличивается и энергетический промежуток между уровнями е и на рис. 21 это делает труднее достижимой переходную плотность типа Е и стабилизирует структуру. По этой причине комплексы К1РзХ2, где Р — фосфин, а Х — либо галогенид-ион, либо цианид-ион, характеризуются наличием цианидных групп в аксиальном положении, а лигандов галогенов в экваториальном положении. Это предсказывается последовательностью силы кристаллического поля > Р > галогенид-ион [115а]. [c.354]

    Если у центрального иона имеются несвязывающке валентные электроны, они могут сильно взаимодействовать с окружающими группами, вызывая эффе чты кристаллического поля . На рис. 6 приведена диаграмма энергии стабилизации в кристаллическом поле для ионов переходных металлов -ряда в полях различной симметрии в зависимости от числа -электронов [3, 40]. Эти данные ясно показывают, что ионам металлов с несколькими -электронами выгодно иметь высокие координационные числа (7 или 8). При этом вьшгрыш в энергии по сравнению с системами, имеющими более низкое координационное число, составляет 5—10 ккал/моль, что соизмеримо с обычно наблюдаемой разницей в энергии систем с разной координацией. Поэтому люжно полагать, что энергия стабилизации в кристаллическом поле является одним из важных факторов, определяющих геометрию комплекса. Например, устойчивость 5-координационных комплексов ионов переходных металлов с конфигурацией удалось объяснить [41 ] на основании баланса энергий при переходе от квадратного 4-координационпого комплекса к системе с координационным числом 5 при этом возникает [c.365]

    Доуден и Уэллс впервые выдвинули представление о хемосорбции как образовании комплекса между координирующим атомом поверхности и адсорбатом в качестве лиганда. Соответственно в реакциях, лимитируемых стадиями адсорбции или десорбции, в результате энергии стабилизации кристаллическим полем следует ожидать минимума скоростей реакций для ионов с (1°, и оболочками в слабом поле и с и оболочками в сильном поле. Максимальной активностью должны обладать ионы с и а — оболочками в слабом поле. Действительно, двухпиковая активность наблюдалась для ряда реакций (Нг — Ог обмен, диспропорциони-рование циклогексена, дегидрирование пропана и др.) для СггОз, С03О4 и N 0. Однако такая зависимость отнюдь не универсальна, и одной из причин этого является непригодность схемы двухпиковой активности для хемосорбции через стадию образования л-комплекса. Киселев и Крылов [38] тоже трактуют акт адсорбции как процесс поверхностного комплексообразования, создания до-норно-акцепторной связи затягиванием неподеленной пары электронов адсорбата-лиганда па внутренние орбитали атома решетки, являющегося центром адсорбции и играющего роль ядра комплекса. Крылов, основываясь на данных современных физических методов исследования твердой поверхности при адсорбции и каталитических реакциях, приходит к заключению об идентичности в ряде случаев структуры промежуточных комплексов в гетерогенном и гомогенном катализе, протекающем на одних и тех же ионах переходных металлов. Это подтверждает роль координационного взаимодействия как одного из механизмов гетерогенного катализа. Квантово-химическое обоснование такого механизма дано в работе [10]. [c.35]

Таблица 6.11, Энергии стабилизации кристаллического поля ( FSE) и энергии предпочтения октаэдрической позиции, (OSPE) для ионов переходных металлов в шпинели Таблица 6.11, <a href="/info/18758">Энергии стабилизации кристаллического поля</a> ( FSE) и <a href="/info/1416391">энергии предпочтения октаэдрической</a> позиции, (OSPE) для <a href="/info/31476">ионов переходных металлов</a> в шпинели
    Теория кристаллического поля объяснила магнитные свойства и оптические спектры комплексов переходных металлов в растворе. Дуниц и Орджел [169] применили эту теорию к объяснению кристаллической структуры твердых ионных соединений переходных металлов, в особенности окислов. Например, для ионов Сг + и NP+ октаэдрическая конфигурация дает большую стабилизацию энергии, чем тетраэдрическая. Поэтому последняя для этих элементов в твердых телах почти не наблюдается. Для ионов d°, d , d (Ti +, V +, r +, [c.50]

    Образование переходного состояния в реакциях с участием октаэдрических комплексов переходных металлов связано с потерей энергии стабилизации кристаллическим полем (ЭСКП), которой обладают комплексы ионов с конфигурацией d , d , d, d , d (слабое поле) и d d (сильное поле). Если лиганды в переходном состоянии связаны с М только а-связью, то чем прочнее эти связи, тем больше параметр расщепления Л и тем меньше ЭСКП, а следовательно, и скорость реакции независимо от положения этих лигандов относительно уходящего лиганда [46].  [c.80]

    Энергии сольватации ионов с частично заполненными стабилизации кристаллическим полем, которая зависит от природы как самого иона, так и лигандов [322]. Эта стабилизация варьирует в зависимости от количества /-электронов таким образом, что для Д//л° dr имеет место биэкстремальная кривая, приведенная для переходных металлов первого ряда четвертого периода (рис. 2.18). Высота этих максимумов, т.е. энергия стабилизации кристаллическим полем, близка по величине для всех кислородных доноров, напротив, в случае азотных доноров она выше и возрастает с ростом числа донорных атомов в полидентатных лигандах. Эффект стабилизации позволяет отчасти объяснить по крайней мере расположение катионов в ряду возрастающей стабильности комплексов с iV-донорными атомами Mn/+ < Fe2+ < Со2+ < Ni 2+ < u2+< Zn2+. [c.367]

    В обзоре, составленном Джонсом [126], рассмотрено большинство калориметрических работ для неорганических систем, выполненных до 1961 г. Возрождение интереса химиков-неоргаников к теории кристаллического поля, начавшееся после 1952 г., привело к необходимости получения большого числа данных о ДЯс, нужных для проверки теории кристаллического поля и теории молекулярных орбиталей. К сожалению, в те годы таких данных почти не было, и первоначальные попытки скоррелировать экспериментальные данные с теорией в основном базировались [127] на известных к тому времени значениях теплот гидратации, энергии решетки для дигалогенидов и энергии сублимации металлов. Большой интерес вызывала возможность корреляции экспериментальных значений ДЯсДЛя ионов элементов первого переходного ряда с предсказаниями теории кристаллического поля в связи с ожидаемыми эффектами, обусловленными стабилизацией в поле лигандов и энергией спаривания спинов, что должно было сказаться на величине ДЯ . Однако, несмотря на большой теоретический интерес к подобным калориметрическим данным, было проведено, по-видимому, очень мало исследований, посвященных калориметрическим измерениям для других, не высокоспиновых комплексов двухзарядных ионов первого ряда переходных элементов. [c.64]

    Значения энергий стабилизации в кристаллическом поле, указанные в табл. 3-1, были использованы для объяснения отклонений, которые наблюдаются в теплотах образования гидра-тов переходных металлов [1]. Теплоты, образования больше ожидаемых (взаимодействия более сильные) для всех двухвалент-ных катионов первого переходного периода, за исключением Мп(П), и величина отклонений для каждого иона симбатна его энергии стабилизации в кристаллическом поле из табл. 3-1. Высказывалось предположение, что у ионов металлов с большими значениями энергий стабилизации в кристаллическом поле [c.96]

    Из многочисленных экспериментальных данных и теоретического анализа спектров поглощения комплексов в дальней инфракрасной области следует, что прочность связей металл—лиганд и изменения структуры связи могут быть оценены из частот продольных колебаний связей и расчетных величин силовых констант этих валентных колебаний [236]. Хэйг и сотр. [237] указывали, что для двухвалентных ионов металлов первого переходного ряда частоты продольных колебаний связей металл—лиганд в дальней инфракрасной области и расчетные величины силовых констант как меры силы связи металл—лиганд определяются энергией стабилизации кристаллического поля. По-видимому, относительная [c.93]

    При рассмотрении координационной системы в приближении теории кристаллического поля или метода МО ЛКАО все электронные факторькв стереохимии выражаются через изменения энергетических уровней при изменении конфигурации ядер. Одна из таких характеристик — энергия стабилизации кристаллическим полем (табл. IV. 10 и IV. 11), на основе которой можно получить некоторые сравнительные данные по предпочтительной стереохимии и относительной устойчивости (раздел IX. 1). Однако в стереохимии помимо чисто электронного фактора — экстрастабилизации — важную роль играет основной вклад в устойчивость (притяжение ли гандов к центральному иону в представлениях теории кристаллического поля или преобладающий вклад электронов на связывающих орбиталях в методе МО) и отталкивание остовов (раздел IX. 1). Сравним с этой точки зрения различные типы координации одного и того же переходного металла с одним и тем Же типом лигандов. [c.281]

    Нецелесообразно сравнивать рассмотренные выше ионы металлов с ионами переходных элементов, у которых важную роль при комплексообразовании играют незаполненные ei-орбитали. Более того, даже довольно трудно сравнивать эти ионы между собой. Устойчивость комплексов, образуемых ионами элементов переходных рядов, зависит не только от ионного потенциала, но и от таких переменных, как энергия стабилизации кристаллическим полем, наличие пустых d-орбиталей для принятия я-электронов лиганда, наличие пар (i-электронов для обратной дативной я-связи. Все эти факторы можно объединить, сказав, что устойчивость комплекса в значительной мере зависит от числа d-электронов в ионе или атоме переходного металла. Ясно, что те лиганды, которые способны образовывать я-связи, такие, как N", СО, РКз, AsRa, SR2 и другие, не могут образовывать устойчивые комплексы с ионами металлов, имеюших заполненные уровни с прочно связанными электронами, и поэтому не способны давать электронные пары на п-связь. Это подтверждается экспериментально. Вклад энергии стабилизации кристаллическим полем в общее изменение энтальпии зависит от числа d-электронов, от геометрии и силы поля лигандов, т. е. от величины расщепления d-орбиталей и заселенности их электронами. [c.279]

    Устойчивость ком1Плежсных соединений тесно связана с их электронной конфигурацией и зависит от типа связей в них. Следует ожидать, что наиболее прочные связи ион-дипольного типа будут образованы самыми малыми по размеру ионами, так как последние создают электростатическое поле наибольшей напряженности. Если рассматривать гидратированные двухвалентные ионы Mg +, Са +, 5г2+ и Ва + и откладывать стандартные энтальпии гидратации в зависимости от обратного радиуса, получим. монотонно убывающую кривую (рис. 11.13), которая показывает уменьшение прочности ион-дипольных связей при увеличении радиуса иона металла. Следует ожидать, что стандартные энтальпии гидратации двухвалентных ионов элементов первого переходного периода будут ложиться на аналогичную кривую, так как ионный радиус уменьшается в ряду от Са + (99 пм) до 2п +, (72 пм). Однако, согласно зкспериментальным данным (рис. 11.14), зависимость энтальпии гидратации от ионного радиуса является не монотонной, а имеет вид кривой с двумя горбами. Видно, что гидратированные ионы, отличные от Мп2+, более устойчивы, чем следовало ожидать только из рассмотрения значений их ионных радиусов эта дополнительная стабилизация может быть объяснена на основе понятия энергии стабилизации кристаллическим полем. [c.234]

    Основными факторами, определяющими, какие комплексы будет образовывать переходный металл, тетраэдрические или плоские квадратные, являются а) энергия стабилизации кристаллическим полем и б) взаимное отталкивание между лигандами. Последнее зависит от размера лигандов и их электроотрицательности. Рассмотрим вначале значения ЭСКП для тетраэдрических комплексов ионов металлов с конфигурациями от d до d °. Первый электрон будет занимать самую нижнюю по энергии орбиталь, т. е. одну из е-орбиталей при этом энергия стабилизации будет равна 0,27А. Второй электрон попадает на второй уровень дублета и величина ЭСКП увеличится до [c.249]

    Мы не будем здесь обсуждать теоретические аспекты химической связи в химии переходных элементов [18—22], но от нее в значительной мере зависит стереохимия комплексов. Коротко говоря, электростатическое поле лигандов расщепляет пять вырожденных -орбиталей газообразного иона металла на различные наборы уровней энергии (рис. 1.3). При заполнении этих орбиталей кристаллического поля вначале заполняются наиболее низколежащие орбитали с соблюдением принципа Паули при этом в общем обычно получается выигрыш энергии. Он имеет название энергии стабилизации кристаллическим полем (ЭСКП). Некоторые характерные величины ЭСКП для различных конфи- [c.50]


Смотреть страницы где упоминается термин Кристаллическое поле энергия стабилизации ионов переходных металлов: [c.398]    [c.83]    [c.118]    [c.55]    [c.406]    [c.31]    [c.154]    [c.389]    [c.106]    [c.248]   
Химия несовершенных кристаллов (1969) -- [ c.534 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы переходных металлов

Ионы энергия,

Кристаллическая энергия,

Металлы переходные

Переходное энергия

Стабилизация ионов

Энергия ионов

Энергия металлов

Энергия стабилизации в кристаллическом пол



© 2025 chem21.info Реклама на сайте