Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация олефинов ионная

    Полимеризация олефинов. Как говорилось раньше в связи с обсуждением энергетики реакции табл. 4, присоединение иона карбония, полученного при взаимодействии протона с олефином, является необходимой стадией полимеризации олефинов. Новый ион карбония может снова реагировать с мономерами, образуя полимеры, до тех пор, пока не произойдет отщепление протона, что прекратит реакцию. Так, пропен полимери-зуется по механизму  [c.135]


    Полимеризация олефинов включает присоединение иона карбония, образуюш егося при взаимодействии двух молекул одного и того же олефина [51]. Образовавшийся ион может терять иротон, давая полимерный олефин или же он мон<ет насыш,аться за счет реакции переноса водорода от изопарафина или от олефина. Если имеет место последний случай, то образуется также сильно непредельное соединение, которое находят в комплексе катализатора. Реакцию эту можно написать так  [c.320]

    Полимеризация олефинов, катализуемая кислотами, очень хорошо согласуется с классической карбониевой теорией присоединение протона к двойной связи сопровождается присоединением карбоний-иона к двойной связи, т. е. элементарной стадией, описанной выше для алкилирования (разд. IV. З.Б)  [c.102]

    Модель реакции алкилирования, разработанная в настоящей статье (рис. 18), предполагает протекание процесса как в кислотной фазе, так и на поверхности раздела кислота/углеводород. Образование триметилпентанов и других октанов протекает преимущественно на поверхности раздела фаз. Добавка катионоактивных азотсодержащих веществ снижает стабильность промежуточно образующихся карбоний-ионов, ускоряя отрыв гидрид-ио- нов от молекулы изобутана или других потенциальных доноров гидрид-ионов. Ускорение гидридного переноса способствует более быстрому насыщению карбоний-ионов на поверхности раздела фаз, ведущему к образованию целевого алкилата, и соответственно замедляет протекание полимеризации и других побочных реакций. Вполне вероятно также, что поверхностно-активные вещества физически отделяют карбоний-ионы один от другого на поверхностной пленке, препятствуя полимеризации карбоний-иона и олефина. В такой пленке концентрация карбоний-ионов должна быть ниже, чем без добавки, и эффект действия масс тоже будет направ- [c.31]

    Образование насыщенных тяжелых углеводородов, по-видимому, объясняется полимеризацией олефинов, за которой следует отрыв гидрид-иона от молекулы изобутана. Наличие бутена-1 и пропилена, низкое содержание воды в катализаторе, невысокое соотношение изобутана и олефина — вот факторы, способствующие образованию тяжелых углеводородов. [c.55]

    Ступенчатая полимеризация олефинов в присутствии кислотны. катализаторов протекает по карбоний-ионному механизму. [c.158]


    Для объяснения механизма ступенчатой полимеризации олефинов и других непредельных соединений наибольший интерес представляет карбониево-ионная теория Уитмора, предложенная им в 1934 г. [57] и интерпретирующая процессы полимеризации с электронной точки зрения. Эта теория объясняет протекание полиме- [c.623]

    При большом избытке донора протонов и малой концентрации исходного олефина ион протонируется до насыщенного продукта (А). По мере увеличения концентрации олефина становится возможным нуклеофильное присоединение иона к олефину, т. е. образование димерного продукта (Б). Наконец, при очень малой концентрации доноров протонов и высокой концентрации олефина начинается ионная полимеризация. [c.216]

    Ионно-координационная полимеризация олефина протекает в нестационарных условиях. Сколько катализатора-(г. л ) необходимо взять, чтобы через 10 мин от начала процесса содержание активных центров роста составило 5,8-10 моль-л , если число активных центров, приходящихся на 1 г катализатора, равно 7,5. 10 моль, концентрация мономера 1,5 моль л ,, а = 0,034 л моль с  [c.139]

    Способность к образованию ковалентных связей (I - Q), напротив, более свойственная ионам карбония, так как ионы Н , по электронной структуре близки к инертным газам, а карбкатионы содержат во внешней 2р-оболочке неспаренный электрон. Поскольку процессы катионной полимеризации олефинов осуш,ествляются в неводных средах с низкой или умеренной диэлектрической проницаемостью, участие карбкатионов в ионных взаимодействиях с жесткими основаниями зависит от их реакций с р- и 71-электронами мягких оснований (олефины), при этом двойственное поведение ионов карбония как жесткой, так и мягкой кислоты в зависимости от конкретных условий полимеризации ответственно за итог конкуренции различного типа возможных реакций в системе. [c.43]

    Характерно, что активность алюмосиликата при полимеризации олефинов резко снижается после обмена поверхностных Н-атомов на ионы Ка [43] и коррелирует с его бренстедовской кислотностью [44], определяемой по обмену с ионами ЫН/, а не с общей кислотностью по бутиламину. Окислительными и кислотно-каталитическими свойствами характеризуются синтетические цеолиты, содержащие в качестве катионов элементы I и II групп Периодической системы элементов. Это класс гидратированных каркасных алюмосиликатов, льюисовские центры которых преобразованы при добавлении Н2О в бренстедовские В-центры [45], причем высокая поляризующая сила обменного катиона (увеличение отношения заряда катиона к его радиусу - е/г) способствует более легкой протонизации поверхностных групп - ОН и адсорбированных молекул Н2О [46, 47]. [c.46]

    Механизм каталитического алкилирования парафинов, очевидно, тесно связан с механизмом полимеризации олефинов. Возможно, промежуточной реакцией является образование эфиров серной кислоты или положительных алкильных ионов (Уитмор) из олефинов. Как будет описано дальше, это дает представление о возможных промежуточных реакциях. Активация изопарафинов — одновременно происходящий процесс, природа которого неизвестна. Образование алкили-рованнах парафинов в конечной стадии является результатом реакции между активированными парафинами и эфирами или положительными ионами алкила. [c.29]

    Образовавшийся вначале карбониевый ион по своему строению и поведению при присоединении к двойной связи на второй стадии реакции совершенно аналогичен иону, образующемуся при катионной полимеризации олефинов [79]  [c.245]

    Влияние ионных (электростатических) и ковалентных (орбитальноконтролируемых) типов взаимодействий можно проследить при инициировании полимеризации олефинов ионами карбония, которое рассматривается и как рост полимерной цепи. Карбкатионам в соответствии с концепцией ЖМКО свойственна амфотерность , т.е. способность реагировать и с жесткими , и с мягкими основаниями [33 . [c.43]

    Вопрос о роли ионов с аномальной валентностью в катализе получил реальную почву после обнаружения на поверхности твердых тел различных радикалов с помощью спектральных методов (пионером применения которых был де Бур) и метода электронного парамагнитного резонанса. Богатый материал по этому вопросу содержится в прекрасных работах Теренина и его учёников в СССР [38] и Лефтина с Хобсоном в США [39]. Радикальную природу имеют активные центры некоторых окислов переходных элементов — типичных ка тализаторов окислительно-восстановительных и цепных реакций. Так, Казанский и Туркевич показали, что окись хромаг,, нанесенная на кислотные окислы непереходных металлов (8102, А1аОз), обязана своей активностью в полимеризации олефинов ионам Сг +, внедренным в поверхность решетки носителя [40, 41] Это же справедливо для Мо + в нанесенных окисно-молибденовых катализаторах [43]. [c.27]


    Оба основных механизма — а) крекинг над кислотными катализаторами по ионному механизму и б) термический крекинг по радикальному механизму (при отсутствии катализаторов) соверщенно очевидны. В случае каталитического крекинга постулированные выше ионные реакции являются обратными низкотемпературным (от О до 100° С) реакциям присоединения, протекающими над кислыми катализаторами, а именно, полимеризации олефинов, алкилированию ароматических углеводородов олефинами и алкилированию изопарафинов олефинами. Низкотемпературные реакции над кислыми катализаторами, происходящие, как правило, с участием олефинов, дог1 точно хорошо изучены, и суп ,естБующая по этому вопросу обширная литература [34] позволяет сделать вывод, что механизм этих реакций характеризуется образованием иона карбония как промежуточного продукта. [c.115]

    Реакции олефинов с серной кислотой обычно протекают по карбопий-ионному механизму. Промежуточные продукты реакции являются возможным источником желтого цвета, характерного для таких реакций [33, 34]. Карбоний-ионный механизм позволяет объяснить природу реакций изомеризации и полимеризации олефинов. Однако полимеризация олефинов зачастую сопровождается миграцией водорода, ведущей к образованию конъюгированных или гидрополимеров (см. гл. И). Конъюгированные (сопряженные) полимеры являются основными продуктами реакции при обработке пропилена и более тяжелых олефинов 98%-пой серной кислотой [34]. [c.226]

    При сопряженной полимеризации карбоний-ион, образовавшийся на второй стадии реакции (ВСНСНгСННСНз), отнимает от молекулы олефина ион водорода, в результате чего сам карбо-ний-ион превращается в насыщенный парафиновый углеводород, а олефин — в олефиновый карбоний-ион последний, теряя протон, превращается в диолефин. Последовательная миграция водорода по такой схеме приводит к образованию еще более ненасыщенных соединений, которые в свою очередь могут циклизоваться. Конечная реакционная смесь содержит как насыщенные парафиновые углеводороды, так и множество соединений, весьма бедных водородом. [c.227]

    Получение каучуков типа СКФ-26 основано на радикальной сополимеризации фторолефинов, которые в отличие от нефториро-ванных олефинов не вступают в полимеризацию по ионно-координационному механизму или по катионному механизму, но в то же время довольно легко полимеризуются по радикальному механизму (за исключением сильно разветвленных олефинов типа перфтор-изобутилена и др.). Сополимеризация фторированных олефинов с тетрафторэтиленом или винилиденфторидом обычно осуществляется в водноэмульсионной среде, но может проводиться также и в среде растворителя. [c.503]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    По теории Витмора, при полимеризации олефинов для образования исходных карбоний-ионов требуются протоны, которые поставляет катализатор (например, кислота). [c.12]

    Согласно представлениям Шмерлинга, реак я инициируется взаимодействием небольших порций олефина с протоном кислоты (в соответствии с теорией полимеризации олефинов по Витмору). Возникающий ион реагирует с изопарафином ц получается новый ион и парафин, [c.14]

    В небольших количествах высокомолекулярные олефины (Са—С12) содержатся в алкилатах, меньшая часть их, как упоминалось выше, подвергается неселективному крекингу. Большая же часть растворена в катализаторе и вместе с нафтенами и следами диенов обу-ловливает его темный цвет. Полимеризация олефинов протекает по карбоний-ионному механизму Витмора  [c.25]

    Алкилирующие агенты, в частности олефины, при взаимодействии с кислотными катализаторами способны димеризоваться и тримеризоваться с образованием более высокомолекулярных ароматических углеводородов. Подобные превращения могут протекать и при отщеплении от полиалкилбензолов алкилкарбо-ниевых ионов, которые в результате элиминирования протона образуют олефин.. По-видимому, реакциями полимеризации олефинов и распадом промежуточных карбокатионов объясняется появление пропил- и бутилбензолов при алкилировании бензола этиленом. [c.152]

    Существует много различных теорий, объясняющих механизм каталитического алкилирования изобутана олефинами в присутствии НР и Н2504. Все эти теории основаны на цепном карбоний-ионном механизме [3, 4]. Ранее исследователи игнорировали возможность изомеризации и полимеризации олефина в общем механизме алкилирования. Образование многочисленных изомеров,, обычно присутствующих в алкилатах разного происхождения, объясняли смещением гидрид-иона или смещением метила . По,-стулировали, что образование побочных высококипящих продуктов связано с протеканием полимеризации, требующей на каждую молекулу изобутана более одной молекулы олефина. Появление диметилгексанов объясняли взаимодействием изобутана с буте-ном-1 [1,3], протекающим через промежуточное образование ди-метилгексильного иона, претерпевающего до своего превращения в молекулы углеводорода Сз различные перегруппировки. В рабо- [c.33]

    Из приведенных данных следует, что максимальный выход октанов наблюдается при 1,4% воды в катализаторе. Однако качество алкилата сушественно зависит от содержания в нем углеводородов Сэ и выше (тяжелый остаток), имеющих октановое число (исследовательский метод) примерно 60, поэтому наилучшее качество алиилата достигается при 2,8% воды в катализаторе. Ранее было показано, что тяжелый остаток образуется в результате интенсивной полимеризации олефинов и последующего отрыва гидрид-иона. Молекулярная масса остатка равна 178—196, следовательно, он представляет собой тример (или сотример, если в качестве олефинов используют пропилен-бутиленовую смесь). Суммарная реакция образования остатка, как было показано выше, такая  [c.46]

    Первичный и вторичный алкильные катионы проявляют сильные кислотные свойства и ие стабильны в условиях реакции. Реакция заканчивается в основном при участии значительно менее кислого грег-бутильного иона. Побочные реакции поликонденсации парафинов и полимеризации олефинов, приводящие к возникновению стабильных менее кислых третичных ионов, нарушают четкую картину алкилирования первичными и вторичными алкильными катионами. Этот механизм, однако, подразуме- [c.152]

    Эти процессы приводят к образованию рацемических смесей. Однако считается, что при спонтанной кристаллизации происходило разделение смесн. Наиболее вероятно, что разделение проходило случайным образом. Видимо, определяющую роль в разделении оптически активных соединений путем селективного комплексоебразования одного определенного стереоизомера играли минералы, как, например, природные асимметричные кристаллы кварца, и ионы металлов. В конце К01Щ0В, стереоселективная полимеризация олефинов на поверхности металлов (катализаторы Циглера — Натта) представляет собой хорощо изученный промышленный процесс для получения изотактических полимеров. Известно также, что связывание ионов металлов весьма важно для многих биохимических превращений. Такое связывание существенно для поддержания нативной структуры нуклеиновых кислот и многих белков и ферментов. Процесс отбора оптических изомеров мог происходить вследствие других физических явлений, например взаимодействие с радиоактивными элементами, радиация или космические лучи. Недавно проведенные эксперименты с стронцием-90 показывают, что D-ти-роэин быстрее разрушается, чем природный L-изомер. Весьма заманчиво привлечь эти факторы для объяснения происхождения диссимметричности в процессах жизнедеятельности. [c.186]

    Существуют и другие объяснения процесса полимеризации олефинов в присутствии стереоспецифических катализаторов. Высказано, например, предположение, что процесс протекает как внутрпкомплексная ионная полимеризация, в которой участвуют оба комплексных иона, образуемые катализатором. Ини циировапие и первоначальная ориентация мономера осуществ- [c.149]

    При ионно-координационной полимеризации олефина / = 1,2 10 - л моль с А р = 7,1 10 л. моль . с Реакцией обрыва можно пренебречь. Оцените число потенциальных активных центров, приходящихся на 1 г катализатора, e iiH катализатора взято 0,9 г л , а через 10 мин после начала полимеризации при [М] = 0,4 моль -л ее скорость равна 1,9 10 моль л с и еще продолжает расти. [c.138]

    Применение теории жристаллического поля и поля лигандов к структуре комшлексав приводит к одинаковым результатам. Ли-гаиды, имеющие я-связи, взаимодействуют с заполненными -орбиталями с образованием дативной связи. Поэтому лучшими катализаторами для олефиновых и ацетиленовых углеводородов являются ионы с конфигурацией > Hg +, 0(1 +, Си+, Ад+, Р1°. В реакции полимеризации олефинов наиболее активны соединения катионов с конфигурацией Т1 +, Сг +, Мо +. [c.170]

    Проведенные ранее исследования в области синтеза фосфорсодержащих полимеров (ФСП), свидетельствуют о существенном влиянии растворителя на скорость процесса и свойства целевого продукта. Нами исследованы влияния добавок ионной жидкости (ИЖ) на процессы радиационно-химического синтеза ФСП. Сейчас распространено использование ионных жидкостей в качестве растворителя и катализатора в органическом синтезе в реакциях Дильса-Альдера, полимеризации олефинов, реакциях гидрогенизации. Для нас особый интерес представляет изучение процессов образования ФСП в присутствии ИЖ, которые могут выступать как реагенты и катализаторы. Для исследования была выбрана ионная жидкость - трифторметилсульфонилимид метилэтилимидазолия. [c.147]

    Можно было бы ожидать, что получение эфиров возможно путем присоединения свободных алкоксирадикалов к олефинам (или кар-, бониевым ионам) или путем замещения в алканах. Но присоединение спиртов в условиях, при которых образуются свободные радикалы, в настоящее время имеет небольшое препаративное значение [17]. По-видимому, радикалы инициируют полимеризацию олефинов или разлагаются сами. Так, например, основными продуктами разложения перекиси ди-трет-бутила являются трет- [c.365]

    Некоторые авторы считают, что в каталитической системе, содержащей Т1 +, во время его восстановления при гомолнтическом распаде неустойчивых титанорга-нических соединений возникают свободные радикалы или ион-радикалы, которые инициируют полимеризацию олефинов. Адсорбированный алкильный радикал в ходе реакции роста движется вдоль поверхности и присоединяет адсорбированные молекулы мономера, причем, будучи локализованными на поверхности, эти радикалы не подвергаются столь быстрой гибели за счет бимолекулярного обрыва, как свободные радикалы. [c.145]

    Многие реакции термического разложения углеводородов, простых эфиров, альдегидов и кетонов протекают, по-видимому, по свободнорадикальному цепному механизму. В 1935 г. Райс и Герцфельд показали, как можно представить цепной механизм этих реакций, который приводил бы к простому суммарному кинетическому уравнению. В реакциях участвуют свободные радикалы, в том числе радикалы СН , С2Н5 и Н. Участие радикалов в ряде таких реакций было доказано с помощью металлических зеркал, посредством катализирования реакции полимеризации олефина, о которой известно, что она протекает по цепному механизму, и путем ингибирования реакций с помощью таких веществ, как окись азота или пропилен. Если каждая молекула ингибитора обрывает цепь, а каждая цепь приводит к образованию большого числа молекул продукта реакции, то очевидно, что даже следы ингибиторов должны оказывать заметное влияние на реакцию. Например, окисление сульфит-иона в растворе кислородом воздуха заметно подавляется добавлением следов спирта. [c.310]

    Эффективность комплексных катализаторов типа НХ - МеХ в электрофильных процессах определяется устойчивостью противоиона к элиминированию лигандов при взаимодействии с ионами карбония [60]. Для кислот типа HBF4 или HAI I4 реакции ограничения полимерной цепи на фрагмент противоиона (анионы F или С1 ) не характерны, однако это, вероятно, возможно для (СНз)2А1С1 61] при этом в процессе катионной полимеризации олефинов предполагается образование хлорированных побочных продуктов  [c.48]

    Согласно Уитмору [140а] полимеризация олефинов в присутствии серной кислоты или подобных катализаторов осуществляется с помощью промежуточных реакций водородных ионов с олефинами. Водо-рэднйй ион присоединяется к молекуле олефина и образует положительный алкил-ион. Аналогично положительный ион присоединяется ко второй молекуле олефина. Образовавшийся сложный положительный ион разлагается, освобождая ион водорода и давая димер. К изо-бутилену можно применить следующие уравнения  [c.42]

    Поверхностные силанольные группы двуокиси кремния имеют слабо кислый характер, но льюисовская кислотность не обнаруживается (если образец чистый). Однако даже небольшое содержание примесей может изменять эти свойства например, льюисовские центры находят на пористом стекле викор [30], что может быть связано с присутствием примеси алюминия. Хотя высокая удельная поверхность силикагеля делает его ценным носителем, сам силикагель как катализатор весьма инертен. Он слабо активен в разложении спиртов [31], возможно из-за примеси ионов А1 +, и в большинстве случаев его значение как катализатора несущественно. Тем не менее гамма-облучение или радиоактивное облучение в ядерном реакторе придает ему некоторую каталитическую активность. Возникающие при облучении типы центров и их реакционную способность обсудил Тейлор [32]. В данном случае можно только отметить, что Р-центры, представляющие собой, вероятно, положительные дырки, захваченные анионными вакансиями, соседними с ионами А1 + (присутствующими как примесь), по-видимому, ответственны за хемосорбцию водорода и катализ обмена Нг — Ог. Если двуокись кремния хорошо обезгажена, облучение создает также кислотные центры, катализирующие реакции изомеризации двойной связи и полимеризацию олефинов. [c.53]

    Кавачик и сотр. [579, 580] окислительной дегидрополикондеясацлей бензола в присутствии аистемы, состоящей из хлористого алюминия, воды и хлорной меди или только хлорного железа, получили ге-полифенилен, обладающий термостабильностью до 525° С и разлагающийся при 750— 800° С с образованием летучих продуктов. Реакция образования поли-п-фенилена протекает через стадию а-комплекса и бензенониевого иона. Последний растет как карбониевый ион. Дегидрирование путем окисления обеспечивает возобновление ароматичности, делая эту реакцию сходной по своему механизму с катионной полимеризацией олефинов  [c.126]

    Связь В—Ме при этом разрывается и молекула олефина внедряется у основания растущей цепочки полимера. После этого процесс повторяется, причем олефин и цепочка полимера постоянно меняются местами в координационной сфере иона переходного металла. Таким образом для осуществления процесса роста цепи необходимо наличие вакансии в d , d или dj, -o6ono4Kax. Рассмотрение конкретных энергетических расстояний между молекулярными орбитами [188] показало, что d-уровепь в лучших катализаторах полимеризации олефинов очень близок к я-уровню этилена. [c.60]

    Координационно-ионные комплексы играют большую роль в процессах каталитической полимеризации. О полимеризации олефинов на катализаторах Циглера — Натта и других соединениях переходных металлов говорилось в главе 1, 6. Координационный механизм доказан также для полимеризации okh ii этилена и окиси пропилена на окислах, пщроокисях и карбонатах металлов П группы, алюминия и железа [280—282]. При разложении гидроокисей и карбонатов в вакууме и превращении их в окислы каталитическая активность возрастает пропорционально числу поверхностных атомов металла, неэкранированных ОН-группами. На окислах Mg, Ве, А1, прокаленных в вакууме при 300—500° С, число этих атомов равно 2-10 — 2-10 на 1 см . Инфракрасные спектры показали, что ОН-группы не возмущаются в процессе полимеризации окиси этилена. На основании изучения механизма реакции предполагалось, что реакция полимеризации (роста цепи) протекает через стадию адсорбции молекулы окиси этилена на атоме металла, удерживающем одновременно растущую цепочку полимера, и последующего шодлезания этой молекулы у основания цепочки, например на MgO  [c.78]


Смотреть страницы где упоминается термин Полимеризация олефинов ионная: [c.346]    [c.199]    [c.45]    [c.13]    [c.90]    [c.422]    [c.68]   
Изотопы в органической химии (1961) -- [ c.545 , c.548 , c.693 , c.694 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная полимеризация

Ионная полимеризация Полимеризация

Олефины полимеризация



© 2025 chem21.info Реклама на сайте