Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Важнейшие типы неорганических веществ

    ВАЖНЕЙШИЕ ТИПЫ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ [c.91]

    Рассмотрим подробнее состав, номенклатуру, химические свойства и способы получения важнейших типов неорганических сложных веществ. [c.92]

    В разделе 2 вы уже познакомились с классификацией неорганических веществ, с номенклатурой оксидов, оснований, кислот, амфотерных гидроксидов и важнейших типов солей. Ниже рассматриваются общие химические свойства и способы получения этих важнейших классов неорганических веществ с позиций тех теоретических представлений, которые были получены вами при изучении предыдущих разделов, в частности, с позиции теории электролитической диссоциации. В заключение вскрывается генетическая связь между различными классами неорганических веществ. [c.225]


    Как было показано в предыдущем разделе, получение искусственных обменных сорбентов основывается на использовании способных к ионному обмену природных веш,еств, которые имеют неорганическую природу и ближе всего стоят к силикатам. Работа по синтезу была направлена, с одной стороны, на получение веществ состава, тождественного или аналогичного составу природных цеолитов с другой стороны, изучался путь, который называется активирование минералов . Полный синтез искусственных цеолитов не был достигнут ни сплавлением гидролизованного стекла (плавленые цеолиты), ни способом осаждения (гелеобразные обменники). К последнему типу относятся искусственные гели преимущественно амфотерного характера, способные к связыванию анионов. При активировании в качестве исходных веществ используют преимущественно природные, более или менее способные к обмену оснований минералы или по меньшей мере легкодоступное сырье пемзу или аналогичные ей вулканические образования, натриевую глину, глауконит и др. вещества. Обзор важнейших типов неорганических ионообменников приведен в уже упоминавшейся табл. 2. [c.40]

    В химическом анализе неорганических веществ имеют дело преимущественно с водными растворами электролитов, т. е. соединений, диссоциирующих в растворах с образованием ионов. Поэтому аналитическими реакциями открывают образующиеся катионы и анионы. Преимущественно в форме катионов существуют в водных растворах элементы групп IA, IB, ИА, ПВ, П1А, IVA, VUI периодической системы. К наиболее важным аналитическим свойствам относятся способность элемента образовывать различные типы ионов, цвет и растворимость соединений, способность вступать в те или иные реакции (см. гл. 2). [c.198]

    Один из важнейших элементов неорганической химии — кремний — в виде простого вещества имеет кристаллическую структуру типа алмаза (рис. 3). Атомы [c.13]

    Примером успешного определения строения веществ в большой и важной области неорганической химии при помощи методов, применяющихся в органической хими, может служить объяснение пространственного строения прочных комплексных соединений, например хрома, кобальта и т. д., данное Вернером на основе явления изомерии и оптической активности (см. т. II, гл. 5). Речь в этом случае идет о комплексах внедрения, в которых тип связи приближается к типу связи в органических соединениях (см. стр. 443).  [c.322]

    Следующий важный этап в развитии представлений о конституции органических соединений — возникновение на основе унитарных представлений так называемой теории типов, рассматривавшей органические соединения построенными по типам простейших неорганических веществ — водорода, воды, хлористого водорода и аммиака. Классификация по типам в дальнейшем была расширена и усложнена. [c.9]


    Некоторые важные, но в сущности непонятые явления, происходящие в растительной клетке, еще ждут энтузиастов, которые призваны извлечь их из забвения. Многие из этих связанных с мембранами процессов можно изучать с помощью разработанных в настоящее время методов. Анализируя методические усовершенствования последнего времени, поражаешься тому, что одно из самых важных и наиболее всесторонне изучаемых свойств мембран—способность к избирательному переносу и накоплению органических и неорганических веществ— все еще слабо изучено. Большинство работ по активному переносу сводилось по существу к изучению самих переносимых веществ. Таким образом, мы располагаем многочисленными и разнообразными данными относительно типов переносимых веществ, скоростей переноса, действия ингибиторов и т. д. Однако, несмотря на принципиальную важность и универсальный характер этого процесса в природе, истинный его механизм стал объектом изучения лишь в очень немногих работах. Но даже и эти исследования далеко не полны из-за недостаточности наших знаний относительно структуры и состава мембран. Если, как есть все основания ожидать, изучение биохимии мембран позволит понять явление переноса веществ через них, у нас в руках автоматически окажется решение множества других биологических проблем. [c.55]

    Некоторые фосфорорганические высокомолекулярные соединения обладают хорошей термостабильностью, т. е. способностью выдерживать сравнительно высокие температуры, не разрушаясь. Прозрачные фосфорсодержащие полимеры имеют, как правило, высокие показатели преломления. Важнейшим свойством рассматриваемых веществ является их повышенная огнестойкость, доходящая иногда до полной негорючести. Разумеется количество фосфора не является единственным фактором влиянии на огнестойкость. Безусловное влияние в этом отношении оказывает также наличие других неорганических заместителей (например, галоидов), величина молекулярного веса и степень разветвленности полимеров, характер радикала, связанного с фосфором, и тип самой фосфорной функции. [c.251]

    Фосфорорганические соединения. Различают два типа органических веществ, содержащих фосфор. Первый—это собственно фосфорорганические соединения, т. е. такие, в молекуле которых содержится фосфор, непосредственно связанный с углеродом. Ко второму типу относятся разнообразные производные неорганических кислот фосфора — эфиры, тиоэфиры, амиды и т. д. в этих соединениях фосфор связан не непосредственно с углеродом, а через кислород, серу, азот. Соединения этого последнего типа весьма распространены в природе. К ним относятся некоторые важные ферменты и коферменты, переносчики энергии, такие, как аденозинтрифосфат (стр. 329), и, наконец, нуклеиновые кислоты клеточных ядер, рассмотренные в разделе Нуклеотиды и полинуклеотиды . Собственно фосфорорганические соединения в природе не встречаются все они получены синтетическим путем. [c.386]

    Ферменты, катализирующие окислительный распад высокомолекулярных жирных кислот с образованием уксусной кислоты, встречаются, главным образом, в печени, мало их в мышцах и в ряде иных органов. Ферменты, катализирующие синтез органических веществ из неорганических веществ ( Oj, HjO, NH3) с использованием солнечной энергии, обнаруживаются у зеленых растений и отсутствуют у животных. Таких примеров можно привести очень много, и все они свидетельствуют о том, что образование и действие ферментов в различных тканях организмов тесно связаны с типом обмена веществ, с особенностями существования организмов. Отсюда становится важной в биологическом отношении задача воздействия на процессы образования ферментов в организмах, которое могло бы сказаться на направленности процессов обмена веществ. Имеются многочисленные данные, указывающие на зависимость процессов, ведущих к образованию ферментов, от условий внешней среды. С особой яркостью это наблюдается на микробах, легко адаптирующихся (приспособляющихся) к условиям питания. При изменении питательной среды у них постепенно появляются ферменты, катализирующие реакции, приводящие к использованию органических веществ, обычно для них непривычных. [c.177]

    Эта тема, открывающая изучение химии в IX классе, имеет весьма важное теоретическое значение. Полученные учащимися ТП класса знания о строении вещества (строении атомов, видах химической связи, типах кристаллических решеток) дают возможность в начале IX класса рассмотреть состояние неорганических веществ в водных растворах, свойства гидратированных ионов, выявить закономерности течения реакций обмена между растворами электролитов. Все это позволяет поднять еще выше теоретический уровень обсуждения фактического материала при изучении всех исследующих тем курса химии в IX классе. [c.118]

    Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды. Среди важнейших мутагенных факторов, прежде всего, необходимо отметить химические мутагены - органические и неорганические вещества, вызывающие мутации, а также ионизирующее излучение. При детальном рассмотрении спонтанных и индуцированных мутаций становится ясно, что между этими двумя типами нет существенных различий. Действительно, большинство спонтанных мутаций возникает в результате мутагенного воздействия, которое их индуцирует, но не регистрируется экспериментатором. На более прочном фундаменте находится классификация [c.276]


    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]

    При подборе ингибиторов коррозии руководствуются соотношением стационарного потенциала и п. н. з. металла. Так, если отрицательнее П.Н.З., то при стационарном потенциале заряд поверхности отрицателен, и на металле хорошо адсорбируются органические вещества катионного типа. Если же стационарный потенциал положительнее п. н. 3., то при Ес преимущественно адсорбируются органические вещества анионного типа. Важную роль при защите металла от коррозии играет совместная адсорбция неорганических и органических веществ. Так, например, ионы Н5 являются сильными активаторами коррозии металлов группы железа. Но в их присутствии на железе хорошо адсорбируются катионы тетрабутиламмония, что резко замедляет сероводородную коррозию. [c.376]

    Вторая часть книги содержит разнообразный материал описательной химии. Основной упор здесь сделан на изложение неорганической химии, которое сопровождается последовательным выявлением периодических закономерностей в свойствах различных типов соединений. Более подробно, чем обычно, рассматривается химия простых анионов и катионов, а также оксианионов различных элементов и их кислородсодержащих кислот на современном уровне изложены основы химии координационных соединений, в том числе вопросы их строения, устойчивости и стереоизомерии. Сравнительно более лаконично подана органическая химия, хотя по существу затронуты все важнейшие стороны этой обширной области химии, включая механизмы органических реакций, химию полимеров и биохимию. В конце книги помещена не совсем обычная для учебных пособий глава, посвященная актуальной теме—связи химии с загрязнением окружающей среды. Во второй части книги постоянно применяются структурные представления, законы химического равновесия и подходы, использующие теоретические воззрения на природу кислотно-основных и окислительно-восстановительных процессов. Благодаря этому описательная химия превращается из несколько монотонного перечисления свойств веществ и наблюдаемых закономерностей их поведения в увлекательное объяснение научных, практических, а нередко и известных из повседневного опыта фактов на базе химических представлений. [c.5]

    Приступая к решению задач по неорганической химии, необходимо прежде всего обратить внимание на связь и взаимные превращения между различными классами соединений. Поэтому так важна классификация химических соединений, под которой понимают объединение разнообразных соединений в определенные классы, обладающие сходными свойствами (оксиды, соли и т. д.). Классификация естественным образом связана с проблемой номенклатуры, т. е. системой названий веществ. Химические свойства веществ проявляются в разнообразных химических реакциях, которые также классифицируются по различным признакам. Нужно уметь распознавать основные типы химических реакций соединения, разложения, обмена, замещения, окислительно-восстановительные, обратимые, необратимые и т. д. Как номенклатура, так и классификация соединений (а также химических реакций) складывались на протяжении столетий, поэтому они не всегда являются логическими и требуют вдумчивого осмысливания. [c.151]

    Настоящий справочник отличается от всех существующих тем, что в нем собраны сведения о физико-химических и физических свойствах мономеров и полимеров, которые необходимы экспериментатору и отвечают сложившемуся представлению о предмете физической химии полимеров. При изучении вопросов физической химии полимеров весьма важным является то обстоятельство, что в отличие от низкомолекулярных органических или неорганических соединений полимеры не являются индивидуальными веществами, а представляют собой смесь полимер-гомологов, характеризующуюся тем или иным молекулярно-весовым распределением, тем или иным характером построения полимерной цепи (стерической упорядоченностью, типом присоединения, распределением звеньев в сополимерах и пр.). [c.3]

    Остов оксидов металлов. Обменное взаимодействие анионов играет структуроформирующую роль не только в строении гало-генидов, но и многих других неорганических веществ. Это относится, например, к таким важным классам вещества, как твердые оксиды, сульфиды, вообще халькогениды, а также силикаты, алюмосиликаты и др. Остов оксидов образуется благодаря обменному взаимодействию оксоионов. При этом он определяет тип их структуры, природу соединений. Это видно на примере довольно странных на первый взгляд соединений вроде СаТ10з —не то солей, не то оксидов. В составе соединений такого рода находится два (или больше) вида катионов, размещающихся в соответствии с их размерами в октаэдрических или тетраэдрических пустотах кислород- [c.75]

    Таким образом, во всех рассмотренных структурах нельзя выделить обособленные молекулы в кристаллической решетке. Такие кристаллические решетки, в которых отсутствуют дискретные молекулы, называются координационными решетками. Для большинства неорганических веществ (более 95%) характерны именно координационные решетки. К ним относятся условно ионные , металлические и ковалентные решетки. К условно ионным решеткам принадлежит решетка хлорида натрия, металлическим — решетка натрия и ковалентным — решетки кремния и сульфида цинка. Это деление, основанное на преобладающем типе химической связи, условно. В реальных кристаллах сосуществуют различные типы химической связи, и можно рассматривать решетки ионно-ко-валентные, ковалентно-металлические и т. п. На рис. 5 для сравнения приведены элементарные ячейки м.о. 1екулярных решеток иода (а) и диоксида углерода (б). Их важнейшей особенностью в отличие от предыдущих типов кристаллов является то, что в узлах кристаллической решетки находятся не атомы, а молекулы. При этом расстояния между атомами в молекуле меньше, чем межмолекулярные расстояния в кристалле, в то время как в координационных решетках все расстояния одинаковы. Однако молекулярные решетки не характерны для твердых неорганических веществ. В неорганической химии молекулы являются типичной формой существования химического соединения в наро- и газообразном состоянии. [c.19]

    На рис. 5 для сравнения приведены элементарные ячейки молекулярных структур иода (а) и диоксида углерода (б). Их важнейшей особенностью в отличие от предыдущих типов кристаллов является то, что в узлах кристаллической решетки находятся не атомы, а молекулы. При этом расстояния между атомами в молекуле меньше, чем межмолекулярные расстояния в кристалле. В них атомы связаны в молекулы прочными ковалентными связями, а между молекулами действуют слабые силы Ван-дер-Ваальса (см. 1 гл. V). Это значит, что структуры иода и диоксида углерода являются гетеродесмичными. К рассмотренным выше так называемым островным молекулярным структурам (Тг и СО2) относится абсолютное большинство органических соединений. Однако некоторые неорганические вещества, не имеющие молекулярной структуры (цепочечные, слоистые, каркасные), также гетеродесмичны, так как внутри цепей, слоев и каркасов межатомные связи ковалентные, а между цепями, слоями и каркасами функционируют силы Ван-дер-Ваальса. [c.15]

    Часть II — Производство неорганических веществ и часть III — Производство органических веществ составляют по 12 печатных листов каждая. Однако мы считаем, что в лекциях нет необходимости излагать весь материал, изложенный во II и III частях. На каждом факультете в качестве примеров целесообразно рассматривать лищь те производства, которые будут наиболее полезны студентам соответствующих специальностей (по выбору кафедры). Важно, чтобы в числе этих производств были описаны основные типы химических процессов и аппаратов высокотемпературные, каталитические, низкотемпературные некаталитические в гомогенных и гетерогенных средах, а также электрохимические. На примерах этих производств должны быть показаны также различные виды технологических схем, представляющих собой взаимосвязь отдельных химических и физических процессов. [c.5]

    Ферменты являются катализаторами реакций, протекающих в живой материи. В настоящее время многие ферменты выделены в виде чистых кристаллических веществ. Оказалось, что некоторые из этих кристаллических ферментов являются чистыми протеинами таковы пепсин — один из протеолитических ферментов, катализирующий гидролиз пептидной связи (— СО — ЫН —) в протеинах, и уреаза, катализирующая гидролиз мочевины. Другие ферменты содержат, помимо самого протеина, простетшескую группу, существенную для каталитической активности часто про-стетическая группа представляет собой флавин, как в различных ферментах, катализирующих окислительно-восстановительные реакции, или гематин, как в каталазе или пероксидазах, катализирующих некоторые реакции перекиси водорода. Некоторые другие ферменты активны только тогда, когда, помимо субстрата, присутствует кофактор. Кофактор, подобно ферменту, принимает участие в катализируемой ферментом реакции, однако он не разрушается он может иметь простое химическое строение типа неорганического иона, и тогда его называют активатором, или же представлять сложную органическую молекулу, известную под названием кофермента. Кофакторы, по-видимому, действуют подобно простетическим группам (или части таких групп), которые легко отделимы от фермента. Хотя различие между кофакторами и про-стетическими группами в пределах фермента имеет важное значение с точки зрения биологии, оно может быть весьма искусственным, когда речь идет о механизме катализа. [c.107]

    Спектрофотометрия и люминесценция остаются важнейшими методами определения следовых количеств- неорганических веществ в объектах окружающей среды В настояп ее время даже наметились тенденции в усилении их роли и значения в общей системе химического анализа, что объясняется по крайней мере двумя факторами. Во-первых, это создание устройств (типа проточно-инжекционной системы), позволяющих полностью автоматизировать химический анализ, и, во-вторых, это создание химических сенсоров с фотометрическими или люминесцентными датчиками. Фактически это — новая концепция химического анализа, позволяющая осуществлять единичные или массовые определения в экспрессном варианте с высокой точностью и надежностью, а также проводить дистанционный анализ в экстремальных условиях, подойти к новым типам приборов с меньшей (в 10 —10 ) металлоемкостью и энергозатратами, что существенно удешевит выполнение массовых анализов, — это особенно важно при контроле за загрязнением окружающей среды. [c.6]

    Кольбе вновь обратился к теории радикалов Берцелиуса и пытался обосновать ее на основе новых открытий. Он хотел, чтобы теоретические представления отражали свойства реальных веществ. Кольбе трудился упорно, сопоставляя свои- идеи с результатами новых исследований. Очень важными для него оказались работы Франкленда, посвященные исследованию состава и свойств органических соединений азота, фосфора, мышьяка и сурьмы, а также металлоорганических соединений . В работе Об естественной связи между органическими и неорганическими соединениями (1860 г.) Кольбе писал Химические органические тела всегда являются продолжением неорганических соединений и возникают из последних непосредственно путем изумительно простого процесса замещения [82]. Таким образом, Кольбе пытался рассматривать органические соединения как производные неорганических. При этом угольную кислоту ученый считал основным исходным веществом — типом органических кислот. Из нее путем замещения кислорода на водород или алкильный остаток получались спирты, карбоновые кислоты, альдегиды и углеводороды. Многоосновные кислоты, как и многоатомные спирты, Кольбе получал таким образом соответственно из двух или трех молекул угольной кислоты. Подобным же образом как производные неорганических веществ Кольбе рассматривал сульфокислоты, сульфоны, фосфорные и мышьяковые кислоты, амины, амиды и металлоорганические соединения. Пользуясь этой теорией, он пытался не только объяснить известные факты, но и предсказывать новые. Кольбе писал Нам кажется, что подобным же образом и в спиртах происходит замещение одного или двух атомов водорода на равное число метильных, этильных или других замещающих групп и в результате образуется новый ряд спиртов... И хотя до сих пор ни один из этих спиртов еще не получен, все равно я совершенно твердо убежден, что [c.59]

    Выбор растворителя определялся его практическим значением и свойствами. Первые главы книги посвящены трем наиболее важным неводным растворителям протонного типа жидкому аммиаку, безводному фтористому водороду и серной кислоте. Эти растворители нашли широкое применение в препаративной химии и при физических измерениях, кроме того, все они, подобно воде, являются хорошими растворителями для органических и неорганических веществ. По-видимому, в области исследования именно этих растворителей происходит наиболее интенсивное накопление количественных данных. Однако для неводных растворителей в литературе содержится все же крайне мало сведений даже о таких простых количественных термодинамических величинах, как теплоты растворения галогенидов щелочных металлов. Поэтому практически невозможно сравнить энергии сольватации простых ионов в различных растворителях, хотя эти сведения были бы весьма интересны, [c.5]

    В предыдущих разделах было рассмотрено строение, химические свойства и реакции неорганических и органических соединений. Во всех случаях, когда это было возможно, рассматривалось то значение, которое имеют те или иные элементы и их соединения для биологических систем. В основном, однако, обращалось внимание па реакции, имеющие лабораторное или промышленное значение. Теперь, изучив основы неорганической и органической химии, можно перейти к рассмотрению следующего важного раздела — биохимии. Здесь химия излагается при-менительно к растительному и кивот-ному миру, причем особое внимание уделяется тем химическим реакциям, которые протекают в организме человека. В первых главах этого раздела рассматривается органическая химия углеводов, липидов и белков. Эти соединения не только представляют собой три главных типа пищевых веществ, но являются также и основными составными частями организма. [c.289]

    Одной из наиболее важных особенностей природных вод является многообразие форм нахождения элементов. Состояние элементов в природных водах - результат сложных взаимодействий органических и неорганических веществ. Металлы в природных водах могут находиться в виде растворенных ионов, взвешенных частиц, лабильных и стабильных комплексов, как показано на рис. 1.2 [5]. Кроме того встречаются также соединения с различными типами химической связи (иоппые и ковалентные). Безусловно, при определении содержаний элементов в природных водах необходимо учитывать все возможные формы элемента, в противном случае результат анализа может оказаться ошибочным. В современной литературе широко представлены схемы идентификации и определения металлов с учетом форм нахождения электрохимическими методами и методами колоночной хроматографии. Для разрушения органических соединений, а также стабильных комплексов определяемых элементов с органическими лигандами широко применяют электрохимическую обработку и иУ-излучепие [6 - 8]. [c.7]

    Результаты исследований и анализ полученного выражения показывают, что высоким моющим действием в практически важной области концентраций (1-10 г/л) обладают вещества, имеющие большую величину А/ ах при низком значении коэффициента а. Из исследованных органических компонентов СМС этому условию отвечают синтанол и неонол, из неорганических - карбонат натрия. Как видно из табл. 1, из числа исследованных эти вещества, а также хозяйственное мыло с самой высокой величиной max действительно имеют наибольшее относительное моющее действие при концентрации 3 г/л, принятой обычно при использовании СМС в стиральных машинах активаторного типа при средней жесткости воды 3,1 -6,0 мг-экв/л. [c.94]

    Фосфор. Фосфор содержится нренмущественно в виде органических и неорганических орто-, пиро- и метафосфатов. Они входят в состав молекул нуклеиновых кислот, фосфолипидов и коферментов типа аденозинфосфата и тиамина. Так, ядерное вещество клетки (нуклеоиротеиды) содержит фосфор в виде ортофосфата. В виде ортофосфата фосфор входит также в состав флавиновых ферментов в виде пирофосфата — во многие коферменты (кодегидразы Koi и Коц, карбоксилазы). В виде различных соединений фосфор принимает важное участие в энергетических процессах клетки. [c.198]

    Соединения, содержащие комбинированную (семиполярную) связь, занимают промежуточное положение в отношении летучести между соединениями, имеющими лишь ковалентные или электровалентные связи. Наиболее важные свойства, которые следует иметь в виду при делении молекул на электровалентные и ковалентные, следующие 1) электропроводность (для растворимых в воде соединений) 2) наличие или отсутствие стереоизомерии 3) степень летучести (электровалентные молекулы требуют затраты работы для отрыва их друг от друга и такие жидкости кипят при гораздо более высокой температуре, чем жидкости, образованные ковалентными соединениями) 4) растворимость в )лгле-водородных растворителях, т. е. нефтепродуктах или бензоле (неорганические соли нерастворимы, органические соединения растворимы) 5) тип упаковки молекул в твердом веществе (рентгеновский анализ кристаллов). Ионизация предполагает плотную упаковку (соли), в то время как ковалентные молекулы в кристаллическом состоянии имеют рыхлую структуру (MgO и СаО электро-валентны и имеют плотную структуру ВеО и aS ковалентны и обладают рыхлой структурой). [c.552]

    Наиболее распространенными химическими веществами, применяемыми при кондиционировании, являются хлорное железо и известь или полиэлектролиты. Хлорное железо растворяется в воде и вводится дозатором в виде раствора, а известь — в виде известкового молока. Полимеры в порошковом, грснулированном или жидком виде растворяются до получения основного раствора концентрацией 0,5—5%. Большинство изготовителей рекомендуют дальнейшее разбавление раствора до 0,01—0,05% перед его введением, что приводит к выпрямлению длинных цепей молекул. Дозировки химических веществ при кондиционировании различны для различных типов осадков. Наиболее важные факторы — концентрация сухого вещества и тип осадка. За редким исключением, сброженный осадок требует добавления значительно большего количества химических реагентов, чем необработанные осадки. Обычно требуются следующие количества неорганических химических соединений  [c.347]

    Одним из наиболее важных методов разделения и концентрирования является экстракция. Хотя термин экстракция приложим к различным фазовым равновесиям (жидкость — жидкость, газ — жидкость, жидкость — твердое тело и т. д.), чаще его при-.меняют к системам жидкость — жидкость, и термин этот служит обиходной формой более правильного названия жидкость — жидкостная экстракция . Под экстракцией пониглают процесс распределения вещества между двумя несмешивающимися растворителями и соответствующий метод выделения и разделения веществ, основанный на таком распределении. Одним из несмешивающихся растворителей обычно является вода, вторым — органический растворитель, однако это не обязательно. Известны экстрационные системы, включающие расплав солей или металлов возможны системы из двух несмещивающихся органических растворителей или системы с неорганическими растворителями типа жидкой двуокиси серы. Однако в большинстве случаев применяют комбинацию вода — органический растворитель. [c.83]


Смотреть страницы где упоминается термин Важнейшие типы неорганических веществ: [c.507]    [c.269]    [c.337]    [c.335]    [c.5]    [c.124]    [c.65]   
Смотреть главы в:

Химия для абитуриентов -> Важнейшие типы неорганических веществ




ПОИСК





Смотрите так же термины и статьи:

неорганических веществ



© 2025 chem21.info Реклама на сайте