Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол РЕЗОНАНС АРОМАТИЧНОСТЬ

    Весьма интересная структура ферроцена привлекла к себе внимание теоретиков, большинство которых, как мы увидим, пытались объяснить данные, полученные с помощью различных физических методов. Ранние работы были в основном посвящены обоснованию устойчивости данной молекулы и ее общих химических свойств. В этом отношении представляет значительный интерес ароматический характер молекулы ферроцена. Химические данные указывают на то, что ферроцен весьма активно вступает в реакции электрофильного замещения, например, его реакционная способность в отношении реакции ацилирования по Фриделю—Крафтсу приблизительно в 10 раз выше реакционной способности бензола [35]. Физическим доказательством ароматичности считается в настоящее время способность поддерживать кольцевые токи . Положение протонного резонанса в ферроцене [36] соответствует более сильным полям, чем в случае бензола, что нетрудно объяснить делокализацией заряда по кольцу и близостью иона металла, хотя количественно описать оба эти фактора до сих пор не удавалось. Химический сдвиг ферроцена [37] отличается от соответствующего химического сдвига бензола и близок к рассчитанному значению сдвига аниона циклопентадиенила, однако константа спинового взаимодействия —Н близка к значению соответствующей константы в бензоле. Силовые постоянные, вычисленные в приближении валентного силового поля, оказались вполне соизмеримыми [29] со значениями соответствующих силовых постоянных для молекулы бензола. Таким образом, результаты, полученные методами ядерного магнитного резонанса и колебательной спектроскопии, хотя и имеют известную ценность для эмпирических сопоставлений, но не настолько значительны, чтобы была целесообразной разработка теории, ставящей целью объяснение наблюдаемых отличий. [c.411]


    Использование спектроскопии ядерного магнитного резонанса (ЯМР) как критерия ароматичности уже обсуждалось (см. гл. 2.4). Относительно большие времена релаксации ароматических ядер и наличие в той же области химических сдвигов сигналов С олефинов затрудняют точные структурные отнесения для ароматических систем при использовании спектроскопии ЯМР С, если только не имеется подходящих модельных соединений [7]. Химический сдвиг ядер бензола равен 128,5 м. д. (относительно тетра-метилсилана), а для класса аренов в целом химические сдвиги лежат в области ПО—170 м. д. Теоретическая обработка химических сдвигов ароматических систем проведена достаточно полно, и имеются сводные данные 1Ю влиянию заместителей на химиче-сдвиги С в замещенных бензолах. [c.321]

    Ароматичность—совокупность свойств, отражающих структурные и энергетические особенности, а также реакционную способность плоских циклических систем, содержащих (4п + 2) л-электронов, которые вовлечены в замкнутую цепь сопряжения. Ароматичность характеризует повышенную термодинамическую устойчивость ароматического соединения, обусловленную делокализацией л-электронов. Мерой ароматичности является энергия резонанса (или энергия делокализации), которую необходимо дополнительно затратить на разрушение циклической системы делокализованных сопряженных двойных связей. Следовательно. энергия резонанса характеризует вклад циклического сопряжения в теплоту образования соединения. См. также Бензол. [c.36]

    Разница в эмпирических энергиях резонанса метилированных аналогов 20 и 21 была оценена в 6,5 ккал/моль (27 кДж/моль), что составляет около 20% эмпирической энергии резонанса бензола [70] следовательно, 1-метилпиридон-2 имеет значительную энергию резонанса. На основе изучения влияния характера среды на положение равновесия становится ясно, что относительная ароматичность различных таутомеров не влияет на то, какая форма преобладает в растворе. Это, в основном, определяется концентрацией раствора и природой растворителя. Химические реакции смеси таутомеров не связаны с тем, какая структура преобладает, особенно если перенос протона происходит достаточно быстро. [c.47]

    Все это позволило Крэгу сделать вывод о том, что свойством ароматичности обладают любые циклические соединения, стабилизированные энергией резонанса. Молекулу бензола можно рассмотреть формально как заключающую в себе три простых и три двойных углерод-углеродных связи. Энергии этих связей определены для алифатических и этиленовых углеводородов. Воспользовавшись этими дан- [c.84]


    Термодинамическая стабильность (нли низкое содержание энергии) бензола и соответственно его малая реакционная способность являются отличительными признаками ароматичности. Вычисления на основе термохимических данных показывают, что бензол вследствие резонанса стабильней гипотетического нерезонансного циклогексатриена на 36 ккал/моль (Полинг, 1933). [c.129]

    Превращение ацетиленов в производные бензола в результате реакции циклоприсоединения было рассмотрено в гл. 1, разд. 3. Осуществить обратный процесс труднее, вследствие стабилизации в результате резонанса бензольных циклов. Можно было предположить, что эту обратную реакцию удастся осуществить при облучении, если не в этом случае, то, возможно, в случае соединений, обладающих меньшей ароматичностью. Такой пример приведен ниже [10]  [c.196]

    Нафталин окисляется или восстанавливается легче, чем бензол, но лишь до стадии образования замещенного бензола дальнейшее окисление или восстановление требует более жестких условий. Энергия стабилизации нафталина вследствие резонанса составляет 61 ккал (255,39-10 Дж), а для бензола — 36 ккал (150,72-10 Дж). Нарушение ароматичности одного из колец нафталина требует затраты лишь 25 ккал (104,67-10 Дж) на следующей стадии требуется уже 36 ккал (150,72-10 Дж). [c.987]

    Другим предметом дискуссий является вопрос об энергии резонанса и ароматичности тиофена. В обзоре [17] на основе всех известных критериев сделан вывод о следующем порядке убывания ароматического характера бензол > тиофен > пиррол > [c.231]

    Обсуждение ароматичности в настоящей главе в основном связано с энергией резонанса, несмотря на очевидные возражения против ее использования в качестве критерия ароматичности. Энергия резонанса молекулы даже не является хорошо определенной величиной. Широко распространены различные определения ее, даже в наиболее изученных случаях вроде бензола. Более того, энергия резонанса не всегда подходит для сравнительного анализа различных ситуаций, в которых ароматичность известна или подозревается. Поэтому казалось заманчивым найти в целях определения какую-либо другую количественную меру стабилизации, может быть свойства спектра поглощения, легче поддающиеся точному измерению, какую-то меру реакционной способности или длины связей промежуточной кратности. Однако для известных ароматических соединений не существует никакой другой величины, так же хорошо соответствующей химическому эксперименту, как энергия резонанса. Эта фундаментальная проблема вытекает из альтернативы между любым физическим определением ароматичности и классификацией соединения как ароматического в соответствии с его химическим поведением, т. е. в соответствии с характером, скоростью и другими характеристиками реакций, в которые оно вступает. Химическое же поведение соединения определяется [c.9]

    Резонансная энергия пиррола оценена несколькими авторами были получены значения от 62 до 129 кДж/моль [86]. Среднее значение около 100 кДж/моль хорошо согласуется с вычисленным по методу валентных связей (103 кДж/моль) [106] хотя это и довольно большая величина, она составляет, тем не менее, только две трети энергии резонанса бензола. Физическими доказательствами ароматичности пиррола являются также результаты измерения длин связей [см. (5)], [c.334]

    Еще в XIX столетии было признано, что ароматические соединения [34] сильно отличаются от ненасыщенных алифатических соединений [35], но в течение многих лет химикам не удавалось прийти к взаимно приемлемому удовлетворительному определению ароматического характера [36]. В качественном отношении серьезных разногласий никогда не существовало, и определение сводилось к следующей форме ароматические соединения характеризуются особой устойчивостью и легче вступают в реакции замещения, а не в реакции присоединения. Трудность состояла в том, что такое определение было не слишком ясным и не подходило для пограничных случаев [37]. В 1925 г. Армит и Робинсон [38] установили, что ароматические свойства бензольного ядра связаны с наличием замкнутого кольца электронов, ароматического секстета (ароматические соединения, таким образом, являются своеобразными примерами делокализованной связи), но в то время еще нельзя было определить, обладают ли другие циклы, отличные от бензола, таким электронным кольцом. С развитием магнитных методов исследования, главным образом ядерного магнитного резонанса, появилась возможность экспериментально определять наличие или отсутствие в молекуле замкнутого электронного кольца, и теперь ароматичность можно охарактеризовать как способность удерживать индуцированный кольцевой ток. Соединения, обладающие такой способностью, называют д агро/г-ными. Сегодня это определение является общепринятым, хотя оно не лишено недостатков [39]. Существует несколько методов, позволяющих установить, способно ли соединение удерживать кольцевой ток, но наиболее важный из этих методов основан на химических сдвигах в спектрах ЯМР [40]. Чтобы это понять, необходимо вспомнить следующее как правило, величина химического сдвига протона в ЯМР-спектре зависит от электронной плотности его связи, и чем выше плотность электронного облака, окружающего или частично окружающего протон, тем в более сильное поле смещается его химический сдвиг (т. е. тем меньше величина б). Однако из этого правила имеется несколько исключений, и одно из них касается протонов, расположенных вблизи ароматического цикла. При наложении внешнего магнитного поля (как в спектрометре ЯМР) в ароматических молекулах возникают кольцевые токи л-электронов, которые (при расположении плоскости ароматического [c.63]


    Один из первых критериев ароматичности четного углеводорода с 2п атомами углерода в сопряженной части основывался на сопоставлении полной энергии я-электронов рассматриваемой молекулы с полной я-электронной энергией гипотетической системы, состоящей из изолированных я-электронных систем молекулы этилена. Разность между Е и я-электронной энергией п изолированных двойных связей называется энергией резонанса (ЭР) и определяется по формуле ЭР = Е — 2га(а 4- р), где и — кулоновский и резонансный интегралы. Однако ЭР определена недостаточно корректно, так как, например, для гепталина ЭР = 3,62 , а для бензола ЭР = 2,0 . Кроме того, ЭР при большом числе атомов пропорциональна п. Следующий существенный шаг в развитии критериев ароматичности был сделан Дьюаром, который исходил из кекулев-ских структур, сопоставляя их с бензоидными углеводородами. При этом каждой простой и двойной связям приписывались значения эмпирически найденных параметров 81 и 82. Энергия резонанса по Дьюару (ДЭР) определяется формулой ДЭР = — ( 282 + 181), где 1 и 2 — число простых ж двойных связей в кекулевской струк- [c.57]

    Во-вторых, сравнивая ароматические соединения, мы, казалось бы, можем оценить их относительную энергию резонанса, зная число формул Кекуле, которые можно нарисовать для каждого из них. В целом, чем больше число возможных формул Кекуле, тем выше энергия резонанса соединения. Этот подход совершенно закопомерпо приводит к мысли, что бензол, для которого возмолшы только две формулы Кекуле, менее резонансно стабилизирован, чем нафталин, для которого возмолшы три формулы Кекуле (табл. 15-1). Но нафталин вовсе не ароматичнее бензола, потому что энергия резонанса, приходящаяся на один л-электрон системы, для бензола больше, чем для нафталина. [c.577]

    Выигрьш энергии за счет делокализации я-элекгронов по всей замкнутой цепи сопряжения является необходимым и достаточным условием ароматичности и должен служить самым надежным термодинамическим критерием при количественной оценке ароматичности. Сложность использования энергетических критериев заключается в несовершенстве самих термодинамических методов определения степени ароматичности сопряженного циклического полиена. Главная трудность состоит в том, что энер ГИЮ реального ароматического соединения приходится сопоставлять с энергией несуществующей гипотетической частицы, имеющей локализованные двойные и простые связи. Разность энергий ароматического и соответствующего ему циклического соединения с локализованными связями называют эмпирической энергией резонанса, или эмпирической энергией деюкализации. Рассмотрим этот подход на конкретном примере оценки ароматичности бензола. 23 -1178 357 [c.357]

    Бензол и его гомологи намного устойчивее термохимически и значительно менее реакционноспособны, чем можно ожидать от молекул с чередующимися простыми и двойными связями. Вообще говоря, бензол на 36 ккал1моль стабильнее, чем если бы он имел три двойные связи циклогексенового типа энергия резонанса сложных ароматических молекул увеличивается примерно пропорционально числу и-электронов, но в то же время высшие члены ряда обычно более реакционноспособны, что подчеркивает различие между химической и физической точками зрения и указывает на необязательность параллельного изменения инертности и резонансной стабилизации. Со времени развития квантовых методов большая энергия резонанса считается характерным признаком ароматичности, и этот термин следует, несомненно, применять к любому циклическому соединению, обладающему заметной энергией резонанса вследствие циклического строения. Однако более широкая задача установления общих особенностей строения, необходимых для появления ароматического характера, не решается простыми теориями энергетики к-электронов. Например, особый интерес представляет класс до сих пор неизвестных молекул типа пенталена (I) и гепталена (И) (см. раздел 1-4). Эти молекулы содержат чередующиеся простые и двойные связи и, согласно обоим методам ВС и МО, должны обладать большими энергиями резонанса и, следовательно, удовлетворять требованиям ароматичности, однако их не удается синтезировать обычными методами синтеза ароматических молекул, и этот неоспоримый, хотя и отрицательный, факт показывает, что эти молекулы ни в каком случае не являются нормальными ароматическими молекулами. Более тщательное рассмотрение объясняет этот факт и показывает, почему простые теории не могут его отразить. И действи- [c.8]

    Одним из допущений тг-электронной теории ароматичности является деление электронов в молекуле на два класса о-элек-троны занимают одноэлектронные атомные орбиты, обладающие цилиндрической симметрией относительно линий связи, а тг-электронные орбиты изменяют знак при повороте на 180°. Это различие остается в силе по отношению к отражению в плоскости симметрии ароматической молекулы, причем о- и тг-ор-биты симметричны и антисимметричны соответственно. Молекулярные орбиты, образованные комбинированием таких различающихся по симметрии атомных орбит, разделяются на две невзаимодействующие в некотором приближении группы. Это позволяет изучать отдельно менее прочно связанную группу тг-электронов, ответственную за химическое поведение молекулы. Таким образом, оправдывается сведение проблемы бензола к шестиэлектронной задаче. Роль а-электронов сводится к тому, что ими определяется потенциальное поле, в котором находятся тг-электроны, а явных взаимодействий между ними не существует. В несколько более сложных теориях, не пользующихся понятием изолированных одноэлектронных орбит, а рассматривающих состояния, например, шести тг-электронов бензола, формальное, основанное на соображениях симметрии, разделение на а—тг-электроны теряет силу, так как состояние четного числа тг-электронов симметрично относительно отражения в плоскости, подобно тому как это наблюдается для а-электронов. Однако разделение сохраняет смысл, так как о-электроны связаны прочнее и неспособны серьезно изменить состояния, в которых преобладает тг-электронный характер. Величина о—тг-взаимодействий определялась в расчетах, специально посвященных исследованию этого вопроса [3, 38, 46] причем был сделан вывод, что энергия резонанса при этом изменяется только на десятые электронвольта (1 эв = 23 ккал/моль). Важно иметь [c.25]

    АРОМАТИЧНОСТЬ, совокупность специфич. св-в сопряженных мопо- и полициклич. соед., обладаюидах замкнутой электронной оболочкой (см. Ароматические системы). Такие соед. более стабильны, чем их аналоги о открытой цепью. Это проявляется, в частности, в том, что при р-циях образуклся, как правило, продукты замещения, в к-рых сохраняется аром, система, а не лишенные А. продукты присоединения. Связи между ато.ма.ми цикла в аром. соед. имеют длину, промежуточную между длинами простых и двойных связей в симметричных системах, напр, а бензоле, все связи равноценны. Наиб, известный количеств, критерий А.— энергия резонанса. Она отражает выигрыш в энергии аром, системы благодаря делокализации электронов а представляет собой разность энергии аром. соед. и его гипотетич. изомера, лишенного А. [c.55]

    Сдвиги сигналов циклических протонов в сторону слабых полей согласуются с наличием кольцевого тока, характерного для ароматической системы в случае пиррола эти сдвиги все же не так велики, как в бензоле. На этом основании предложено [18], что ароматичность пиррола составляет 59 % ароматичности бензола, и это качественно согласуется с более низкой энергией резонанса пиррола по сравнению с бензолом. Этот простой вывод, однако, встретил возражения других авторов [19] более подробно он обсуждается Госсауэром 8и] и Марони [20]. [c.337]

    Концепция ароматичности, н в первую очередь, ароматического секстета электронов, была развита для то-го, чтобы отразить некоторые аспекты химического поведения определенного класса молекул, в особенности относящиеся к их реакционной способности. На язык электронных представлений она была впервые переведена в теориях химии ароматических молекул, развитых Ингольдом [1] и Робинсоном [2]. Позднее, около 1930 г., Хюккелем, Полингом и другими было показано соответствие этих теорий квантово-физическим представлениям об электронах. С тех пор, и все в большей степени, ароматичность ассоциировалась одновременно с физическими свойствами молекул (термохимической энергией резонанса, диамагнитной восприимчивостью) и с типично химическими свойствами, связанными с реакциями и реакционной способностью. Кроме того, теоретически предсказанная связь между делокализацией тс-электронов и ароматическими свойствами привела к осознанию того, что ароматичность можно ожидать во всех случаях, когда условия стереохимии, наличие пригодных для использования орбит и число электронов делают возможной делокализацию электронов в циклической системе. С этой точки зрения важен не тип атомов, участвующих в делокализованной системе, а тип орбит. Можно рассматривать 1,3, 5-триазин и боразол (ВзНзНб) как вещества, имеющие качественно тот же ароматический характер, что и бензол, хотя и слабо проявляющийся. Дальнейшее расширение понятия приводит к тому, что трополон (I) [3] можно рассматривать как ароматическую систему, а циклопентадиенильные кольца в ферроцене (И) как обладающие ароматичностью в результате образования комплекса. [c.31]

    Ценный экспериментальный критерий ароматичности молекул, кроме выще упомянутых, дает метод ядерного магнитного резонанса (ЯМР) . Положение сигнала протона в спектре ЯМР зависит от природы, а точнее, от локального окружения атома углерода (или другого атома), с которым связан протон. Так, например, сигнал протона циклооктатетраена наблюдается при б 5,6 (это типично для протонов неароматического циклического полнена), тогда как сигнал протона в случае бензола наблюдается при б 2,8, что характерно для типичных ароматических соединений. [c.28]

    Склонность к реакциям присоединения тем больше, чем меньше потеря энергии при переходе от ароматического субстрата к продукту присоединения. В частности, легкость присоединения возрастает с увеличением числа аннелированных циклов. Присоединение к бензолу, нафталину и к центральному циклу антрацена влечет за собой потерю энергии резонанса (ЭР) одного бензольного кольца, но в первом случае это вся ЭР, во втором — разность между ЭР нафталина и бензола, в третьем — разность между ЭР антрацена и двух бензольных колец. Если оперировать значениями эмпирической ЭР (см,, табл. 1.4), потери энергии составляют соответственно 1,56, 1,08 и 0,5 эВ. Повышенную реакционную пособность в реакциях присоединения проявляют гетероароматические соединения с-относительно низкой степенью ароматичности, например фуран или пирон-2. - [c.477]

    Шесть 2р-атомных орбиталей позволяют построить шесть я-молекулярных орбиталей из них наиболее устойчива связывающая орбиталь с низшей энергией в ней плотность электронного облака повышена между каждой парой атомов углерода и она является общей для всех атомов углерода бензольной молекулы. Наименее устойчива разрыхляющая орбиталь с узлами между каждой парой атомов углерода. л-Электронное облако (связывающих МО) располагается вне плоскости молекулы (над и под ней) (рис. 72). Подобная замкнутая шес-ти-тг-электронная система (я-электронный секстет) является основным признаком ароматичности и обусловливает все важнейшие физические и химические свойства соединений бензольного ряда и характеризует ароматическую связь. В частности, она объясняет высокую термодинамическую устойчивость бензола, определяемую энергией сопряжения (энергией резонанса), равной ЪЪ кдж моль. По одному из методов эта величина получена как разность между экспериментально определенной теплотой образования бензола (5504 кдж/моль) и теплотой образования, вычисленной по ад- 72. Молекулярные п-орбитали дитивной схеме (5349кйж/жоль), в молекуле бензола. [c.423]

    Первые примеры доводов в пользу устойчивости активированного комплекса возвращают нас к использованию теории валентных схем и теории резонанса для оценки стабилизации [43]. Важный шаг был сделан в 1939 г. Эвансом, который объяснил с помощью теории резонанса, почему легко протекает реакция Дильса—Альдера, тогда как две молекулы олефина циклизоваться не могут [44]. Первая реакция затрагивает шесть электронов взаимопревраща-ющейся л —су-системы, и поэтому активированный комплекс ароматичен и стабилен как бензол. Вторая реакция затрагивает только четыре электрона, активированный комплекс должен быть ан-тиароматичным и неустойчивым как циклобутадиен. Как показали Дьюар и Циммерман [45, 46], эта простая концепция ароматичности и антиароматичности переходных состояний может быть расширена весьма замечательным и общим образом. [c.138]

    Подвижность двух л-электронов, находящихся на более высоком энергетическом уровне, может быть выявлена при помощи магнитных измерений. Так, для циклооктатетраена не обнаружен кольцевой ток, который должен был бы вызывать повышенную магнитную восприимчивость как это, например, наблюдается в случае бензола Метод ядерного магнитного резонанса очень удобно использовать для определения ароматического характера, обусловленного циркуляцией делокализованных электронов по кольцу, что обеспечивает ароматичность протонов в бензоле. В углеводороде же XLV имеются как внешние, так и внутренние атомы водорода. Внутренние протоны сильно экранированы, тогда как внешние открыты и обеспечивают ароматический характер системы С дН д. Порфирины обладают одиннадцатью двойными связями нахождение двух электронов на более высоком энергетическом уровне должно приводить к возникновению ароматических свойств, которые и были обнаружены у порфиринов. [c.92]

    В- этом же аспекте циклопентадиенильный радикал С5Н5 рассматривается как система из пяти атомов углерода, равноценно связанных друг с другом ковалентными связями к каждому атому углерода, кроме того, присоединен один атом водорода. Оставшиеся пять электронов образуют облако тс-электронов, вращающихся над и под плоскостью кольца. Благодаря этому система остается ароматичной подобно молекуле бензола, если только 26-й электрон не свяжется ковалентной связью с каким-либо атомом углерода кольца. Вычислено, что результирующая энергия резонанса равна 37 ккал1моль [25]. Если два таких циклопентадиенильных радикала располагаются параллельно на одной оси и настолько далеко друг от друга, что тс-орбиты не перекрываются, и, кроме того, если кольца ориентированы таким образом, что образуют антипризму, то 10 атомов углерода могут образовать систему с максимальной симметрией, в которой молекулярные орбиты могут свободно проникать в пространство, расположенное как раз посередине между двумя кольцами. Эти орбиты являются, таким образом, четными и могут быть обозначены как сра -орбиты (где ср относится к цикло-пентадиёнилу). Каждый отдельный электрон будет половину времени находиться в одном кольце и половину — в другом. [c.51]

    Возникновение магнитной анизотропии под влиянием кольцевых токов и связанного с этим вклада в химические сдвиги протонов может быть использовано для изучения ароматичности циклических соединений. В простейшем расчете магнитной анизотропии бензола Поил [61, стр. 225] показал, что величина изменения сдвига определяется, в частности, количеством подвижных я-электронов. С точки зрения ядерного магнитного резонанса, ароматические соединения могут быть определены как соединения, в которых возможно индуцировать кольцевые токи [62]. Качественную оценку ароматичности можно произвести уже при простом сравнении сдвигов близких по окружению протонов. Например, сравнение химических сдвигов бензола (7,17—7,35 м. д.), -протонов тиофена (6,50 м. д.), фурана (5,87 м. д.) и пиррола (5,85 м. д.) со сдвигом в этилене (5,29 м. д.) [63] указывает на уменьшение ароматического характера в этом ряду. При более тщательном учете вкладов в химические сдвиги, обусловленных электронным окружением протонов, возможен грубый количественный расчет ароматичности. Элвидж и Джекман [62] путем сравнения химических сдвигов кольцевых протонов и протонов метильных групп в серии метильных производных пиридона-2 с химическими сдвигами аналогичных протонов в неароматических гетероциклах или в производных пиридина, в котором я-электроп-ное облако, так же как и в бензоле, полностью делокализовано, пришли к выводу, что ароматический характер кольца пиридона-2 по подверженности кольцевым токам составляет 35 5% от бензола. [c.77]

    Считают, что бензол является ароматическим соединением, поскольку циклическое сопряжение приводит к большой устойчивости его молекулы. Причины этого рассмотрены выше с точки зрения как теории резонанса, так и теории молекулярных орбиталей (МО). В этом смысле слово ароматичность означает особую устойчивость молекулы, вызванную циклическим сопряжением. Иногда используют другие определения ароматичности в которых особое внимание уделяется некоторым иным особым свойствам бензола и его производных. В данной книге понятие ароматичности ограничено только рассмотрением стабилизации молекулы за счет со1пряжения (имеется в виду лишь та часть общей устойчивости, которая связана с циклическим сопряжением). [c.35]

    Активность этого замечательного интермедиата так высока, что он присоединяется з з даже к бензолу при 45 °С (см. также стр. 189), т. е. преодолевает энергетический барьер ароматичности (энергию резонанса), равный 36ккал/моль. Присоединение других диенофилов к бензолу имеет место только в случае чрезвычайно сильных электрофильных реагентов и при температурах выше 100 °С. [c.194]


Смотреть страницы где упоминается термин Бензол РЕЗОНАНС АРОМАТИЧНОСТЬ: [c.85]    [c.552]    [c.55]    [c.978]    [c.231]    [c.154]    [c.34]    [c.320]    [c.53]    [c.334]   
Смотреть главы в:

Органическая химия -> Бензол РЕЗОНАНС АРОМАТИЧНОСТЬ




ПОИСК





Смотрите так же термины и статьи:

Ароматичность

Бензол ароматичность

Бензол резонанс



© 2025 chem21.info Реклама на сайте