Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНК, структурная организация и конформационные возможности

    О пространственном строении нуклеиновых кислот следует сказать особо. Структурная организация и конформационные возможности дезоксирибонуклеиновых кислот в клетке определяются не столько самими молекулами ДНК, сколько их взаимодействиями с многочисленной группой так называемых ДНК-связывающих белков, среди которых центральная структурная роль принадлежит гистонам. Молекула ДНК, имеющая длину, например в хромосоме человека, несколько сантиметров, с помощью гистонов упакована в клеточном ядре, диаметр которого равен лишь нескольким микрометрам. Самым нижним уровнем упаковки является двой- [c.52]


    Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии. [c.51]

    Монография посвящена рассмотрению существующих подходов к изучению принципов молекулярной структурной организации и механизма свертывания белка в нативную конформацию Книга состоит из введения и четырех частей В первой части изложена бифуркационная теория самосборки полипептидной цепи, физическая конформационная теория и метод априорного расчета пространственного строения белка по известной аминокислотной последовательности В других частях рассмотрены конформационные возможности простейших пептидов, сложных олигопептидов и белков Представлены результаты количественного анализа конформационных состояний большого числа пептидов и низкомолекулярных белков Изложен подход автора к решению обратной структурной задачи, позволяющей целенаправленно конструировать наборы искусственных аналогов, пространственное строение которых выборочно отвечает низкоэнергетическим, потенциально биологически активным конформациям природного пептида [c.4]


    Существующие представления о принципах структурной организации белка и путях многостадийного процесса самосборки полипептидной цепи можно отнести к трем альтернативным точкам зрения. Каждой из них отвечает свой специфический набор экспериментальных и теоретических методов, свой особый подход к изучению этого уникального природного явления и своя возможность в достижении конечной цели - количественного описания механизма сборки и расчета координат атомов нативной трехмерной структуры и динамических конформационных свойств белковой молекулы по известной аминокислотной последовательности. Обсуждению современного состояния и перспектив развития трех направлений исследований структурной самоорганизации белка, условно названных эмпирическим, теоретическим (аЬ initio) и генетическим, уделено в этой книге основное внимание. [c.6]

    В соответствии с термодинамической гипотезой Анфинсена и теорией структурной организации белка (см. гл. 2), будем считать, что механизм свертывания этих сложных олигопептидов является не статистическим, а статистико-детерминистическим, причем стерически возможными или предпочтительными становятся взаимодействия только между определенными парами остатков ys. Расчет всех молекул строился таким образом, что его результаты должны были опровергнуть или доказать справедливость представления о том, что определяет конформацию молекулы не образование дисульфидных мостиков, а, напротив, детерминированные состояния различных участков цепи, взаимодействия между которыми диктуют избирательную сближенность цистеиновых пар. При априорном многостадийном конформационном анализе пептидов из 18, 21, 22 и 36 аминокислотных остатков случайная сближенность цистеинов практически исключена. Поэтому автоматический приход на завершающей стадии расчета каждого пептида к самым низкоэнергетическим конформациям линейной последовательности молекулы с близкими контактами между соответствующими остатками ys будет одновременно свидетельствовать о наличии согласованности всех видов межостаточных взаимодействий в глобальной структуре (одно из основных положений конформационной теории белка), справедливости термодинамической гипотезы образования дисульфидных связей, адекватности использованных в расчете потенциальных функций реальным атом-атомным взаимодействиям и, наконец, [c.292]

    Рассмотренные в этой главе методологические вопросы теоретического конформационного анализа были разработаны для исследования пространственного строения низкомолекулярных органических соединений. Что же касается нашей темы - структурной организации белков, то задача такого масштаба перед расчетным методом не ставилась, и поэтому многие важнейшие вопросы, вставшие на пути к априорному расчету нативных конформаций белковых макромолекул, остались незатронутыми. Так, даже в принципе не была обсуждена сама возможность использования классического подхода, предполагающего независимость электронного и конформационного состояний молекулы. Если считать справедливыми изложенные в этой главе бифуркационную и физическую теории структурной организации белка, то доказательство применимости механической модели к данному объекту является самой главной и прежде всего требующей ответа задачей. Однако принципиальная возможность использования полуэмпирического конформационного анализа в исследовании белков также еще не предопределяет положительного решения других вопросов. Необходима методология, специально разработанная для расчета пространственного строения белковых молекул. Верхним пределом применимости изложенного метода конформационного анализа, как показано ниже, являются лишь три- и в простейших случаях тетра- и пентапептиды. Таким образом, второй важнейший вопрос на пути к решению проблемы структурной организации белка заключается в создании специфического методологического подхода, в который существующий метод конформационного анализа вошел бы как составная часть. [c.107]

    Знание пространственного строения и динамических конформационных свойств природных олигопептидов представляет также большой самостоятельный интерес. Оно необходимо для исследования молекулярных механизмов узнавания, стимулирования, регуляции и т.д., иными словами, для выяснения структурно-функциональной организации многочисленных пептидных гормонов, медиаторов, модуляторов, антибиотиков, ионофором и других низкомолекулярных физиологически активных пептидов. Априорный расчет конформационных возможностей олигопептидов приобретает здесь особый смысл, поскольку именно теоретический подход только и может (а следовательно, и должен) стать основой строгого решения необычной по своей общности, научной и практической значимости проблемы установления зависимости между структурой и функцией пептидов (подробно см. гл. 18). [c.388]


    Основные положения предложенной мною конформационной теории белков были сформулированы в общем виде и имели вначале чисто эвристический характер [40, 41]. Создание расчетного метода требовало их детализации и тщательной проверки. Достоинство теории даже в ее первоначальной, быть мо жет, несовершенной форме заключалось в том, что она позволяла всю необходимую работу с первой и до завершающей стадии заранее представить в виде строго последовательного ряда логически связанных между собой шагов, где каждое продвижение вперед опиралось на результаты предшествующих исследований и предваряло последующее. Иными словами, теория, отражавшая вначале чисто субъективное представление автора о структурной организации белка, в то же время представляла собой достаточно четко ориентированную рабочую программу исследования. Одно из положений теории, а именно предположение о согласованности в белковой глобуле всех внутри- и межостаточных взаимодействий, давало возможность разделить задачу на три большие взаимосвязанные части. Цель первой заключалась в кон-формационном анализе свободных остатков стандартных аминокислот, т.е. в оценке ближних взаимодействий валентно-несвязанных атомов. Идеальными моделями для изучения ближних взаимодействий явились молекулы метиламидов М-ацетил-а-аминокислот (СНз-СОМН-С НК-СОЫН-СНз). Вторая часть общей задачи состояла в выяснении влияния средних взаимодействий, т.е. взаимодействий между соседними по цепи остатками. Объектами исследования здесь могли служить любые природные олигопептиды. Цель третьей, завершающей части - изучение роли контактов между удаленными по цепи, но пространственно сближенными в глобуле остатками и априорный расчет трехмерной структуры белка. В дефинициях нелинейной неравновесной термодинамики эти цели могут быть сформулированы следующим образом. Во-первых, определение возможных конформационных флуктуаций у свободных аминокислотных остатков и выявление энергетически наиболее предпочтительных. Во-вторых, нахождение возможных конформационных флуктуаций локальных участков полипептидной цепи и установление среди них бифуркационных флуктуаций, ведущих к структурированию фрагментов за счет средних невалентных взаимодействий. В-третьих, анализ возможных флуктуаций лабильных по средним взаимодействиям участков полипептидной цепи и идентификация бифуркационных флуктуаций, обусловливающих комплементарные взаимодействия конформационно жестких нуклеаций, стабилизацию лабильных участков и, в конечном счете, образование нативной трехмерной структуры молекулы белка. [c.109]

    В решении задачи структурной организации белков изучение взаимодействий между валентно-несвязанными атомами в свободных аминокислотных остатках представляет особый интерес. Эти взаимодействия определяют у каждого стандартного остатка его конформационную потенцию, которая при укладке белковой цепи в нативную трехмерную структуру реализуется в виде определенного конформационного состояния. Знание максимальных конформационных возможностей свободного звена полипептидной цепи является исходным в последующем изучении средних и дальних межостаточных взаимодействий, благодаря чему оно составляет основу метода структурного анализа пептидов и белков. [c.154]

    Основная причина малой эффективности физико-химических методов исследования пространственного строения ангиотензина II, как и других олигопептидов, связана с тем, что для изучения структурно-функциональной организации этих соединений недостаточно знания лишь самой выгодной по энергии конформации в случае белков, или представления о среднестатистическом конформационном состоянии молекулы в случае синтетических пептидов [28, 29]. Здесь требуется количественная оценка геометрических параметров ряда структур, их конформационных возможностей и вероятности реализации в различных условиях. Получение такой информации, как правило, находится за пределами чувствительности и интерпретационных возможностей физико-химических методов. Более того, из-за сложности соединений и недостаточной разработанности физических основ соответствующих явлений редко когда хотя бы один из методов позволяет однозначно и достаточно полно описать даже одно, доминирующее в растворе конформационное состояние пептида, используя лишь результаты собственных измерений. [c.270]

    Определение структурной организации секретина, проникновение в область его взаимоотношений с рецепторами, принадлежащими разным системам организма, выяснение кинетики и динамики механизмов этих отношений, понимание на атомно-молекулярном уровне назначения секретина в их реализации, умение целенаправленно влиять на его регуляторные и другие физиологические действия и, наконец, создание соответствующих фармацевтических препаратов - все это не может быть достигнуто традиционным путем, т.е. на чисто эмпирической основе и при использовании исключительно экспериментальных методов, как бы разнообразны и совершенны они не были. Даже первый шаг в сторону сознательного количественного изучения структурно-функциональной организации секретина, а именно исследование конформационных возможностей Молекулы и определение набора ее низкоэнергетических пространствен- [c.373]

    Сформулированные принципы структурной организации природных олигопептидов являются необходимой основой для решения задачи структурно-функциональной организации этих соединений, обсуждаемой в следующем томе. Сейчас же важно отметить, что установление таких принципов подвело наше рассмотрение непосредственно к самому ответственному моменту исследования одной из фундаментальных задач проблемы белка - завершающему этапу изучения структурной организации белковых молекул и к решению вопроса о возможности априорного расчета их нативных трехмерных структур на основе известной аминокислотной последовательности, предложенной автором теории и разработанного им метода расчета. Перед обсуждением результатов конформационного анализа белков и количественной оценки функций дальних взаимодействий еще раз напомню о роли ближних и средних взаимодействий в структурной организации олигомерной аминокислотной последовательности. [c.403]

    Следующая задача, рассматриваемая в этой части книги, заключается в апробации бифуркационной теории свертывания и физической теории структурной организации непосредственно на белках путем априорного расчета их нативных конформаций по известной аминокислотной последовательности. Впервые эта задача решалась A.A. Завальным и мною при исследовании конформационных возможностей фрагмента Leu -Су низкомолекулярного белка нейротоксина П [1]. [c.414]

    Совпадение результатов априорного расчета конформационных возможностей сложного белкового фрагмента с опытными данными о кристаллической структуре белка впервые убедительно подтвердило, во-первых, справедливость физической теории структурной организации белков, лежащей в основе данного расчета, и, во-вторых, реальность многостадийного подхода, использованных потенциальных функций и параметризации для количественной оценки невалентных взаимодействий, формирующих пространственную структуру белка. [c.426]

    Экспериментальное изучение многих белков, поддающихся ренатурации, выявило наиболее характерные черты этого явления самопроизвольность протекания, высокую скорость и безошибочность процесса сборки белковой цепи в нативную конформацию. Было показано, что структурная организация белка, несмотря на случайно-поисковый механизм сборки, осуществляется не путем перебора всех возможных конформационных состояний статистического клубка, а по определенному механизму, чувствительному к внешним условиям. При этом не было обнаружено фактов, противоречащих представлению о нативной конформации белковой молекулы как об энергетически глобальном равновесном состоянии. [c.471]

    Знание конформационных возможностей природных олигопептидов позволило сформулировать общие для их структурной организации черты. Получено представление о важной роли в структурной организации молекул средних взаимодействий. Оказалось, что в каждой последовательности имеются участки, конформационные состояния которых определяются взаимодействиями лишь входящих в них аминокислотных остатков. Наряду с конформационно жесткими есть лабильные участки, в которых средние взаимодействия не детерминируют их состояния полностью, а только сужают круг их возможных структурных вариантов (см. гл. 14). [c.588]

    Рассмотрен подход к решению обратной структурной задачи, основанный на физической конформационной теории природных пептидов и белков, прежде всего оценке особой роли ближних взаимодействий в их структурной организации и использовании классификации пептидных структур на шейпы, формы и конформации. Показано, что можно добиться целенаправленного и контролируемого изменения структуры пептида за счет ближних взаимодействий простыми средствами, выработанными в процессе эволюции органического мира. Изложенный в книге подход к решению обратной задачи позволяет заранее, еще до синтеза и биологических испытаний целенаправленно конструировать модели искусственных аналогов, пространственные структуры которых отвечают низкоэнергетическим и физиологически активным конформационным состояниям природного пептида. Возможности теоретического моделирования искусственных аналогов продемонстрированы на конкретных примерах. Полученные результаты подтверждают необходимость его использования в изучении молекулярных механизмов функционирования пептидных гормонов, катализа ферментов, взаимодействий антител с антигенами и т.п. (см. гл. 17). [c.590]

    Изложенный в книге материал позволяет, по моему мнению, утверждать, что в настоящее время имеется объективное представление о принципах укладки белковой цепи в нативную трехмерную структуру и на их основе создан расчетный метод предсказания геометрии белковой глобулы и ее динамических конформационных свойств исходя только из аминокислотной последовательности. Проведенное обсуждение физических аспектов проблемы белка, соответствующих количественных экспериментальных данных и результатов априорных расчетов конформационных состояний природных олиго- и полипептидов сделало возможным объяснить причины протекания самопроизвольного, быстрого и безошибочного процесса свертывания белковой цепи в детерминированную трехмерную структуру. Знание (и понимание) структурной организации пептидов п [c.590]

    Первая задача заключается в изучении структурной организации и создании теории, устанавливающей логическую и количественную взаимосвязь между аминокислотной последовательностью и пространственной структурой белка, предсказывающей его конформационные и электронные свойства. Цель следующей задачи состоит в изучении физико-химических свойств белка и, основываясь на знании не только геометрии, но и структурной организации белковой молекулы, выявлении принципов ее функционирования, иными словами, разработке теории структурно-функциональной организации белка. Третья задача направлена на создание общей теории рассматриваемой функции (здесь биокатали-тической), учитывающей решения предшествующих задач, особенности ферментативного катализа, физико-химические основы этого явления и возможности современного естествознания. [c.77]

    В последующих главах рассматриваются результаты конформацион-1 0го анализа большой серии природных олигопептидов. Их пространст- енное строение практически полностью определяется взаимодействиями ежду близко расположенными в цепи остатками, и поэтому они представляют собой естественные объекты исследования средних взаимодействий. Здесь нельзя было ограничиться анализом единичных примеров в силу по крайней мере двух обстоятельств. Во-первых, изучение конформационных возможностей природных олигопептидов является, как станет ярно позднее, самым ответственным и сложным, но в то же время 1 иболее интересным этапом на пути к априорному расчету трехмерных структур белков. Очевидно, понимание пространственного строения и механизма спонтанной, быстрой и безошибочной укладки белковой последовательности в нативную конформацию невозможно без установления инципов пространственной организации эволюционно отобранных низко- лекулярных пептидов. Между природными олиго- и полипептидами нет четко очерченных границ, и количественная конформационная теория лее простых молекул является естественной составной частью конформационной теории более сложных соединений той же природы. Во-вторых, Й1ание пространственной организации и динамических конформационных свойств природных олигопептидов - гормонов, антибиотиков, токсинов и т.д. - необходимо -вакже для изучения молекулярных механизмов узнавания, действия и регуляции биосистем, выявления структурно-функциональных особенностей пептидов и белков. [c.233]

    Предположение о согласованности в нативной конформации белка всех внутримолекулярных взаимодействий открывает принципиальную возможность для поэтапного, фрагментарного подхода к решению проблемы структурной организации белковой макромолекулы. Это можно осуществить путем последовательного анализа трех видов взаимодействий, определяющих конформационное состояние каждого аминокислотного остатка в трехмерной структуре. К ним следует отнести, во-первых, взаимодействия атомов одного остатка между собой и с атомами двух смежных пептидных групп (ближние взаимодействия), во-вторых, взаимодействия остатка с соседними в последовательности остатками (средние взаимодействия) и, в-третьих, взаимодействия остатка с удаленными по цепи остатками (дальние взаимодействия) (рис. 1.1). Предложенное разделение взаимодействий до некоторой степени условно. Однакр среди возможных других оно представляется наиболее естественным и, как можно будет убедиться впоследствии, удобным с методологической точки зрения. Выделение трех видов невалентных взаимодействий (а не двух или четырех) не является полностью формальным, так как они довольно четко различаются по своим функциям в организации пространственной структуры молекулы белка. Но главное все же состоит не в способе разделения взаимодействий. Последовательное рассмотрение ближних, средних и дальних взаимодействий, как и взаимодействий, разделенных иным способом, может иметь смысл и привести к предсказанию нативной конформации белка только в том случае, если отобранные на предшествующих этапах наборы конформационных состояний аминокислотных остатков будут непременно включать состоя-Иия, удовлетворяющие условиям последующих этапов. Гарантом здесь Является постулированное в теории положение о согласованности всех видов взаимодействий валентно-несвязанных атомов в нативной конформации белка. [c.105]

    Простейшими молекулами, моделирующими конформационные возможности свободных аминокислотных остатков, являются метиламиды К-ацетил-а-аминокислот, СНз-СОНН-С НК-СОНН-СНз. В состав таких молекул (назовем их ради краткости монопептидами) входят две пептидные группы, структура которых во многом определяет их свойства, в частности конформационные возможности. Поэтому перед рассмотрением структурной организации монопептидов а-аминокислот целесообразно остановиться на электронных и конформационных особенностях простых органических молекул, содержащих пептидные (амидные) группы. [c.129]

    Итак, были рассмотрены результаты теоретического конформационного анализа совместно с данными экспериментального исследования пространственного строения серии метиламидов N-ацетил-а-аминокислот и их N-метильных производных в различных средах. В основу интерпретации опытного материал ыли положены геометрические и энергетические характеристики ограниченного набора оптимальных конформаций монопептидов, изученных теоретически. При этом обнаружилось полное соответствие между всеми вьшодами теоретического анализа, с одной сто-роньг, и эспериментальными данными, с другой. В результате была установлена непосредственная связь между оптимальными формами рассчитанных монопептидов и соответствующими опытными данными, полученными с помощью различных физических методов теоретический и экспериментальный подходы не обнаружили противоречий в оценке тенденции смещения положений конформационного равновесия у изученных монопептидов при переходе от неполярных к полярным растворам. Тем самым было показано, что использованные в расчете потенциальные функции и параметризация адекватно отражают реальные взаимодействия атомов одного аминокислотного остатка и удовлетворительно имитируют влияние на эти ближайшие взаимодействия окружающей среды. Расчетный метод конформационного анализа выдержал, таким образом, свое первое испытание на пути к решению задачи структурной организации белков. Это, пожалуй, самый важный вывод из проведенного нами комплексного теоретического и экспериментального исследования. Он, конечно, не решал еще многих проблем, но послужил надежным обоснованием дл следующего шага - анализа конформационных возможностей монопеп-тидов всех остальных стандартных аминокислот. [c.172]

    Ответ на поставленный вопрос требует сравнения ставших теперь известными оптимальных конформаций метиламидов N-ацетил-а-аминокислот с конформационными состояниями аминокислотных остатков в нативных трехмерных структурах белков. Первые определяются лишь ближними взаимодействиями, а вторые - суммарным эффектом ближних, фсдних и дальних взаимодействий. Сопоставление должно выявить меру воздействия ближних взаимодействий на реализующиеся в белках конформационные состояния и оценить роль этих взаимодействий в структурной организации макромолекул. В соответствии с одним из принципов постулированной в главе 2 теории [14, 105-107], утверждающим наличие согласованности всех видов внутримолекулярных невалентных взаимодействий, наблюдаемые в трехмерных структурах белков конформационные состояния остатков должны входить в набор низкоэнергетических оптимальных форм метиламидов N-ацетил-а-аминокислот. Только в этом случае представится принципиальная возможность сделать следующий шаг в сторону решения на основе рассматриваемого подхода проблемы структурной организации белков. Целесообразно рассмотреть в отдельности геометрию основных и боковых цепей аминокислотных остатков [108, 109]. [c.181]

    Таким образом, согласно бифуркационной теории, ни один из этапов механизма спонтанного свертывания белка, включая окончательное построение его биологически активной трехмерной структуры, не содержит селекции практически бесконечного множества мыслимых конформационных состояний аминокислотной последовательности. Следовательно, если описанный механизм адекватен реальному процессу, т.е. если бифуркационная теория верна, то разработанный на ее основе метод расчета вообще не встречается с проблемой поиска глобального минимума энергии на многомерной потенциальной поверхности. Содержание конформационного анализа в этом случае распадается на две также непростые задачи. Одна из них заключается в оптимизации составляющих белковую цепь олигопептидных участков в их свободном состоянии при вариации всех возможных комбинаций знамений двугранных углов вращения каждого отдельного фрагмента. Цель решения этой задачи состоит в идентификации конформационно жестких и лабильных участков аминокислотной поверхности. Вторая задача включает анализ невалентных взаимодействий тех и других и многоступенчатую минимизацию энергии с постепенным увеличением длины цепи и раскрепощением конформационных параметров жестких участков. В конечном счете будет получена количественная оценка конформационных возможностей всей белковой молекулы и выявлена ее глобальная нативная трехмерная структура. Этот вывод справедлив, однако, лишь в принципе, а реально ни та, ни другая задача не поддаются решению без введения дополнительных положений о структурной организации нативной конформации белка. Предоставленная бифуркационной теорией возможность перехода от расчета целой белковой цепи к расчету отдельных фрагментов и далее анализу комбинаций их пространственных форм в огромной степени упростила проблему, но не сделала ее практически разрешимой. Причина та же - множественность локальных минимумов энергии на потенциальной поверхности, правда, теперь уже не всей белковой цепи, а ее конформационно жестких и лабильных участков, которые могут состоять из 10-12 аминокислотных остатков. Как известно, независимому и строгому анализу поддаются [c.248]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]

    Разработка термодинамической бифуркационной теории свертывания белковой цепи, физической теории структурной организации природной аминокислотной последовательности, метода теоретического конформационного анализа, а также результаты расчета конформационных возможностей простейших производных двадцати стандартных а-амино-кислот и большого числа молекул с двумя и тремя аминокислотными остатками в цепи, представленные в первых двух частях книги, позволили перейти к изучению пространственного строения более сложных природных пептидных объектов. Главная цель исследования заключалась в количественной оценке вкладов средних межостаточных взаимодействий в конформационную энергию олигопептидов постепенно увеличиваюшейся длины и выяснении роли этих взаимодействий в структурировании фрагментов белковой цепи. [c.256]

    Первыми природными объектами рассмотрения будут брадикининпоген-цирующие пептиды (БПП). Речь пока пойдет только об их конформационных возможностях вопросы связи между структурой и биологическими свойствами, т.е. структурно-функциональной организации олигопептидов, обсуждаются в следующем томе. Отметим лишь, что молекулы БПП усиливают и пролонгируют депрессорный эффект брадикинина на кровяное давление, ингибируют ферменты, расщепляющие кинин, а также являются эффективными ингибиторами пептидил-дипептидазы - фермента, катализирующего превращение ангиотензина I в повышающий кровяное давление ангиотензин II. Самыми эффективными представителями этой группы являются природные пента-, нона- и декабрадикининпо-тенцирующие пептиды, структурная организация которых вместе с некоторыми их синтетическими аналогами рассматривается ниже [1,2]. [c.256]

    Структурная организация молекулы ангиотензина II исследована на основе конформационной теории (см. гл. 2) и соответствующего расчетного метода (см. гл. 7) в предположении жесткой валентной схемы, представленной на рис. III.5. Конформационные возможности октапептидного гормона определяются 41 значением двугранных углов вращения вокруг связей основной цепи (ф, у, оз) и боковых цепей (Хь Хг. ) Использованные в расчете потенциальные функции и полуэмпирические параметры для оценки невалентных, электростатических, торсионных взаимодействий и водородных связей указаны в работах [30, 31]. В расчете и при изложении результатов использована естественная классификация пептидных структур по трем уровням пространственной организации конформации, форме и шейпу основной цепи (см. гл. 7). Конформационный анализ октапептидного гормона был разбит на три этапа (рис. III.6). Первый включал в себя независимый расчет пяти перекрывающихся по трем аминокислотным остаткам тетрапептидных фрагментов (a-g). Второй этап заключался в расчете гексапептидного фрагмента Asp -His , а третий - в расчете всей молекулы ангиотензина II. Подробно результаты расчета рассмотрены в работе Т.В. Гогитидзе и автора данной монографии [32]. Здесь дано описание лишь заключительного этапа. [c.271]

    Молекула апамина в силу ее конформационной жесткости может считаться почти идеальной моделью для изучения трехмерной структуры с помощью физико-химических и корреляционных методов и рассматриваться как критерий их информативных возможностей. Представленные выше результаты использования экспериментальных и эмпирических подходов (табл. III.14), по-видимому, позволяют заключить, что эти возможности в решении проблемы структурной организации относительно сложных пептидов все еще остаются весьма ограниченными. Любую из предложенных четырех моделей апамина, к построению которой были привлечены физико-химические методы и предсказательные алгоритмы, трудно отнести не только к строго доказанной, но и достаточно вероятной. [c.305]

    Последовательности Met- и Ьеи-энкефалинов (см. рис. III. 23) содержат по три аминокислотных остатка с мощными и достаточно лабильными боковыми цепями, число атомов в которых превышает основную цепь, в связи с чем стабилизирующие взаимодействия боковых цепей между собой и с элементами основной цепи должны играть доминирующую роль в структурной организации обоих пентапептидов. Имея в виду это обстоятельство, большое внимание в конформационном анализе энкефалинов было уделено путем варьирования всех возможных конформационных состояний остатков поиску таких стерических ситуаций, которые обеспечивали бы сближенность боковых цепей Туг, Phe , Met (Leu ) и их эффективные взаимодействия в пределах дозволенных низкоэнергетических форм основной цепи. Поскольку последовательности обеих молекул отличаются только С-концевыми остатками, рассмотрим лишь результаты анализа Met-энкефалина. Сопоставляемые с ними данные о пространственном Ьеи-энкефалина получены аналогичным образом и независимо. [c.340]

    Шерага [188]. Однако цель этой работы выходит далеко за рамки ис- едования конформационных возможностей пептидного гормона, сравни- льно простого по своему размеру и аминокислотному составу. Энке- алин использован лишь в качестве примера, который должен продемон-(сгрировать возможности предложенного авторами метода поиска самых глубоких, отвечающих нативным глобальным конформациям молекул, энергетических минимумов среди множества так называемых локальных минимумов на многомерных потенциальных поверхностях пептидов и белков. В связи с этим затрагиваются некоторые аспекты проблемы свертывания и структурной организации природных полипептидов, что представляет общий интерес, в связи с чем остановимся на публикации Ли И Шераги, уже упоминавшейся в разделе 7.3, более подробно. [c.349]

    Каковы же ближайшие перспективы Можно ли, продолжая изучение Met- и Ьеи-энкефалинов и других пептидных гормонов в том же плане, получить со временем полную и объективную количественную информацию об их структурной организации и зависимости между структурой и функцией Чтобы ответить на этот вопрос, предположим, что такой информацией мы уже располагаем, и попытаемся представить, что она могла бы дать для понимания структурно-функциональной организации энкефалинов и описания механизмов их многочисленных функций. Как можно было бы логически связать данные, например, о 10 низкоэнергетических конформациях каждого нейропептида с приблизительно таким же количеством его функций Очевидно, установить прямую связь при неизвестных пространственных структурах рецепторов не представляется возможным. Число возможных комбинаций, особенно если учесть существование нескольких рецепторов (ц, а,5) для осуществления только одной опиатной функции энкефалина, слишком велико, чтобы надеяться даже в гипотетическом идеальном случае найти искомые соотношения интуитивным путем. Многие полагают, что к достижению цели ведет косвенный путь, заключающийся в привлечении синтетических аналогов, изучении их структуры и биологической активности. В принципе подобный подход вот уже не одно столетие применяется в поиске фармацевтических препаратов. Однако такой путь в его сегодняшнем состоянии не только длителен, сложен и дорогостоящ, но, главное, он не может привести к окончательному решению проблемы. Замена аминокислот в природной последовательности, укорочение цепи или добавление новых остатков, иными словами, любая модификация химического строения природного пептида, неизбежно сопровождается изменением конформационных возможностей молекулы и одновременно затрагивает склонные к специфическому взаимодействию с рецептором остатки, что сказывается на характере внутри- и межмолекулярных взаимодействий, в том числе на устойчивости аналогов к действию протеиназ. Для учета последствий химической модификации на характер внутримолекулярных взаимодействий можно использовать теоретический конформационный анализ и методы кванто- [c.352]

    В гл. 9 были рассмотрены результаты теоретического анализа ангиотензина П (АТ П), Asp -Aгg2-VaP-Tyr -VaP-His6-Pro -Phe [378]. Исследование конформационных возможностей октапептидного гормона позволило установить его структурную организацию и тем самым определить набор низкоэнергетических пространственных форм, потенциально являющихся биологически активными. Следующая задача заключается в выявлении в найденном наборе оптимальных конформаций структур АТ П, актуальных для реализации гормональной активности, и определении конкретных связей между ними и функциями. Это тема следующего, четвертого, тома издания "Проблема белка". Здесь же на примере главным образом АТ II только отметим некоторые причины, сдерживающие установление принципов структурно-функциональной организации гормонов, а также покажем, что достижение цели немыслимо без решения обратной структурной задачи. [c.566]

    Метод теоретического анализа использован для расчета пространственного строения природных пептидных антибиотиков, гормонов и их синтетических аналогов, содержащих от 5 до 30 аминокислотных остатков. На основе сопоставления теоретических и опытных данных изучены конформационные возможности олигопептидов. Для апробации физической теории структурной организации пептидов и метода расчета их конформационных возможностей использованы три способа. Первый из них связан с прямым сравнением теоретических и опытных значений геометрических параметров молекул. Во всех случаях, где такое сопоставление оказалось возможным, наблюдалось хорошее количественное согласие результатов теории и опыта. Второй способ имеет вероятностный характер и не требует для оценки достоверности результатов расчета знания экспериментальных фактов. Он основан на выборе для теоретического исследования объектов, расчет которых содержит внутренний, автономный контроль. Такими объектами могут служить пептиды, содержащие остатки цистеина, далеко расположенные друг от друга в цепи и образующие между собой дисульфидные связи. Априорное исследование ряда цистеинсодержащих пептидов, аминокислотные последовательности которых включали от 18 до 36 остатков, автоматически привело к выяснению пространственной сближенности остатков ys, отвечающей правильной системе дисульфидных связей. Наконец, третий способ проверки заключался в сопоставлении данных конформационного анализа белковых фрагментов с геометрией соответствующих участков трехмерной структуры белка, установленной с помощью рентгеноструктурного анализа. И здесь были подтверждены достоверность и высокая точность результатов априорного расчета (см. гл. 8-13). [c.588]

    Решающим доказательством справедливости предложенного подхода к решению задачи о структурной организации белка явились результаты априорного расчета трехмерной структуры бычьего панкреатического трипсинового ингибитора и количественное представление свертывания белковой цепи как самопроизвольного, быстрого и безошибочного процесса. Рассчитанная при использовании аминокислотной последовательности и стандартной валентной схемы конформация белка совпала с кристаллической структурой молекулы БПТИ. Точность расчета значений всех двугранных углов вращения ф, у, (О и %, расстояний между атомами С всех остатков и длин реализуемых водородных связей оказалась близкой точности рентгеноструктурного анализа белков высокого разрешения. На основе данных о конформационных возможностях аминокислотной последовательности БПТИ получили свое объяснение все детали ренатурации белка, механизм которой был изучен экспериментально. Тем самым, во-первых, была подтверждена неравновесная термодинамическая модель сборки белка. Во-вторых, была апробирована физическая теория структурной организации белка, вскрывающая природу бифуркационных флуктуаций и утверждающая представление о нативной конформации белковой молекулы как о глобальной по внутренней энергии структуре, плотнейшим образом упакованной и согласованной в отношении всех своих внутриостаточных и межостаточных невалентных взаимодействий. Именно гармония между ближними, средними и дальними взаимодействиями ответственна за резкую энергетическую дифференциацию и выделение из множества возможных структурных вариантов стабильной и уникальной для данной аминокислотной последовательности конформации белка. В-третьих, продемонстрированы реальность фрагментарного метода теоретического конформационного анализа пептидов и белков и удовлетворительное количественное описание с его помощью их пространственных структур применительно к условиям полярной среды. Под- [c.589]


Смотреть страницы где упоминается термин ДНК, структурная организация и конформационные возможности: [c.104]    [c.129]    [c.181]    [c.260]    [c.271]    [c.291]    [c.336]    [c.388]    [c.397]    [c.399]    [c.400]    [c.401]    [c.414]    [c.466]    [c.521]   
Проблема белка (1997) -- [ c.52 ]

Проблема белка Т.3 (1997) -- [ c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные

РНК структурная организация



© 2025 chem21.info Реклама на сайте