Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные физико-химические свойства высокомолекулярных соединений

    Химия высокомолекулярных соединений — комплексная наука. Она впитала в себя основные достижения из области органического синтеза, физико-химических и биологических исследований, технологических и инженерных решений. Эта важная отрасль химической науки достигла высокого уровня развития. Появилось огромное количество совершенно новых полимерных материалов — пластических масс, синтетических каучуков и волокон, подавляющее большинство которых обладает лучшими эксплуатационными свойствами по сравнению с таковыми природных полимеров. Современные исследования в области химии полимеров направлены прежде всего на создание новых синтетических полимерных материалов, обладающих совершенно новыми и необходимыми человеку свойствами. Однако это не исключает и изучение высокомолекулярных продуктов природного происхождения, их совершенствование и модернизацию. [c.372]


    Основные технологические процессы переработки ТГИ связаны с воздействием на них высоких температур, при этом происходят различные химические и физико-химические превращения, обычно называемые термохимическими. Основным химическим процессом превращения высокомолекулярных соединений является термическая деструкция. Термическая деструкция может осуществляться как с разрывом главной цепи макромолекулы, так и с отщеплением различных боковых заместителей. Термическая деструкция углей — это процесс (реакция) разрушения первоначальной структуры макромолекулы веществ углей с разрывом химических связей под влиянием нагрева с образованием новых продуктов, отличающихся по химическому строению, свойствам и атомному составу от исходных. [c.130]

    Пластические массы представляют собой композиции, основой которых, как известно, являются высокомолекулярные соединения, характеризующиеся рядом специфических свойств по сравнению с обычными низкомолекулярными веществами. Однако несмотря на специфику, обусловленную большим размером молекул, на высокомолекулярные соединения распространяются все основные закономерности химии низкомолекулярных соединений, и в первую очередь органических. В настоящее время для исследования и анализа органических соединений широко применяются различные физико-химические методы, в частности полярография. Это обстоятельство можно связать с основными особенностями полярографии, выгодно выделяющими ее среди других физико-химических методов  [c.7]

    ОСНОВНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ [c.11]

    Химия древесины и полимеров как наука изучает 1) основы физики и химии высокомолекулярных соединений, в том числе способы получения полимеров, особенности химического строения их молекул, физической структуры, химических превращений и поведения в растворах 2) основные классы синтетических полимеров, в том числе способы получения, свойства и применение основных их представителей 3) строение и свойства основных компонентов древесины на основе общих закономерностей химии полимеров 4) сущность процессов химической переработки древесины и ее отдельных компонентов. [c.5]

    В руководство включено около 100 работ по всем основным разделам курса физической и коллоидной химии строение молекул, термохимия, физико-химический ана- -ЛИЗ, электрохимия, кинетика химических реакций, верхностные явления и адсорбция, свойства золей, свойства высокомолекулярных соединений. [c.3]


    В книге изложены основы получения новых высокомолекулярных восстановительных соединений — электроноионообменников, описаны их физико-химические свойства и основные пути практического применения для глубокого обескислороживания воды и водных- растворов. Дано теоретическое объяснение возможности применения высокомолекулярных восстановительных соединений для стабилизации и предохранения от окисления легкоокисляющихся жидких углеводородов и их производных. [c.312]

    Повысить положительный эффект новой техники на рентабельность процессов нефтепереработки можно лишь при осуществлении одного или нескольких из перечисленных ниже мероприятий сокращение занятого на заводе персонала и значительное повышение производительности труда, снижение отпускной цены на основные виды сырья, в новом комплексе технологических процессов предусмотреть производство новых видов товарной продукции, сравнительно малотоннажной, но дефицитной и обладающей уникальными качествами и с высокой отпускной ценой по сравнению с основной многотоннажной продукцией, и, наконец, организация производства товарной продукции, сырьем для которой будут являться дешевые побочные продукты и обременительные отходы производства. С этой точки зрения представляют большой научный интерес, а в будущем и практическую актуальность, поиски реакций и процессов, позволяющих получать вещества, обладающие ценными физико-химическими и техническими свойствами, на основе использования отдельных высокомолекулярных компонентов тяжелых нефтяных остатков (углеводородов, смол и асфальтенов, металлоорганических соединений, порфиринов и др.). Совершенно ясно, что разработкам таких реакций и процессов должны предшествовать довольно нелегкие, трудоемкие и глубокие исследования по аналитическому и препаративному разделению высокомолекулярной части сырых нефтей и нефтяных остатков на их основные компоненты, поиски методов дальнейшей дифференциации этих компонентов на более узкие фракции веществ более близких по своему составу и свойствам и детальному исследованию их реакций, структуры, свойств и зависимости последних от состава и строения, наконец, исследование реакций, позволяющих осуществить взаимные переходы в ряду высокомолекулярных составляющих нефти углеводороды, смолы, асфальтены. Само собою разумеется, что в этих исследованиях должно быть полностью исключено применение методов, которые могли бы вызвать химические изменения в составе и строении этих сложных первичных компонентов нефти. [c.259]

    В развитии указанных основных проблем современной науки и техники фундаментальное значение приобретают коллоидная химия и реология в тех основных формах, которые сложились под влиянием физико-химической механики и соответствующих областей практики. Большое значение коллоидной химии, т. е. учения о дисперсных системах и поверхностных явлениях, и реологии в развитии физикохимической механики связано с тем, что реальные твердые тела и отдельные кристаллы обладают своеобразной коллоидной структурой кроме того, образование твердых тел с характерными для них механическими свойствами зависит от процессов, изучаемых современной коллоидной химией и реологией в виде проблемы структурообразования в дисперсных системах (суспензиях) и в растворах высокомолекулярных соединений. Поэтому прежде чем рассматривать основные принципы и содержание физико-химической механики, необходимо вначале изложить те разделы коллоидной химии и реологии, с которыми непосредственно связана эта наука. [c.4]

    Физико-механические ы химические свойства полимеров отечественного производства, в частности вопросы ползучести, а также релаксации напряжений, в основном определяющие поведение пластмасс при их механическом нагружении, подробно исследованы в книгах В. А. Каргин и Г. Л. Слонимский. Краткие очерки по физико-химии полимеров, Изд-во Московского университета, 1960 Новые материалы в технике (Под ред. Е. Б. Тростянской п др.), Гостонтехиздат, 1962 А. А. Стрепихеев, В. А. Деревицкая. Основы химии высокомолекулярных соединений. Госхимиздат, 1961. [c.75]

    Несколько особняком стоит самостоятельный раздел физикохимической механики, рассматривающий влияние механических воздействий в твердых телах на течение химических и физико-химических процессов. Большой интерес представляют превращения химической энергии в механическую и обратно, например, в процессах мышечной деятельности, химическая сторона которых была изучена в замечательных работах В. А. Энгельгардта и М. Н. Любимовой, а физико-химическая сторона в работах А. Качальского. Эта область получила название механохимии и занимается, в основном, высокомолекулярными соединениями, прежде всего, в связи с их замечательной особенностью — высокоэластическими свойствами. [c.15]


    Молекулярный вес — важная характеристика всякого высокомолекулярного соединения, обусловливающая все основные его свойства. Поскольку в процессе получения ВМС образуются смеси полимеров с различными длинами цепей, а следовательно, и с различным молекулярным весом (смеси полимер-гомологов), приходится говорить о некотором среднем молекулярном весе. Для определения молекулярного веса ВМС применимы почти все физико-химические методы, используемые для определения молекулярного веса низкомолекулярных веществ крио-скопический и эбулиоскопический, осмотический, диффузионный, оптический, вискозиметрический и др. В указанных методах применяются растворы ВМС в подходящих растворителях. [c.385]

    Основным итогом научной деятельности В. А. Каргина в рассмотренном направлении явилось создание учения о надмолекулярной структуре полимеров, ставшего одним из основных разделов современной науки о полимерах. Более того, эти работы В. А. Каргина определили возникновение новых подходов не только в понимании физико-механических, но и химических свойств полимеров, а также в процессах синтеза высокомолекулярных соединений. [c.9]

    Дальнейшее развитие науки о высокомолекулярных соединениях происходило без острых разногласий. Установление основных принципов строения макромолекул, широкий промьппленный синтез и переработка синтетических и природных полимеров стимулировали бурное развитие пауки о полимерах. Сложность строения, особенности химических, физических, механических и других свойств полимеров потребовали применения новейших статистических, физических и разнообразных физико-химических методов для исследования полимеров. Поэтому уже в 40-х годах XX в. наука о высокомолекулярных соединениях сложилась как комплексная стыковая область, в которой успешно и плодотворно сотрудничали математики, физики, механики, химики, биологи и технологи. [c.8]

    Монография Барга [43] посвящена рассмотрению технологии основных видов пластических масс, характеристике закономерностей реакций, ведущих к получению высокомолекулярных соединений, химическому строению полимеров и зависимости физико-механических и химических свойств полимеров от строения и химической структуры исходных молекул. [c.175]

    Высокомолекулярные соединения могут со временем значительно изменять свои свойства уменьшается эластичность, повышается жесткость и хрупкость материала, снижается его механическая прочность. Это изменение свойств материала, называемое старением, происходит в результате некоторых сложных физико-химических процессов, например деструкции — разрыва химических связей в основной цепи макромолекулы, окисления и сшивки. [c.31]

    В книге содержатся основные сведения о синтезе полимеров, механизме и кинетике процессов полимеризации и поликонденсации, а также свойствах и химических превращениях синтетических и природных высокомолекулярных соединений. Отдельная глава посвящена физико-химии полимеров. [c.396]

    Физико-химические и технологические свойства целлюлозы удовлетворяют основным требованиям, предъявляемым к исходным материалам для производства искусственных волокон. Целлюлоза является высокомолекулярным соединением, в макромолекуле ее содержатся полярные группы. Изменяя условия выделения целлюлозы из растительных материалов и дальнейшей ее переработки, можно получать продукты с различной степенью полимеризации. Молекулы целлюлозы имеют линейную, относительно сильно вытянутую, неразветвленную форму. Целлюлоза и особенно ее эфиры растворимы в доступных растворителях. [c.667]

    При компаупдпрованпп компонентов, содержащих в своем составе высокомолекулярные соединения (асфальте[1ы, смолы, полициклические ароматические углеводороды, парафины), во-п юсы регулирования ММВ п фазовых переходов, устойчивости НДС к расслоению становятся основными. При смешении различных компонентов и получении нефтепродуктов (котельные, печные, судовые и газотурбинные топ. шва, флотские мазуты, профилактические и пластические смазки, битумы, пеки, связующие вещества и др.) уже при обычных температурах формируются ССЕ, которые существенно влияют па физико-химические свойства НДС. [c.207]

    Решающее влияние на технологические процессы добычи, транспорта и переработки нефтяных дисперсных систем оказывают фазовые превращения, происходящие в различных реальных внешних условиях, Полиэкстремальные зависимости физико-химических свойств от внешних условий проявляются вследствие аналогичного изменения межмолекулярных взаимодействий между основными структурообразующими компонентами системы. Основной вклад в свойства углеводородных дисперсий вносят фазовые и полиморфные превращения высокомолекулярных соединений. Выявление и регулирование указанных превращений явл51ется важной прикладной задачей нефтяной отрасли. Особый интерес представляет изучение фазовых и полиморфных превращений в нефтяных дисперсных системах в присугствии поверхностно-активных веществ. Последние широко употребляются для регулирования процессов структурообразования в нефтяных дисперсных системах. В настоящее время проводятся интенсивные исследования влияния природы, концентрации и кристаллического строения дисперсной фазы на изменение межмолеку. ярного и контактного взаимодействия между элементами нефтяных дисперсных систем, взаимосвязи параметров фазовых и полиморфных переходов в этих системах, протекающих при изменении внешних условий их существования и различных воздействиях, с изменением физических и структурно-механических свойств рассматриваемых систем. [c.138]

    Основными компонентами нефтей и нефтяных фракций, наиболее склонными к межмолекулярным и коагуляционным контактам при различных внешних условиях, являются, наряду с высокомолекулярными парафинами, полициклоароматические углеводороды, смолисто-асфальтеновые соединения. Взаимодействие этих компонентов приводит к образованию сложных пространственных структур и экстремальному изменению физико-химических свойств нефтяных систем, поэтому выявление и изучение особенностей механизма этих взаимодействий представляют большой практический интерес. В настоящем разделе рассматриваются результаты экспериментов по изучению межмолекулярных взаимодействий в модельных двух- и трехкомпонентных смесях углеводородов различных классов. [c.148]

    Белки являются наиболее важным комйонентом живой материи. В отличие от других высокомолекулярных соединений, входящих в состав живых организмов, белки широко различаются по размерам молекул, заряду, растворимости в воде и других полярных растворителях и даже по содержанию в тканях. Сочетание свойств, характеризующих отдельный белок, в конечном счете определяется специфической аминокислотной последовательностью полипептидной цепи (или нескольких цепей, если речь идет о многоцепочечном или субъединичном белке). Огромное разнообразие белков служит причиной образования сложных смесей, различных по составу, но близких по физико-химическим свойствам. Основными факторами позволяющими фракционировать белки на колонках с различными материалами, является их амфотерный характер и большие вариации в размерах молекул. На способности белков связывать специфические лиганды основан эффективный метод избирательного выделения — аффинная хроматография. С другой стороны, в исходном материале всегда присутствуют протеазы и пептидазы, что накладывает на условия выделения определенные ограничения, например в отношении температуры, диапазона pH и т. д. [c.421]

    Сегодня такой момент наступил в науке о полимерах, и свидетельством тому является книга известного голландского физико-химика Ван Кревелена, перевод которой мы предлагаем советскому читателю. Задача автора состояла в систематизации того поистине огромного экспериментального материала, который скопился за десятилетия (в основном все же за последние 8—10 лет) изучения свойств высокомолекулярных соединений и в установлении различных теоретических и эмпирических корреляций между химическим строением и показателями всевозможных свойств полимеров. Появление такой книги беспрецедентно в области высокомолекулярных соединений, хотя подобные издания предпринимались для описания других веш еств, например газов, изучение свойств которых началось гораздо раньше, чем полимеров. По "своему характеру данную книгу можно определить как справочник, но содержание ее несравненно более глубоко и приближается к научной монографии. В книге содержатся не только конкретные сведения о свойствах широкого круга объектов. Более важным является обязательное обсуждение вопроса о соответствии между химическим строением и свойствами. Это позволяет распространить полученные результаты на великое множество новых полимеров, даже не упоминаемых в книге. И еш е суш ествование многих эмпирических соответствий, подмеченных или собранных автором, заставляет задуматься о природе описанных закономерностей, и теоретикам здесь бросается недвусмысленный вызов. [c.9]

    Но коллоидная химия, как уже отмечалось (стр. 11—12), ставит своей задачей также изучение систем с физико-химическими свойствами, отличными от перечисленных свойств лиофобных золей. Издавна эти системы, типичными представителями которых являются растворы белков, целлюлозы, каучука, под названием лиофильных золей причислены также к золям, или, иначе, к псевдорастворам, т. е. системам гетерогенным, имеющим мицелляр-ное строение. Такому объединению этих систем послужила общность некоторых свойств, например неспособность частиц проходить через полупроницаемые мембраны (диализ и ультрафильтрация), сравнительно небольшая величина скорости диффузии и осмотического давления, особенно при малых концентрациях растворов высокомолекулярных соединений, а также способность под влиянием внешних факторов коагулировать и пеп-тизироваться. Основную роль в этом объединении сыграла близость степени дисперсности растворенного (взвешенного) компонента тех и других систем для золей 10 —10 смГ , для растворов ВМС примерно 10 —10 см . [c.151]

    Иное положение наблюдается в ряду гетероцепных и гетероциклических полимеров. При их описании, как правило, характеризуют свойства целого класса полимеров, выявляя специфические особенности, отличающие данный класс от других классов высокомолекулярных соединений. Сравнивают, например, сложные и простые полиэфиры, полиэфиры с полиамидами и т. п. Вместе с тем, поскольку отдельные представители какого-либо одного класса гетероцепных или гетероциклических полимеров могут по свойствам очень сильно отличаться друг от друга, то строго говоря, нельзя относить к тепло- или термостойким целиком тот или иной класс полимеров. Так, сложные полиэфиры двухатомных фенолов (полиарилаты) могут иметь температуру стеклования выше 300 °С (полиарилат фенолфталеина и терефталевой кислоты) и ниже 100 °С (полиарилат 4,4 -диоксидифенилпро-пана и себациновой кислоты). Это обусловлено тем, что свойства гетероцепных или гетероциклических полимеров определяются не только природой гетеросвязи или гетероцикла, которые, естественно, оказывают огромное влияние на весь комплекс физико-химических свойств таких полимеров, но и строением других фрагментов макромолекул, составляющих ее основную или боковую цепь. И если все же в приведенной нил<е табл. 1.1 представлены в каче- [c.6]

    Огромное большинство консистентных смазочных материалов приготовляется путем загущения минеральных масел нефтяного происхождения различными мылами. Получающиеся при этом коллоидные системы, при прочих равных условиях, резко отличаются по споим физико-химическим свойствам в зависимости от природы аниона и катиона, образующих данное мыло. До использования в промышленности окисленных углеводородов нефтяного происхождения для получения загустителей применялись исключительно жиры животного и растительного нроисхождеиия, представляющие собой, как известно, глицериды высокомолекулярных предельных и непредельных кислот с углеродной цепью нормального строения. Мы.ла указанных кислот образуют с минеральными маслами устойчивые коллоидные системы. Между тем мыла кислот циклического строения (т. е. нафтеновых) образуют с минеральными маслами неустойчивые системы. При решении вопроса о замене натуральных жиров в технике кислотами, получаемыми окислением нефтяных углеводородов, естественно было предположить, что наиболее перспективным сырьем явится парафин, как содержащий предельные углеводороды. Действительно, рядом исследований [2] установлено,что карбоновые кислоты, содержащиеся в окисленном парафине, относятся к типу предельных кислот, в основном нормального строения. Окисленный парафин содержит в своем составе все кислоты, от муравьиной до арахиновой, и, кроме того, значительное количество эфирокислот, а также ряд нейтральных соединений спиртов, кетонов, лактидов и др. Однако, как это будет показано ниже, подобная сложная смесь является вполне полноценным заменителем в производстве консистентных смазок высокомолекулярных кислот, получаемых при расщеплении натуральных жиров. Другим перснективным сырьем для целей окисления является [c.185]

    Основной задачей бионеорганической химии является изучение и освещение вопросов, связанных с распространением и ролью химических элементов в живой природе. Главное внимание при этом уделяется установлению взаимосвязей между электронной структурой и физико-химическими свойствами ионов металлов и их ролью в осуществлении сложнейших биохимических процессов. Широко исследуются пути синтеза, строение, устойчивость и реакционная способность металлосодержащих биологических структур, как низко-, так и высокомолекулярных. Кроме того, в задачи бионеорганической химии входят формирование экспериментальных подходов к изучению роли тех или иных химических элементов в жизйи организмов, моделирование биохимических процессов, установление механизмов действия лекарственных препаратов, решение вопросов, связанных с эффективным использованием микроудобрений, защитой окружающей среды от загрязнения токсичными соединениями и т. д. [c.171]

    Конструкционные материалы и покрытия на основе эпоксидных смол обладают исключительно высокими физико-химически-мн показателями и высокой химической стойкостью во многих агрессивных средах. Эпокспсмолы очень легко совмещаются с другими высокомолекулярными соединениями и, в зависимости от характера и природы модифицирующих веществ, обладают кнслотостойкостью, щелочестойкостью и теплостойкостью до 110—120° С. Основными ценными свойствами эпоксидных смол являются назиачительная их усадка прн отверждении и высокая адгезия к различным материалам (металлу, бетону, керамике [c.407]

    Несколько особняком стоит самостоятельный раздел физико-химической механики, рассматривающий влияние механических воздействий в твердых телах на течение химических и физико-химических процессов. Большой интерес представляют превращения химической энергии в механическую и обратно, например в процессах мышечной деятельности. Эта область, получившая название механохимии, занимается в основном высокомолекулярными соединениями, в связи с их высокоэластическими свойствами, связанными с гибкостью длинноцепочечных маркомолекул. Кроме того, механическое разрушение в полимере всегда связано с местной деструкцией, т. е. химическим разрушением — разрывом цепей главных валентностей, которое энергетически более выгодно вследствие больших размеров макромолекулы [c.211]

    Природным аналогом вещества поликомпонентного состава, включающим разные группы легких органических соединений, тяжелые углеводороды, сопутствующие природные газы, сероводород и сернистые соединения, высокоминерализованные воды с преобладанием хлоридов кальция и натрия, тяжелые металлы, включая ртуть, никель, ванадий, кобальт, свинец, медь, молибден, мышьяк, уран и др., является нефть [Пиков-ский, 1988]. Особенности действия отдельных фракций нефти и общие закономерности трансформации почв изучены достаточно полно [Солнцева,. 1988]. Наиболее токсичны по санитарно-гигиеническим показателям вещества, входящие в состав легкой фракции. В то же время, вследствие летучести и высокой растворимости их действие обычно не бывает долговременным. На аоверхности почвы эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами, но долго сохраняются в нижних частях почвенного профиля в анаэробной обстановке [Пиковский, 1988]. Токсичность более высокомолекулярных органических соединений выражена значительно слабее, но интенсивность их разрушения значительно ниже. Вредное экологическое влияние смолисто-асфальтеновых компонентов на почвенные экосистемы заключается не в химической токсичности, а в значительном изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты и циклические соединения сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается норовое пространство почв. Эти вещества малодоступны микроорганизмам, процесс их метаболизма идет очень медленно, иногда десятки дет. Подобное действие тяжелой фракции нефти наблюдается на территории Ишимбайского нефтеперерабатывающего завода. Состав органических фракций выбросов других предприятий представлен в подавляющем большинстве легколетучими соединениями. [c.65]

    Многие методы исследования требуют дорогой аппаратуры, в основе их применения часто лежит сложная теория, что препятствует их широкому внедрению в учебные планы и программы. В основу данной книги положен курс лекций по дисциплине Методы исследования структуры и свойств полимеров , впервые введенной в учебный план подготовки инженеров-технологов специальности 250500 Химия и технология высокомолекулярных соединений на кафедре технологии синтетического каз чука Казанского государственного технологического университета. Целью преподавания данной дисциплины является ознакомление студентов с современным уровнем развития исследовательской техники и технологии, возможностями различных методов исследования. Вьтолнению этой задачи в немалой степени способствовало оснащение лабораторий необходимым набором современных приборов, высокий научный потенциал кафедры, работающей в тесном единении с Центром по разработке эластомеров и предприятиями отрасли. Авторы исходили из того, что основные понятия о химических, физических и физико-химических аналитических методах, технологии производства и переработки каучуков учащиеся приобрели в процессе изучения предыдущих дисциплин. [c.4]

    Для развития работ по исследованию физико-мехавтческих свойств и структуры высокомолекулярных соединений в 1959 г. В. А. Каргин (был приглашен в Институт нефтехимического синтеза АН СССР (ИНХС). Б лаборатории полимеризации олефинов он возглавил группу по изуче- ншо свойств и структуры полимеров, в которой успешно проводились исследования процессов структурообразования в изотактическом поли-лропилене, структурно-химических превращений полиакрилонитрила при его карбонизации и изучение структурной модификации расплавов полимеров введением малых добавок низкомолекулярных веществ. В 1962 г. В этом же институте была организована группа по новым методам полимеризации, одним из основных направлений которой было исследование процессов матричной полимеризации на синтетических макромолекулах, моделирующих некоторые аспекты биологического синтеза полимеров в клетках живых организмов. Эти работы, впервые поставленные в ИНХС, получили широкий отклик и дальнейшее развитие как в СССР, так и за рубежом в 1964 г. в ИНХС В. А. Каргиным была организована еще одна группа, в которой развитие получили работы в области химической модификации полиолефинов и некоторых других полимеров [c.10]

    Книга состоит из трех частей химия, радиотехнические материалы, радиодетали. В учебнике рассматриваются теория химической связи и электрических свойств молекул, понятие о высокомолекулярных соединениях в процессах полимеризации и поликонденсации, физико-химических, механических и электрических свойств полимеров, смол, пластмасс кратко описываются технология производства и применение основных электрорадиоматериалов и радиодеталей, их свойства и назначения в аппаратуре связи. [c.2]

    Выявление свойств полимерных материалов, определяющих кинетику изменения практически важных его характеристик в процессе эксплуатации, является одной из основных задач фундаментальных исследований в области окисления полимеров [134] от решения этой задачи зависит успех прогнозирования сроков службы резиновых технических изделий. Характерной особенностью процесса окислительного старения некоторых каучуков является сопряженность процессов деструкции и структурирования макромолекул, вытекающая из клеточного механизма окисления [127] окисление сопровождается не деструкцией макромолекул, а перегруппировкой химических связей, что особенно характерно для малых степеней превращения эластомеров. Практическая значимость этих представлений за-зслючается в том, что физико-механические показатели, такие как твердость, равновесный модуль, прочность, относительное удлинение, характеризующие устойчивость к окислению высокомолекулярных соединений различных классов, при окислительном старении резин изменяются незначительно. В то же время, релаксация напряжения и накопление остаточных деформаций, обусловленные именно кинетикой перестройки химических связей, чрезвычайно чувствительны к условиям проведения окислительного процесса. [c.62]

    Д. И. Менделеев близко подходил к нарождающемуся в наше время профилю органика-физика. К подобным его исследованиям относятся, кроме упомянутых, его диссертация О соединении спирта с водой , его работа О сцеплении некоторых жидкостей и др. Как в Органической химии , так и в многочисленных других работах Д. И. Менделеева содержатся многочисленные оригинальные высказывания по вопросам теории и практики синтеза, строения, свойств и технологии органических соединений. Особенно значимыми явились его мысли и предложения о химическом использовании углей, нефти, древесины, которые он разносторонне обосновал (включая экономические расчеты) и требовал глубокой химической переработки этих видов сырья. Он установил наличие в нефти районов Сураханы и Балахана пентана и гексана. Он обратил внимание на методы пирогенетической переработки нефти, разработанные химиком-оргапиком и инженером А. А. Летним. В литературе часто цитируются слова Д. И. Менделеева о том, что топить нефтью — топить ассигнациями . В наше время, когда нефть стала важнейшим сырьем основного и тонкого органического синтеза, а также высокомолекулярных соединений, приобретают большое значение его мысли о промышленном комплексном использова- [c.121]

    Основная часть масляных фракций нефти, выкипающих при температуре 350 °С, сосредоточена в остаточном продукте ее прямой перегонки — прямогонном мазуте. Содержание нафтеновых углеводородов во фракциях прямогонного мазута, получаемого, например, из тюменской нефти (Усть-Балыкское месторождение), составляет в интервале температур кипения 350—400 °С — 63 % в интервале 400- 50 °С — 58 % в интервале 450—500 °С — 41 %, а во фракциях мазута, получаемого из бакинской нефти (Балаханское месторождение), — соответственно 76, 74 и 74 %. В этих фракциях концентрируются также высокомолекулярные соединения нефти, представляющие собой сложные многокомпонентные смеси углеводородов различных групп и их гетеропроизводных, в молекулах которых содержатся атомы серы, кислорода, азота и некоторых металлов (никеля, ванадия и др.). Так как ббльшая часть подобных соединений малоценна и даже нежелательна при получении масел, задачей производства является удаление из этих фракций нежелательных компонентов при максимально возможном сохранении желательных, придающих готовым продуктам (маслам) необходимые физико-химические и эксплуатационные свойства. [c.241]

    При использовании плазменного травления происходит изменение химического состава поверхностных слоев высокомолекулярных соединений, создается морфологически развитая поверхностная структура, генерируются свободные радикалы, изменяется соотношение кристаллической и аморфной фаз. Все это пррхводит к улучшению характеристик влагопереноса, адгезионных, грязеотталкивающих, противоусадочных свойств. Паилучшие результаты при такой обработке, как правило, дают кислородсодержащие газы. Глубина и устойчивость эффектов существенным образом зависят от режимов обработки. Плазмохимическая обработка захватывает только тонкий поверхностный слой полимера, поэтому прочностные свойства изделий, их основные объемные физико-химические характеристики и внешний вид не ухудшаются. [c.367]


Смотреть страницы где упоминается термин Основные физико-химические свойства высокомолекулярных соединений: [c.3]    [c.192]    [c.133]    [c.96]    [c.22]    [c.388]    [c.4]    [c.30]   
Смотреть главы в:

Технология пластических масс в изделия -> Основные физико-химические свойства высокомолекулярных соединений




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Основность соединений

Химическое соединение



© 2025 chem21.info Реклама на сайте