Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическое равновесие в системах газ — жидкость

    Условием термодинамического равновесия системы жидкость — нар является равенство давления Р, температуры Т и парциального изобарного потенциала (так называемого химического потенциала) каждого компонента системы в жидкой и паровой фазах. [c.16]

    На почти 500 страницах [43] проанализирована информация, относящаяся к процессам ректификации. На примере четырехкомпонентной смеси показан простой способ расчета диаграмм равновесия системы жидкость - пар. Показана возможность использования сложных диаграмм ректификации смеси из четырех компонентов для предсказывания состава конечных продуктов. Достаточно много внимания уделено процессам кипения азеотропных и обычных смесей при ректификации. Обобщены данные и показаны основные пути усовершенствования ректификации совмещенной с химической реакцией. [c.105]


    Умение пользоваться описанными выше диаграммами равновесия между твердой и жидкой фазами необходимо для правильной оценки степени чистоты данного вещества и для подбора подходящего метода выделения его из смеси или для разделения смеси на чистые компоненты. Факт постоянства температуры плавления или затвердевания отнюдь не означает, что мы имеем дело с химически чистым веществом, поскольку это постоянство характерно также для эвтектических и перитектических смесей, а также для твердых растворов, дающих минимум или максимум на кривой затвердевания. Понижение температуры плавления может дать некоторое основание для оценки степени загрязненности вещества лишь в случае систем, подчиняющихся закону Рауля, т. е. крайне редко. Эти трудности еще усугубляются наличием описанных выше случаев, когда добавление одного вещества к другому не только не понижает тем-пе уры его плавления, но повышает ее, или же не влияет на нее вообще Поэтому для получения правильных данных о составе смеси и о возможности ее разделения на отдельные компоненты нельзя ограничиваться определением температуры плавления, а следует пользоваться полной диаграммой равновесия системы жидкость—кристаллы. [c.41]

    Все методы разделения основываются на определенных термодинамических свойствах компонентов и их смесей. Важную роль в данном случае играют законы о фазовом равновесии различного типа. Так, например, ректификация базируется на законах о фазовом равновесии системы жидкость-пар, экстракция - жидкость-жидкость, адсорбция — газ-твердое тело или жидкость-твердое тело, абсорбция - газ-жидкость и т. д. Кроме того, для расчета аппаратов широко используют ряд физико-химических свойств компонентов и их смесей таких, как вязкость, плотность, поверхностное натяжение, теплопроводность, теплоемкость и др. Все эти свойства, за небольшим исключением, зависят от состава [c.147]

    При равновесии системы жидкость — пар физический смысл неравенств ( 1,11) состоит в том, что для растворов любого типа при увеличении концентрации некоторого вещества в жидкой фазе ( Хг>0) всегда повышается его парциальное давление в газовой фазе, так как из условия ( 1г)>0 следует ёрг>0, поскольку при равновесии жидкости и пара химические потенциалы компонентов в обеих фазах равны [c.176]

    В книге рассмотрены аналитические и физикохимические аспекты нового комбинированного метода, позволяющего получать более широкую информацию и обеспечивающего значительную экономию времени при проведении анализа. Основа метода — газохроматографическое исследование равновесия системы жидкость — пар. Главное внимание уделено двум направлениям применения анализу следов органических соединений в различных объектах и изучению фи-зико-химических равновесий в системах жидкость — пар. [c.4]


    Кинетику превращений в системе жидкость (газ) — жидкость рассмотрим на примере абсорбции газа жидкостью с одновременной химической реакцией, считая, что реакция проходит только в жидкой фазе. До сих пор для количественного описания таких превращений широко используется пленочная теория Льюиса и Уитмена. Согласно этой теории, по обе стороны межфазной поверхности газ —жидкость существуют ламинарные пограничные пленки. Несмотря на то, что пленочная теория гидродинамически обоснована только для газа, она проста и удобна в применении. Предполагается, что вне пределов пограничных плепок изменения концентраций реагентов в направлении, перпендикулярном к межфазной поверхности, отсутствуют, а на поверхности контакта фаз между концентрациями абсорбируемого компонента в жидкости и в газе устанавливается динамическое равновесие. В состоянии такого равновесия зависимость между парциальным давлением газообразного компонента и его концентрацией в жидкой фазе выражается законом Генри. Принятая модель процесса используется при изотермических условиях его проведения. [c.250]

    Зная коэффициент распределения между двумя жидкостями одного из веществ, участвующих в реакции, можно изучать сложные химические равновесия в растворе. Этот метод применим в тех случаях, когда только один из участников реакции, идущей в первой фазе, может растворяться во второй фазе. Система доводится до равновесия, и по концентрации вещества во второй фазе рассчитывается его равновесная концентрация в первой фазе. [c.291]

    Для оценки равновесия пар—жидкость Гиббс ввел понятие химического потенциала. Система находится в термодинамическом равновесии, если температуры фаз равны и если химические потен- [c.20]

    Свойства, используемые на практике для определения со- стояния, в котором находятся фазы или система, можно разделить на две группы. К первой группе относятся свойства, зависящие от количества вещества, — объем, вес и др. Такие свойства называются емкостными или экстенсивными. Ко второй группе относятся свойства, называемые Интенсивными, — температура, давление, концентрация, удельный вес и др., не зависящие от массы, а только от химической природы вещества. Для описания состояния фазы или системы используются интенсивные свойства. При применении их для определения состояния системы или фазы они называются параметрами состояния. При рассмотрении условий равновесия между жидкостью и паром в качестве параметров состояния обычно принимаются температура, давление и составы фаз. [c.8]

    Допустимое количество примесей зависит от природы этих примесей и требуемой степени точности экспериментальных данных. При этом нужно руководствоваться тем, что чем ближе примесь по химической природе к компонентам изучаемой системы, тем больше допустимое ее количество при одинаковой точности опытных данных. Так, при изучении равновесия между жидкостью и паром в системах, состоящих из углеводородов и бутилового спирта [122], заметную погрешность вызывает присутствие в последнем воды в количестве около 0,05%. В противоположность этому примесь 1—2% метилэтилэтилена в три-метилэтилене, используемом для исследования равновесия в системах, состоящих из триметилэтилена и полярных веществ, оказывается вполне допустимой для технических целей, так как указанные углеводороды являются весьма близкими по свойствам изомерами. Разумеется, требования к чистоте веществ следовало бы сильно повысить, если бы задачей исследования являлось выяснение различия в поведении разных изомеров. [c.145]

    Изложенная схема расчета интеграла состояний системы не содержит ограничений на природу и величину потенциальной энергии межчастичного взаимодействия. Это позволяет определить аксиоматику построения математической модели состояния равновесной системы. Равновесный состав должен удовлетворять 1) уравнениям ЗДМ, описывающим образование молекулярных форм, приводящих к эффективному уменьшению экстремума свободной энергии Гиббса [5] 2) максимальному числу линейно-независимых стехиометрических уравнений закона сохранения вещества и заряда 3) уравнению связи измеряемого свойства системы с равновесными и исходными концентрациями составляющих частиц. Термодинамика не дает априорных оценок предельных концентраций компонентов системы, допускающих указанные приближения структуры жидкости. Состоятельным критерием возможности применения модели идеального раствора для комплексов, по-видимому, может служить постоянство констант химических равновесий при изменении концентраций компонентов системы, если число констант, необходимых для адекватного описания эксперимента, не превышает разумные пределы. [c.18]


    В ряде работ [1—3] нами показано, что в случае фазовых равновесий пар — жидкость, когда в насыщенном паре имеет место химическое взаимодействие, некоторые важные термодинамические соотношения нуждаются либо в корректировке, либо в такой их интерпретации, которая учитывает своеобразие рассматриваемых систем. Это своеобразие заключается прежде всего в том, что в данных системах химическое равновесие в парообразной фазе сочетается с фазовым равновесием. [c.142]

    Необходимой исходной информацией для работы комплекса является информация о структуре схемы и структурах диаграмм фазовых равновесий жидкость-пар и жидкость-жидкость (если в системе наблюдается явление расслаивания) и химического равновесия. Информация о структуре схемы может вво- [c.181]

    Законы распределения. Состояние равновесия в системе жидкость— жидкость определяется равенством химических потенциалов распределяемого вещества в обеих фазах. [c.522]

    Так, например, математическое моделирование и расчет разделения многокомпонентных азеотропных и химически взаимодействующих смесей методом ректификации сопряжены с определенными вычислительными трудностями, вытекающими из необходимости рещения системы нелинейных уравнений больщой размерности. Наличие химических превращений в многофазных системах при ректификационном разделении подобных смесей приводит к необходимости совместного учета условий фазового и химического равновесий, что значительно усложняет задачу расчета. При этом основная схема решения подзадачи расчета фазового и химического равновесия предусматривает представление химического равновесия в одной фазе и соотнесения химически равновесных составов в одной фазе с составами других фаз с помощью условий фазового равновесия. Для парожидкостных реакций можно выразить химическое равновесия в паровой фазе и связать составы равновесных фаз с помощью уравнения однократного испарения. Для реакций в системах жидкость-жидкость целесообразнее выразить химическое равновесие в той фазе, в которой содержатся более высокие концентрации реагентов. Для химически взаимодействующих систем с двумя жидкими и одной паровой фазой выражают химическое равновесия в одной из жидких фаз и дополняют его условиями фазовых равновесий и материального баланса. Образующаяся система уравнений имеет вид  [c.73]

    Если реагенты и продукты реакции находятся во взаимном контакте, химическая реакция может достичь состояния динамического равновесия, в котором прямая и обратная реакции протекают с одинаковыми скоростями. Это состояние называется химическим равновесием. Свойства равновесной системы не меняются с течением времени. Для такой системы отношение произведения концентраций всех продуктов к произведению концентраций всех реагентов, каждая из которых возведена в степень, равную стехиометрическому коэффициенту данного участника реакции в ее полном химическом уравнении, называется константой равновесия К. Константа равновесия зависит от температуры, но на нее не влияют ни изменения относительных концентраций реагирующих веществ, ни давление в реакционной системе, ни наличие в ней катализатора. В гетерогенных равновесиях концентрации чистых твердых веществ или жидкостей не входят в выражение для константы равновесия. [c.60]

    Эта глава посвящена равновесиям в сложных гетерогенных системах. Простыми равновесиями такого типа мы уже занимались, изучая системы вида жидкость пар, твердое тело жидкость и т. д. на основе уравнения Клапейрона — Клаузиуса (гл. IV). Равновесия этого типа рассматривались и в разделах, посвященных химическому равновесию, а также в главе о растворах. В сложных гетерогенных системах количественное рассмотрение задачи или затруднительно, или просто невозможно. Прежде чем перейти к изучению этих систем, уточним некоторые понятия. Под фазой понимают совокупность материальных частей системы, обладающих одинаковыми или непрерывно от точки к точке изменяющимися термодинамическими свойствами. Фазы отделены одна от другой поверхностями раздела, где свойства изменяются скачком. Это определение отличается от данного ранее указанием возможности непрерывного изменения свойств. Так, например, представим себе вертикально расположенную трубку, внизу которой имеется некоторое количество жидкости, а над ней пар. Вследствие влияния силы тяжести давление пара изменяется с высотой уровня по соотношению, известному под названием барометрической формулы Лапласа, выводимой из более общего уравнения Больцмана (VI.57)  [c.287]

    С молекулярной точки зрения равновесие следует описывать как распределение молекул между различными состояниями. Так, в системе жидкость — пар молекулы распределяются между жидкой и паровой фазами. При химическом равновесии, выражаемом каким-либо химическим уравнением, молекулы могут быть в двух состояниях, отвечающих двум частям этого уравнения, следовательно, они распределяются между этими состояниями. [c.201]

    С молекулярной точки зрения равновесие следует описывать как распределение молекул между различными состояниями. Так, в системе жидкость—пар молекулы распределяются между жидкой и паровой фазами. При химическом равновесии, выражаемом каким-либо химическим уравнением, молекулы могут быть в двух состояниях, отве- [c.273]

    Растворы — гомогенные системы переменного состава, находящиеся в состоянии химического равновесия. Растворы представляют собой дисперсные системы, в которых частицы одного вещества равномерно распределены в другом. Дисперсные системы по характеру агрегатного состояния могут быть газообразными, жидкими и твердыми, а по степени дисперсности — взвесями, коллоидными и истинными растворами. Частицы взвесей обычно имеют размер порядка 1 мкм и более. Такие частицы сохраняют все свойства фазы. Поэтому взвеси следует рассматривать как гетерогенные системы. Характерным признаком взвесей служит их нестабильность во времени. Они расслаиваются, причем диспергированная фаза (т.е. вещество, распределенное в среде) выпадает в виде осадка или всплывает в зависимости от соотношения плотностей. Примерами взвесей могут служить туман (жидкость распределена в газе), дым (твердое - - газ), суспензии (твердое + жидкость), эмульсии (жидкость - - жидкость), пены (газ + жидкость). [c.146]

    Из вывода уравнения (IX. 14) следует, что оно применимо для малых значений содержания электролита и при соблюдении закона Генри. Строго говоря, условия, принятые при выводе уравнения (IX. 14), не могут быть точно реализованы в условиях равновесия газ — жидкость. Нельзя сочетать с постоянством температуры и давления постоянство химического потенциала растворенного газового компонента в системе с электролитом и в системе без него. Содержание электролита в воде уменьшает давление пара воды. Чтобы давление газовой фазы над раствором электролита было бы таким же, как и над водой, не содержащей электролит, необходимо компенсировать падение давления путем добавления в газовую фазу растворяемого газа. При этом химический потенциал газового компонента в газовой фазе, равновесной с водой, не содержащей электролит, станет меньше химического потенциала в газовой фазе, равновесной с водным раствором электролита. [c.155]

    Таким образом, в уравнение равновесия газ — жидкость при хемосорбции входят не менее трех констант. Эти константы могут быть определены либо независимым путем (на основе данных о механизме и константе равновесия реакции, о физической растворимости газа в абсорбенте), либо непосредственной обработкой экспериментальных данных о химической растворимости газа в этой системе. [c.34]

    Устройство и принцип действия растворителей. Равновесие системы твердое вещество—жидкость наступает в момент, когда раствор становится насыщенным. Концентрация растворенного вещества в насыщенном растворе зависит от физико-химических свойств растворимого вещества и растворителя, а также от температуры. Так как насыщенного состояния в первую очередь достигают слои жидкости, примыкающие к поверхности твердых частиц, то быстрое удаление этих слоев в массу ненасыщенного раствора является необходимым условием интенсификации процесса растворения. В связи с этим аппараты периодического действия, представляющие собой горизонтальные нли вертикальные сосуды, снабжаются механическими мешалками (лопастными, пропеллерными, турбинными и др.), циркуляционными насосами или пневматическим смешением. В аппаратах непрерывного действия, кроме устройств для механического перемешивания, стремятся еще к созданию высоких скоростей сквозных потоков жидкой фазы относительно растворяющихся твердых частиц. Так как переход растворимого вещества в жидкую фазу является диффу- [c.598]

    ХИМИЧЕСКОЕ РАВНОВЕСИЕ В СИСТЕМАХ ГАЗ -ЖИДКОСТЬ [c.59]

    Алгоритм технологического расчета АПЕ абсорбера (АБ) базируется на математической модели АБ, с состав которой входят уравнения физико-химического равновесия системы рассол — парогазовая смесь NHg—СО2—Н2О, уравнения кинетики тепло- й массопере-дачи, гидродинамические характеристики, уравнения общего теплового баланса, общего и покомпонентных материальных балансов процесса абсорбции. Элементарным звеном математической модели АБ является г-я тарелка (отдельный контактный элемент). Расчет проводится от тарелки к тарелке методом итераций, начиная с нижней (первой) тарелки. При этом в уравнениях теплового и материального балансов используются значения составов и температур потоков на входе и выходе тарелки, а при вычислении равновесных концентраций компонентов в парогазовом потоке — средние арифметические значения концентраций компонен1 ов в жидкости на входе и выходе тарелки. Расчет тарелки заканчивается, если полученные в некотором -S-M и предыдущем (s—1)-м приближениях значения содержания аммиака в жидкости отличаются на величину, по абсолютному значению не превышающую заданную погрешность вычислений. Расчет последующей (г+1)-й тарелки начинается после завер- [c.115]

    Температура Т, при которой койстанта равновесия К в данной реакции равна единице, является характерной постоянной для этой реакции, подобно тому, как температура кипения при давлении р — 1 атм является характерной постоянной данной жидкости, точнее говоря — процесса ее испарения. (Конечно, обе они в частных случаях могут быть недостижимы на опыте.) При этой температуре при стандартном состоянии всех компонентов реакции реакционная система находится в состоянии химического равновесия. [c.199]

    Кинетика ионного обмена. В результате химической реакции в растворе ионы перемещаются по направлению к ионообменной смоле или от нее. В этом случае общая скорость ионообмена будет зависеть от скоростей этапов диффузии через неподвижный слой зерен ионообменной смолы, а также скорости химической реакции на поверхности обмена. Так как ионные реакции протекают с очень большой скоростью, этапом, который определяет скорость процесса, является диффузия ионов через неподвижный спой. На межфазной поверхности системы жидкость — твердое тело практически мгновенно устанавливается равновесие. [c.339]

    В разд. 1.16 отмечалось, что давление пара над жидким или твердым телом при Т onst остается постоянным независимо от массы рассматриваемого тела. Отсюда следует, что в гетерогенных системах типа жидкость—газ и твердое тело — газ действующие массы компонентов конденсированной фазы (твердой, жидкой) при Т = onst остаются постоянными, в то время как действующие массы компонентов газообразной фазы могут изменяться в результате их химических превращений. Это обстоятельство позволяет упростить закон действия масс, описывающий химическое равновесие в гетерогенной системе. Например, для реакции [c.149]

    Многие химические реакции не протекают до конца, другими словами, смесь реагентов не полностью превращае-гся в продукты. По прошествии некоторого времени изменение концентраций реагентов прекрашается. Реакционная система в таком состоянии представляет собой смесь реагентов и продуктов реакции. Химическая система в таких условиях находится в состоянии так называемого химического равновесия. Мы уже встречались с примерами простейших равновесий. Так, в замкнутом сосуде устанавливается равновесие между парами вещества над поверхностью его жидкой фазы и самой жидкостью. Скорость перехода молекул жидкости в газовую ф 1зу становится равной скорости перехода в жидкую фазу газовых молекул, ударяющихся о поверхность жидкости. Другим примером является равновесие между твердым хлоридом натрия и его ионами, растворенными в воде (разд. 12.2, ч. 1). В этом примере скорость, с которой ионы кристалла покидают его поверхность, переходя в раствор, равна скорости перехода ионов из раствора в кристаллическое вещество. Приведенные примеры показывают, что равновесие не является статическим состоянием, которое характеризуется отсутствием всяческих изменений. Наоборот, оно имеет динамический характер, т.е. представляет собой совокупность противоположно направленшэгх процессов, протекающих с одинаковой скоростью. Данная глава посвящена рассмотрению химического равновесия и изучению законов, на которых основано его описание. Чтобы продемонстрировать, какую роль играют в химии представления о равновесии, и сделать их более понятными, мы начнем с обсуждения одной из промышленно важных реакций-процесса Габера, применяемого для синтеза аммиака. [c.40]

    В начале 1960-х годов в литературе появились работы, в которых газохроматографическому анализу подвергались не исследуемые жидкие или твердые объекты, а газовая фаза над ними. Этот простой прием применялся при исследовании состава летучих соединений, выделяющихся из пищевых продуктов, для контроля содержания вредных веществ в воде, полимерных и биологических материалах. Дозирование в хроматограф газа вместо жидкости или твердого тела значительно расширяет возможности газовой хроматографии, так как позволяет определять летучие компоненты в объектах, прямой ввод которых в прибор невозможен или нецелесообразен по причине недостаточной чувствительности детекторов, присутствия легко разлагающихся компонентов, загрязнения колонки нелетучим остатком или нарушения существующего в системе химического равновесия. Такой способ определения летучих веществ в английской литературе получил название Head-Spa e Analysis, а в русской — сначала анализ равновесного пара , а затем парофазный анализ (ПФА). [c.232]

    Таким образом, смачивание, характеризуемое величиной 0, зависит от соотношения значений о на границах соприкасающихся фаз. Для получения количественной связи рассмотрим состояние равновесия для жидкости, смачивающей вертикальную твердую стенку (рис. V. 6) и химически с ней не взаимодействующую. При бесконечно малом смещении лннии смачивания I вниз на величину АВ = dh затрата работы на увеличение поверхности ТГ составляет Idha, .. В то же время энергия системы уменьшается за счет уменьщения поверхностей ТЖ и ЖГ на величину  [c.55]

    Для характеристики комплексов и ассоциатов необходимо знать их состав, структуру, а также энергии химических связей между частицами, образующими комплекс или ассоциат. Когда состав и структура комплексов и ассоциатов установлены, требуется найти их концентрации. Если концентрации всех комплексов, ассоциатов и мономерных частиц в жидкой фазе известны, то в рамках понятий об ассоциатах и комплексах строение жидкости выяснено. Определив концентрации мономерных молекул, ассоциатов и комплексов и, если возможно, отыскав их коэффициенты активности, вычисляют константы химического равновесия для реакций ассоциации и комплексообразования, протекающих в жидкости. Если эти константы найдены при ряде температур и постоянстве давления или объема системы, то с помощью уравнений изобары или изохоры химической реакции определяется изменение энтальпии АЯ или внутренней энергии А / жидкости, связанное с ассоциацией или комнлексообразованием. А величины АЯ и А позволяют судить о тех изменениях энергии жидкости, которые происходят при образовании или разрущении соответствующих химических связей, в частности водородных связей. [c.103]

    Для трех приведенных выше уравнений первого порядка, определяющих величины Xj, 8 - и Т, граничные значения и У при г = оо являются известными, так как экспериментатор может свободно распоряжаться температурой и составом окружающей атмосферы. Индекс / всегда будет обозначать значения параметров при г = оо. Было предположено, что состав капли остается неизменным в процессе горения, поэтому составляющие каплю химические компоненты должны испаряться в пропорции, в которой они присутствовали в начальный момент, и следовательно, значения определяются начальным составом капли. Таким образом, в данной теории различие в скорости испарения компонентов не принимается во внимание. Хотя для некоторых двухкомпонентных топлив этот эффект наблюдается экспериментально, лишь в редких случаях имеется достаточно оснований для его учета при теоретическом анализе. Температура жидкости 7 определяется из условия фазового равновесия, как это сделано в пункте г 4 главы 3 в случае двухкомпонентной системы. Температура ТI слегка отличается от температуры кипения и определяется составом капли. Последним граничным условием является связь между величинами гjJ, выражающая требование о достижении химического равновесия при г —> оо. Из физических соображений следует, что этих условий достаточно для определения скорости горения т как собственного значения краевой задачи с условиями, заданными в двух точках. [c.311]

    Рассмотрение процессов открытого испарения в гетероазеотропных системах выполнено в [58, 591. Мы не имели возможности остановиться на ряде других интересных исследований. В частности, в серии работ Жарова и Первухина [60, 61 ] на основании топологических закономерностей изучена структура диаграмм равновесия жидкость—пар в системах с химическим взаимодействием компонентов, рассмотрены вопросы термодинамики фазовых процессов в химически неравновесных системах. Исследованию равновесий жидкость—пар в тройных системах с интенсивным химическим взаимодействием в паре посвящены работы Маркузина и Ярым-Агаева (например, [61, 621). На применении процессов открытого испарения при экспериментальном изучении равновесий жидкость—пар мы остановимся в гл. V. [c.91]

    В равновесных системах твердая и контактирутощая фазы еще до начала контакта близки к химическому равновесию, например, контакт чистой жидкости с чистым твердым телом при отсутствии взаимной растворимости и образования растворов и хи.мических соединений К их числу. южно отнести системы, в которых жидкость имеет низкое поверхностное натяжение (вода, органические вещества), основной процесс в таких системах - изменение площади контакта. [c.98]

    Ректификация (англ. гек1111са11оп от позднелат. гесШ1са1о — выпрямление, исправление) — физический процесс разделения жидких смесей взаимно растворимых компонентов, различающихся температурами кипения. Процесс ректификации широко используется в нефтегазопереработке, химической, нефтехимической, пищевой, кислородной и других отраслях промышленности. Процесс основан на том, что в условиях равновесия системы пар — жидкость паровая фаза содержит больше низкокипящих компонентов, а жидкая — больше высококипящих компонентов. Соотношение между мольными концентрациями /-го компонента в паре (у,) и жидкости (х,) определяется законами Рауля и Дальтона у,/х, = Р,/т1 = где Р, — давление насыщенных паров компонента, зависящее от температуры п — давление в системе К, — константа фазового равновесия или коэффициент распределения компонента между паром и жидкостью. [c.152]


Смотреть страницы где упоминается термин Химическое равновесие в системах газ — жидкость: [c.46]    [c.150]    [c.41]    [c.209]    [c.21]    [c.147]    [c.173]    [c.61]    [c.47]    [c.60]   
Смотреть главы в:

Химическое равновесие и скорость реакций при высоких давлениях -> Химическое равновесие в системах газ — жидкость




ПОИСК





Смотрите так же термины и статьи:

Равновесие в системе жидкость жидкость

Равновесие жидкость пар

Равновесие жидкость пар в системах

Равновесие системе

Системы газ жидкость

Системы жидкость жидкость

Химическое равновесие



© 2024 chem21.info Реклама на сайте