Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные методы кристаллизации из растворов

    Кристаллизация. Основным методом кристаллизации микроколичеств признан способ кристаллизации из ампул. Ампулу можно приготовить из пробирки (рис. 65). В качестве фильтрующего материала применяют ватный тампон, который помещают в кончик капилляра. В случае агрессивных растворов можно использовать волокнистый асбест. [c.53]

    Кроме рассмотренных основных методов кристаллизации в промышленности применяют также высаливание, при котором в раствор вводят добавки (соли, кислоты и др.), снижающие растворимость кристаллизующегося вещества. [c.292]


    В промышленной практике используются два основных метода кристаллизации изотермический, при котором пересыщение раствора достигается удалением части растворителя при постоянной температуре (обычно методом выпаривания, см. гл. 4), и изогидрический, когда пересыщение достигается только снижением температуры кристаллизуемого раствора. Изотермическая кристаллизация используется для растворов с незначительным увеличением растворимости при повышении температуры до температуры кипения раствора, при которой из него интенсивно испаряется часть растворителя. Изогидрическая кристаллизация, наоборот, применяется при кристаллизации растворов с растворимостью, быстро уменьшающейся при сравнительно небольшом понижении температуры такие растворы легко переводятся в состояние пересыщения с помощью одного только понижения температуры, без удаления части растворителя. [c.494]

    ОСНОВНЫЕ МЕТОДЫ КРИСТАЛЛИЗАЦИИ ИЗ РАСТВОРОВ [c.16]

    Для осуществления процесса кристаллизации в растворе необходимо создать пересыщение. По способам его создания различают два основных метода кристаллизации 1) охлаждение горячих насыщенных растворов (изогидрическая кристаллизация) и 2) удаление части растворителя путем выпаривания (изотермическая кристаллизация). [c.143]

    Относительно высокая температура плавления бензола (5,53°С) и сравнительно низкая теплота плавления (9,843 кДж/моль), а также то, что основные примеси ( н-гептан, циклогексан, метилциклогексан) не образуют с бензолом твердых растворов [78], создают предпосылки для очистки его от насыщенных углеводородов методом кристаллизации. Кристаллизацией из исходного бензола чистотой 99,67% с выходом 78,5% получен бензол с общим содержанием примесей 0,03% [79]. [c.234]

    Для определения коэффициента разделения применительно к процессу кристаллизации из раствора предложен ряд методик, в основном отличающихся характером установления равновесия между выделяющимися кристаллами и маточным раствором. Коэффициент разделения при этом находится на основании данных анализа содержания основного вещества и примеси в исходном и маточном растворах с помощью соотношения (111.92). При выражении концентраций через молярные доли для этой цели более удобным является выражение (III.92а) или (111.926). Коэффициент разделения может быть также определен и методом направленной кристаллизации раствора. [c.153]

    Метод -кристаллизации из раствора в расплаве охватывает системы, в которых примесь составляет не менее 6 % основного состава кристаллизуемого вещества, и позволяет проводить кристаллизацию в более низкотемпературной области. Сложный химический состав и присутствие в исходных компонентах слюдяной шихты, особенно в природном калиевом полевом шпате, многочисленных примесей делает благоприятным использование особенностей метода кристаллизации из раствора-расплава. Явления расслаивания и улетучивания компонентов во фторсиликатном расплаве, а также накопление легкоплавких фторидов к концу кристаллизации приводят к выделению кристаллов слюды в значительном интервале температур, что характерно для растворов-расплавов. [c.19]


    Золи золота [43] представляют чрезвычайно интересный объект для исследования механизма образования коллоидных частиц, так как, согласно существующим представлениям, коллоидные частицы этих золей являются кристаллическими, а одним из основных методов получения золей золота является введение в раствор зародышей кристаллизации. Казалось бы, что в этом случае уже не могут образоваться коллоидные частицы аморфной структуры, как это происходит во всех описанных выше золях. Однако исследование процесса образования коллоидных частиц золота показало, что он протекает так же, как и в других коллоидных системах. [c.174]

    Твердые исходные вещества могут вступать в реакцию друг с другом и при пространственном их разделении. В связи с этим в отличие от обычных твердофазных реакций не обязательно использовать исходные вещества в стехиометрических количествах. Конечный продукт независимо от соотношения исходных веществ будет обладать стехиометрическим составом. Твердофазная реакция будет вследствие этого селективной, как, например, кристаллизация какого-нибудь вещества из раствора. При исследовании протекания реакции количественный анализ продуктов реакции в этом случае служит основным методом контроля. [c.155]

    Присутствие в маслах природных примесей ухудшает качество лакокрасочных материалов (напр,, антиоксиданты замедляют высыхание, фосфатиды — алкоголиз). Для очистки (рафинации) М. р. и жиров, используемых в производстве этих материалов, применяется обычно комбинация трех методов 1) обработка паром или горячей водой (т. наз. гидратация), в результате к-рой фосфатиды, белковые и слизистые вещества, поглощая воду, набухают, теряют способность растворяться в масле и выпадают в виде хлопьев, удаляемых фильтрацией 2) обработка водными р-рами щелочей (щелочная рафинация) образующиеся при этом мыла обладают большой адсорбционной способностью и, оседая, увлекают фосфатиды, красящие вещества и др. примеси 3) адсорбционная отбелка природными и искусственными отбельными порошками (преимущественно активированными глинами), адсорбирующими нежировые компоненты и слизистые вещества и одновременно обесцвечивающими М. р. Очищенные таким образом М. р. наз. лаковыми маслами. Улучшение пленкообразующих свойств М. р. и жиров м. б. достигнуто путем отделения плохо высыхающих глицеридов насыщенных и мононенасыщенных к-т. Основные методы отделения — кристаллизация (вымораживание), экстракция растворителями, высоковакуумная дистилляция. [c.69]

    Для выделения сульфата натрия из сточных вод применяют методы кристаллизации, сушки, высаливания органическими растворителями, каустической и кальцинированной содой и др. Применение этих методов затруднительно при высокой концентрации органических веществ в сточных водах, когда маточные растворы с этими веществами не могут быть возвращены в основное производство. Поэтому физические и физико-химические методы переработки сульфатных сточных вод дополняют термическими с целью окисления органических веществ. Например, сульфатные сточные воды производства синтетических жирных кислот на многих заводах обезвреживаются в реакторах с кипящим слоем (КС), а также в циклонных реакторах [363]. [c.251]

    В книге приведены основные сведения по теории кристаллизации из растворов. Особое внимание уделено влиянию пересыщения, температуры, примесей и других факторов на процесс кристаллизации и качество получаемых кристаллов. Описаны различные методы кристаллизации и даны рекомендации по выбору их в зависимости от конкретных условий производства рассмотрены и сопоставлены конструкции современных кристаллизаторов даны расчеты аппаратов, показаны особенности их эксплуатации, освещены способы предотвращения инкрустаций (образования пристенных осадков). [c.4]

    Помимо двух основных методов модификации свойств химических волокон (физического и химического) в последнее время большое внимание уделяется третьему — добавкам в прядильный расплав или раствор полимеров или низкомолекулярных веществ. В тех случаях, когда эти добавки не совмещаются с основным полимером, а формование волокон производится через обычные фильеры, размеры частиц добавок не должны превышать 10—12% от диаметра волокна, т. е. 1,5—2 мк. По-видимому, эти добавки в момент формования волокна влияют на условия и скорость выделения частиц основного полимера или на скорость их кристаллизации при получении волокна из расплава или раствора. Поэтому помимо основного модифицирующего влияния добавки (матирования, окрашивания в массе или облегчения крашения и т. п.) значительно изменяются физико-механические свойства волокон, в первую очередь их эластичность и прочность при многократных деформациях. Это явление особенно хорошо проявляется при добавке к основному полимеру второго полимера, не совмещающегося с первым, но кинетически устойчивого в прядильной массе, т. е. не расслаивающегося в течение всего периода растворения (плавления), очистки и формования (рис. 13.3). [c.369]


    Для очистки основного продукта от сопутствующих примесей наряду с уже упомянутыми методами — кристаллизацией, осаждением, экстракцией, перегонкой — применяются повторная перекристаллизация, повторное осаждение, различные методы осаждения примесей из раствора без выделения из него основного продукта, ректификация, сублимация, диализ, электродиализ и ряд других методов и приемов. [c.66]

    Стремление аналитиков к получению точных результатов анализа, изучению химии процессов вызывает повышение требований к чистоте ОР. Очищают ОР методами кристаллизации, хроматографии, экстракции, возгонки, зонной плавки, электрофореза, комбинацией этих методов. Процесс очистки на разных стадиях контролируют о помощью фотометрии, хроматографии, электрохимических методов, криометрии. Эффективен и достаточно прост метод дифференциальной фотометрии — измеряют оптическую плотность (ОП) (или снимают спектр поглощения) раствора ОР на данной стадии очистки относительно раствора исходного препарата или предыдущей стадии. Содержание основного вещества в препарате устанавливают элементным, функциональным анализом более надежные результаты получают анализом ОР по содержанию нескольких элементов, функциональных групп. [c.4]

    Основными методами очистки веществ являются кристаллизация, перегонка и адсорбция из раствора на пористом материале с последующей десорбцией растворителем (хроматография). К другим, более редко применяемым методам относятся седиментация, центрифугирование, магнитное разделение, диффузия через пористые перегородки (в случае определенных газообразных веществ), перемещение в электрическом поле, когда растворенное вещество несет электрические заряды (электрофорез), и т. д. [c.21]

    Степень чистоты продукта. Кристаллизация — один из распространенных и наиболее эффективных методов получения веществ в чистом виде. Допустимая величина примесей определяется назначением продукта. Степень его чистоты зависит как от условий самой кристаллизации, так и от дальнейших технологических операций (фильтрование, промывка и др.). Основные загрязнения кристаллов обусловлены наличием в исходном растворе нежелательных примесей. Они могут попасть внутрь кристалла с маточным раствором в виде включений (в трещинах, дефект- [c.636]

    Направленная кристаллизация используется и в физико-химическом анализе для построения диаграмм состояния или уточнения их углов при работе с разбавленными растворами. Так, определив методом направленной кристаллизации равновесный коэффициент разделения заданной смеси основное вещество — примесь, нетрудно построить для интересующего нас концентрационного интервала линию солидуса при известной линии ликвидуса, полученной, например, методом дифференциального термического анализа. При решении вопроса о существовании области твердых растворов в бинарных системах с малым содержанием одного из компонентов она даже имеет преимущество в точности по сравнению с таким классическим методом, как метод дифференциального термического анализа. Направленную кристаллизацию применяют и для кристаллизационного концентрирования примеси при анализе веществ особой чистоты. [c.117]

    Кристаллизация из раствора как метод разделения и очистки веществ находит широкое применение. Особенно успешно этот метод используется для разделения смесей солей, так как при этом в большинстве случаев в качестве дешевого растворителя может быть использована вода, а растворимость солей в воде обычно существенно меняется с изменением температуры. Последнее дает возможность последовательного выделения из раствора фракций кристаллов, содержащих в основном тот или иной интересующий компонент. Каждая из этих фракций затем может быть подвергнута перекристаллизации с целью удаления находящихся в ней нежелательных примесей других веществ. Для очистки ряда веществ с этой точки зрения хорошими растворителями являются различные спирты и эфиры, ацетон, бензол, сероуглерод и т. д. В нефтеперерабатывающей промышленности в целях избирательной растворимости отдельных [c.149]

    В промышленности используют два основных метода кристаллизации изотермический, в котором перенасыщение раствора достигается удалением части растворителя путем вьшаривания при постоянной концентрации (температура постоянна), и изогидриче-ский, при котором пересыщение раствора достигается охлаждением раствора при сохранении массы растворителя, на что указывает название этого метода. [c.291]

    Накапливающиеся в оборотной воде соли образуют на теплообменной поверхности так называемые карбонатные отложения, более чем на 50% состоящие из карбоната кальция. Основные методы борьбы с ними — обработка охлаждающей воды кислотой (обычно серной) для снижения общей щелочности воды фосфатированис путем введения в воду раствора гексаметафосфата натрия, тормозящего процессы кристаллизации и осаждения карбоната натрия на стенках аппаратуры обработка воды магнитным полем, воздействие которого вызывает быстрый рост кристаллов карбонатных и других отложений, которые сорбируют на своей поверхности ионы карбонатов кальция и магния, растут и выпадают в виде шлама, легко уносимого потоком. [c.85]

    В монографии впервые рассматривается новый и пе рспекти1вный метод кристаллизации при непосредственном коитакте расплавов или растворов с хладоагентом. Описываются основные койструк-тивные схемы аппаратов для контактной кристаллизации, даются рекомендации по моделированию изучаемых кристаллизаторов. Излагаются основы расчета гидродинамических, типовых и массообменных процессов, присущих данному методу кристаллизации. [c.176]

    Основные методы получения и очистки иодидов рубидия и цезия (нейтрализация карбонатов иодистоводородной кислотой, использование аннонгалогенаатов [184]) аналогичны методам получения и очистки соответствующих хлоридов и бромидов. Для синтеза иодидов рубидия и цезия могут быть также использованы хорошо известные реакции взаимодействия либо гидроокиси и галогена (в данном случае иода) при нагревании (см. раздел Бромиды рубидия и цезия ), либо карбоната (гидрокарбоната) с иодом в присутствии восстановителя (порошок карбонильного железа, перекись водорода и др.). В обоих случаях сухой остаток после выпаривания раствора прокаливают и выщелачивают водой. Рабочие растворы перед кристаллизацией иодидов можно очищать и экстракционным методом, особенно эффективным, когда требуется удалить примеси переходных элементов. В частности [185], для очистки иодидов от примесей железа, марганца, меди, кобальта и никеля (до 5-10 вес.% каждой примеси) водные растворы иодидов последовательно обрабатывают растворами дити-зона (при pH = 7,0—7,5) и о-оксихинолина (при pH = 5—6) в четыреххлористом углероде, а затем после удаления органического растворителя пропускают (для поглощения воднорастворимой части комплексообразователей и ССЦ) через хроматографическую колонку, наполненную послойно AI2O3 и канальной сажей. [c.104]

    Основные методы борьбы с карбонатными отложениями — обработка охлаждающей воды кислотой (обычно серной) для снижения общей щёлочности воды фосфатирование путём введения в воду раствора гексаметафосфата натрия, тормозящего процессы кристаллизации и осаждения карбонатов на стенках аппаратуры обработка воды магнитным полем, воздействие которого вызывает быстрый рост кристаллокарбонатных и других отложений, сорбирующих на своей поверхности ионы карбонатов кальция и магния, растущих и выпадающих в виде шлама, легко уносимого с потоком. Однако при реагентной обработке (подкисление, фосфатирование) повышается агрессивность воды особенно по отношению к бетону, увеличиваются биообрастание и шламообразование. [c.215]

    В современных химических исследованиях используют два основных метода познания природы вещества. Предположим, нам надо решить такой вопрос могут ли вещества Л и 5 реагировать одно с другим, образуя соединение АВ Решая эту задачу более старым препаративным методом, химик смеши-, вает вещества Л и В и разнообразными способами старается вызвать реакцию нагревает их, растворяет в чем-либо, действует на них катализатором и т. д. После этого он пытается выделить из смеси вещество, образовавшееся в результате химической реакции. Для этого он применяет кристаллизацию, экстракцию, перегонку и т. д. Полученное таким образом соединение он подвергает исследопанию анализирует его, определяет его физические свойства и изучает реакции, в которые это вещество вступает. Таким путем он устанавливает его состав, а иногда и строение. Но можно решать эту задачу методом физико-химического анализа, возникшим во второй половине XIX столетия, хотя этот термин был введен значительно позже Н. С. Курнаковым. При этом исследование взаимодействия веществ А и В ведут совершенно иным путем. Работая по этому методу, химик, прежде всего, готовит смеси веществ Л и В в разнообразных отношениях и старается уже указанными выше способами (нагревание и т. д.) вызвать в этих смесях реакцию. Когда реакция закончится или, как говорят, система придет в состояние равновесия, он измеряет у всех смесей некоторое подходящее физическое свойство (плотность, вязкость, температуру плавления, давление пара и т. д.), после чего строит так называемую диаграмму состав — свойство. Для этого он по одной оси прямоугольной системы координат откладывает в определенном масштабе концентрацию одного из веществ Л нли В, а по другой — числовое значение измеренного свойства. По виду полученной таким образом кривой часто можно сказать, образуется ли в данной смеси химическое соединение (и даже определить его состав), осталось ли каждое вещество неизменным или, наконец, получился раствор (твердый или жидкий). [c.5]

    Как известно, классический метод разделения — дробная кристаллизация — проводится с насыщенными растворами хорошо растворимых солей р. 3. э. Поскольку используются лишь соли кислородсодержащих кислот (нитраты, броматы, сульфаты и пр.), вполне оправдано предположение, что процесс разделения обусловлен комплексообразованием и связан с возможностью образования в насыщенных растворах даже комплексов малой прочности. Основной недостаток метода кристаллизации — его продолжительность. Однако вполне вероятно, что это связано с непргшильным его техническим выполнением, обусловленным недостаточно эффективным контролем за течением процесса и незнанием параметров, по которым можно было бы регулировать распределение материала между жидкой и твердой фазами. Правдоподобность этого предположения может быть проиллюстрирована результатами, полученными при кристаллизации концентрата элементов цериевой группы [15], которые показывают, что при соблюдении определенного, заранее намеченного распределения материала по фракциям этим методом может быть достигнуто эффективное разделение даже таких близких по свойствам элементов, как неодим и празеодим. Действительно, за восемь серий кристаллизации было достигнуто обогащение неодимом с 55% в исходном материале до 92% в одной из фракций. Обычно подобное обогащение достигается только при проведении значительно большего числа серий, требующего длительного времени. Методика, использованная в цитируемой работе, не может быть рекомендована для практического разделения, но полученные с ее помощью результаты свидетельствуют, что возможности дробной кристаллизации при обычном ее произвольном выполнении реализуются далеко не полностью. Имеющиеся в литературе данные о зависимости между температурой кристаллизующегося раствора и количеством вещества, переходящего в твердую фазу, позволяют надеяться на нахождение [c.278]

    В процессах депарафинизации и обезмасливания, основанных на выделении твердых углеводородов методом кристаллизации из раствора в избирательных растворителях, большое значение имеет скорость охлаждения суспензий. Это-один из основных факторов, определяющих размеры и степень агрегирования кристаллов, от которых зависит и скорость разделения фаз. При выделении твердых углеводородов в неоднородных электрических полях скорость охлаждения суспензий практически не влияет на показатели процесса разделения, так как размер кристаллов не является определяющим из-за отсутствия стадии фильтрования. Так, при увеличении скорости охлаждения суспезии до 360 °С в час выход и свойства твердой и жидкой фаз практически не изменились. [c.74]

    Полученные кристаллы отфильтровывали на воронке Бюхнера, в некоторых опытах их дополнительно отжимали под прессом в пакете из фильтровальной бумаги, затем промывали 30%-ным раствором серной кислоты методом смачи вания и тщательного перемешивания в стакане с последующей фильтрацией. Иногда дополнительно отжимали промытые кристаллы под прессом в пакете из фильтровальной бумаги. В пробах исходных, маточных растворов и растворов кристаллов определяли содержание основного вещества и измеряли активность по у-излучению изотопов на радиометрической сцинтилляционной установке Ласс . Ошибка радиометрических измерений составляли 2—3% отн. По данным анализов рассчитывали степень кристаллизации основного вещества и практический коэффициент очистки кристаллов К (табл. 2), равный отношению удельных активностей основного вещества исходного раствора и кристаллов [3]. [c.60]

    Отделение Р. от бария связано с большими трудностями, поскольку оба эти элемента обладают близкими химич. свойствами. Основные методы разделения Р. и бария 1) дробная кристаллизация или дробное осаждение, основанные на различии растворимости солей обоих элементов, особенно их хлоридов, бромидов, хроматов и иодатов, 2) ионообменные методы, используемые для окончательного отделения Р. от бария после предварительного обогащения дробным осаждением или дробной кристаллизацией. Лучшим ионообменным способом отделения Р. от других щелочноземельных элементов является поглощение их на сульфостирольных катионитах с последующим элюированием р-ром цитрата или ацетата аммония возрастающей концентрации. Вымывание катионов происходит в следующей последовательности Са, Sr, Ва, На. Радий вымывается лишь при концентрации ацетата аммония, равной AM. Использование этого метода затруднительно при работе с большими количествами Р. из-за разложения смолы и выделения газа нод действием излучения, а также из-за образования свободнох серной к-ты (при использовании сульфосмол), приводящей к осаждению Р. в колонке. Менее распространены методы отделения Р. от бария, основанные на адсорбции микроколичеств Р. на силикагеле, целлюлозе и др. адсорбентах на электролизе растворов галогенидов Р. и бария (отношение количеств Р. и бария на ртутном катоде увеличивается при уменьшении плотности тока) и др. [c.219]

    Производство крупных монокристаллов требует специальной и четко разработаиной технологии. Имеются три основных метода выращивания монокристаллов из растворов, из расплавов и из паров. Недавно было составлено несколько обзоров по этому довольно специальному вопросу практической кристаллизации [23—25], поэтому здесь мы ограничимся только кратким изложением. [c.209]

    Выращивание монокристаллов ферритов для технических целей ведется в настоящее время методами, основанными на кристаллизации из расплавов и растворов. Основные достоинства методов кристаллизации из расплавов — достаточно высокие скорости роста (до нескольких миллиметров в час) и возможность получения монокристаллов ферритов большого размера. Техническая реализация этих методов в основном осложняется диссоциацией оксидов, их реакционной способностью, а также ииконгруэнтиым плавлением некоторых из них. Влияние части этих процессов удается существенно снизить, используя кристаллизацию под давлением кислорода (примерно 10 —10 Па) [c.127]

    Очистку как синтетически получаемых, так и технических солей проводят в основном осаждением примесей из растворов (например, примеси кальция, магния, железа в виде углекислых солей тяжелых металлов — в виде сульфидов сульфат-иона — в виде сернокислого бария и т. д.), а также в процессе кристаллизации, фильтрации, промывки осадков и т. п. В связи с организацией выпуска высокочистых веществ разработаны и внедрены в производство более прогрессивные методы очистки, как например метод кристаллизации из растворов путем фракционирования примесей, очистка растворов от микропримесей осаждением последних с неорганическими и органическими коллекторами, очистка с помощью комплек-сообразователей и разделяющих веществ, методы препаративной хроматографии, экстракционные методы и др. [c.89]

    Пока содержимое чашки не охладится до комнатной температуры, чашку держат закрытой часовым стеклом образование осадка должно начаться не сразу, а только через 1—2 часа после охлаждения, в противном случае приходится добавлять растворитель. Когда испарится от половины до двух третей растворителя и большая часть ацетатов стеринов выпадет в виде осадка, последний отфильтровывают через маленький фильтр, собирая последние остатки его из чашечки при помощи шпателя и смывая их дважды 96-процентным спиртом, приливаемым в количестве 2—3 лы. Развернутый фильтр высушивают на глиняной пористой тарелке, а затем осадок переносят обратно в чашечку, где снова растворяют в 2—10 мл спирта в зависимости от количества осадка и вторично дают кристаллизоваться. При вторичной кристаллизации также не рекомендуется снимать часовое стекло, прежде чем раствор не охладится до комнатной температуры. Кристаллы снова отделяют фильтрованием, и продолжают подобную кристаллизацию до тех пор, пока это позволяет имеющееся в наличии количество вещества, но во всяком случае не меньше четырех раз. Кристаллическую кашицу, полученную после третьей кристаллизации, целесообразнее не собирать на фильтре, а поместить на кусочек фильтровальной бумаги, положенной на глиняную тарелку, и увлажнить несколькими каплями спирта. После третьей кристаллизации начинают определять температуру плавления ацетата по методу Бомера 122], но в отличие от основного метода только в одном капилляре с целью экономии вещества такое упрощение вполне допустимо, так как данные, полученные при определении температуры плавления, контролируются после следующей кристаллизации. Если измерение температуры производится при помощи укороченного термометра, имеющего показания шкалы от 100 до 150° и погруженного в жидкость по крайней мере до деления, отвечающего 116°,то найденной температурой можно руководствоваться непосредственно без поправок. В других случаях вносят соответствующую поправку на выступающий столбик ртути. [c.435]

    Опубликованные в журнальной и патентной литературе методы получения синтетических молекулярных сит сводятся в основном к кристаллизации алюмосиликатного геля (полученного смешением раствора NaAlOi [c.37]

    В.В.Кафаровым и И.Н.Дороховым сформулированы основы стратегии системного анализа ХТП введено понятие физико-химической системы (ФХС) как совокупности детерминированно-стохастаческих эффектов и явлений различной природы, происходящих в рабочем объеме агтарата разработана общая методология математического моделирования ХТП как сложных ФХС с использованием топологического принципа формализации, который позволяет изучить комплекс составляющих данный процесс элементов и явлений, автоматизировать все процедуры построения математического описания ХТП проанализированы различные методы построения функциональных операторов (моделей) ФХС и идентификации их параметров рассмотрены задачи системного анализа основных процессов химической технологии (массовой кристаллизации из растворов и газовой фазы, измельчения и смешения сыпучих материалов, сушки, экстракции, ректификации, гетерогенного катализа, полимеризации). [c.12]

    Растворение твердого вещества в растворителе и кристаллизация твердой фазы из раствора являются одними из основных операций препаратив- ой химии, необходимых как в начальных, так и в заключительных стадиях химического синтеза. Особым случаем является разрушение и образование ионного соединения в присутствии полярного растворителя (разд. 33.3). Растворение и кристаллизация твердого вещества в соответствующем растворителе также можно рассматривать как химическую реакцию с переносом вещества. Этим методом можно добиться очистки твердого вещества, а также получать монокристаллы. Процессы образования зародыша, а также особенности его роста рассматриваются в разд. 38.3.4.2. Знание закономерностей процессов кристаллизации позволяет проводить направленную кристал--лизацию. Кинетика растворения металлов рассмотрена в гл. 14. [c.436]

    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]

    Из сравнения уравнения (П1.8) с формулами Релея (П.25а) и (11.256) для разбавленных растворов (гл. И, 3) можно видеть, что они идентичны по форме. Отсюда следует, что однократная направленная кристаллизация, как и простая перегонка, достаточно эффективна лишь при очистке веществ от примесей, существенно отличающихся по физимо-химическим свойствам от основного вещества. В отношении же отделения примесей с коэффициентами разделения, близкими к единице, однократная направленная кристаллизация не эффективна. В дальнейшем, как и при рассмотрении дистилляционных методов (см. гл. И), для удобства изложения теоретических основ кристаллизационных методов не будем подчеркивать различия между равновесным и эффективным значениями коэффициента разделения, имея в виду, что такое различие существует. [c.117]


Смотреть страницы где упоминается термин Основные методы кристаллизации из растворов: [c.37]    [c.160]    [c.30]    [c.219]    [c.263]    [c.299]   
Смотреть главы в:

Кристаллизация из растворов в химической промышленности -> Основные методы кристаллизации из растворов




ПОИСК





Смотрите так же термины и статьи:

Растворов кристаллизации



© 2024 chem21.info Реклама на сайте