Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внутренние напряжения временные

    В стекле при нагревании, охлаждении, механическом воздействии возникают внутренние напряжения. Напряжения могут быть временными и остаточными. Временные напряжения исчезают при охлаждении стекла. Остаточные напряжения остаются в стекле и значительно снижают их характеристики резко снижается прочность стеклянного изделия, стекло делается неизотропным, т. е. свойства в разных направлениях стеклянной массы делаются разными. [c.25]


    В механике твердых тел одной из основных считается модель напряженного состояния сплошной среды, согласно которой напряжения и деформации являются непрерывными дифференцируемыми функциями координат и времени. Для характеристики напряженного состояния структуры сыпучих материалов принята аналогичная модель сплошного тела, в которой действующие на частицы в точках контакта силы и напряжения заменяются воображаемыми объемными силами, непрерывно распределенными по любому сечению в объеме сыпучего материала. Такая модель хотя и условна, так как пренебрегает дискретностью в строении сыпучего тела, однако позволяет с определенной точностью находить внутренние напряжения. В [22] показано, что нри гравитационном истечении сыпучего материала из отверстия в днище емкости гипотеза о сплошности принимает первостепенное значение. [c.27]

    Изменепие внутренних напряжений в покрытиях ПЭП-34 во времени [c.139]

    В процессе прессования в углепластике неминуемо развивается высокоэластическое состояние, обусловленное переходом термореактивного связующего из стадии Л в стадию С — из резола в резит. В связи с тем, что высокоэластическому состоянию полимеров свойственны огромные по величине времена релаксации, исчисляемые иногда сутками и даже месяцами [5], время прессования углепластика будет несравненно меньше времени релаксации, которым обладает материал в этот период. Отсюда в соответствии с уравнением (1) после прессования (снятия давления) в материале неизбежно останутся внутренние напряжения. [c.199]

    Таким образом, исследованные технологические параметры определяют возникновение в углепластике внутренних напряжений, связанных с весьма медленным протеканием в материале при его изготовлении релаксационных процессов. Во время обжига эти напряжения могут приводить к образованию трещин в изделиях. Для того чтобы при достаточно высокой степени уплотнения материала снизить у него растрескивание при обжиге, необходимо стремиться к значительному снижению времени релаксации композиции в процессе прессования, [c.200]

    Особенностью углеродного волокна, полученного из паров бензола, является относительно короткое время полною фторирования, обусловленное диаметром волокон и их слоистой структурой. При этом обеспечивается фторирование углеродной матрицы с высокой степенью трехмерного упорядочения, что позволяет получить фторуглерод с антифрикционными свойствами, соответствующими материалу, синтезированному из природного графита. Рентгеноструктурные исследования [6-153] показали, что вследствие возникающих внутренних напряжений тонкая структура матрицы изменяется, что влияет на протекание фторирования во времени. [c.402]


    Важной реологической характеристикой вязкоупругой среды является время релаксации упругих деформаций (время восстановления формы) =т]/0. В отсутствие внешних сил упругая деформация такого материала уменьшается во времени I под влиянием внутренних напряжений по закону [c.153]

    Аморфные вещества по сравнению с кристаллическими обладают большим запасом энергии. Об этом свидетельствует хотя бы тот факт, что при кристаллизации твердого вещества происходит заметное выделение теплоты. При застывании же расплавленного аморфного вещества никакого выделения теплоты не наблюдается. Поскольку аморфное состояние вещества является энергетически менее устойчивым, возникает тенденция к переходу вещества из аморфного состояния в кристаллическое. Этот процесс является чрезвычайно длительным во времени. Так, для перехода стекла в кристаллическое состояние необходимо время в сто лет и более. При этом стекло мутнеет. В процессе кристаллизации внутреннее напряжение в стекле может настолько увеличиться, что оно разрушается без видимых внешних причин. Известны случаи, когда старинные массивные стеклянные предметы вдруг разлетались вдребезги без всякого прикосновения к ним. [c.30]

    При последующем переводе материала в область значительно более низких температур время релаксации настолько возрастает, что высокоэластическая часть деформации может сохраняться неограниченно долгое время. Однако только пластическая часть деформации не оставляет при этом в материале внутренних напряжений. Остающаяся же часть высокоэластической деформации оставляет такие напряжения. При изменении условий, приводящих к уменьшению времени релаксации, например при достаточном повышении температуры, эта часть деформации будет уменьшаться или исчезнет в зависимости от скорости релаксации и длительности пребывания материала в этих условиях. [c.223]

    П. А. Ребиндер разработал теорию твердения цемента с позиций физико-химической механики, рассматривая процессы схватывания и твердения как развивающуюся во времени совокупность процессов гидратации, самостоятельного диспергирования частот вяжущего, образования тиксотропных коагуляционных структур и создания на их основе кристаллизационной структуры гидратных новообразований путем кристаллизации через раствор . В дальнейшем самопроизвольное диспергирование в указанной схеме было заменено растворением до образования пересыщенного по отношению к новообразованиям раствора. Ребиндер объясняет упрочнение структуры развитием кристаллизационных контактов. При образовании контактов срастания кристаллических фаз прочность структуры увеличивается, причем необходимым условием является обязательное обрастание контактов достаточно толстым слоем новообразований. Е. Е. Сегалова показала, что обрастание кристаллов приводит к увеличению прочности и в то же время к развитию внутренних напряжений, обусловливаемых ростом кристаллических контактов. Поэтому конечная прочность структуры зависит от вклада каждого из этих факторов. [c.340]

    Анализируя приведенные выше параметры разработки месторождения, выделим для среды влажного газа (первой зоны) главные, которые могут влиять на сероводородную коррозию и способы защиты от общей коррозии технологического оборудования и коммуникаций. К таким параметрам можно отнести изменение давления в процессе разработки месторождения, изменение скорости и состава газоконденсатного потока, а также изменение температуры газа в период разработки месторождения. Уменьшение во времени рабочего давления приводит к снижению внутреннего напряжения в промысловых коммуникациях и технологических аппаратах. Снижение внутреннего напряжения является одним из основных факторов, влияющих на предотвращение процесса сероводородной коррозии. В период разработки месторождения происходит также увеличение внутреннего напряжения в трубопроводе за счет уменьшения толщины стенки труб в связи с общей коррозией. [c.12]

    При запаздывании деформации разность между напряжением и трением компенсируют упругие силы, возникающие в материале (внутренние напряжения). Со временем они уменьщаются, как бы рассасываются, производя деформации в материале. Это явление называется релаксацией внутренних напряжений. [c.127]

    Поверхность металлов в зависимости от степени и способа обработки имеет разную степень деформации и шероховатость. Начисто обработанной поверхности мало энергоемких мест, т. е. выступов и углублений, поэтому она менее подвержена коррозии.. Наоборот, после пескоструйной, дробеструйной, химической или-механической обработки поверхности склонны к коррозии. Поверхностный С.Л0Й в результате внутреннего напряжения и изменения структуры становится более активным, чем внутренняя масса металла. Например, сталь с 13% хрома после чернового шлифования ржавеет даже в городской атмосфере. Та же сталь с полированной поверхностью сохраняет блеск в течение более длительного времени. [c.19]


    В некоторых случаях к указанному суммарному напряжению могут добавляться различного рода внутренние напряжения, возникающие в покрытии при его изготовлении и эксплуатации. Можно с некоторым приближением считать, что для стеклообразного состояния покрытия практически постоянно во времени, если пренебречь периодическим характером изменения компоненты напряжения под влиянием сезонных колебаний температуры грунта и случайным характером колебаний внутреннего давления в трубопроводе. При этом принимают некоторые средние напряжения этих двух компонент, что составляет сравнительно небольшую величину в сравнении с суммарным общим напряжением. [c.75]

    Поскольку система является метастабильно пассивной, защита может осуществляться периодически. При этом защитная установка включается только в случае необходимости, так что при помощи одной установки можно защищать несколько выпарных аппаратов. Применение анодной защиты от коррозионного растрескивания иод напряжением под влиянием едкого натра особенно рекомендуется в тех случаях, когда отжиг для снятия внутренних напряжений практически невозможен вследствие больших размеров или геометрических особенностей. Крупнейшими до настоящего времени объектами защиты, по-видимому, являются резервуары со щелочью вмести- [c.397]

    Авторы концепции водородного охрупчивания основную причину разупрочняющего воздействия среды видят в так называемой водородной хрупкости ма териалов [26, 41, 99]. Наличие в высокопрочных сталях растворенного водорода (1 см на 100 граммов металла) заметно сказывается на их прочности. Отмечено, что водород, закрепощая дислокации, уменьшает вязкость разрушения. Кроме того, наличие водорода в металле обусловливает высокие внутренние напряжения [94]. До настоящего времени еще нет полного единства взглядов на механизм водо-56 [c.56]

    Очень большое значение имеет хорошая обработка стекла. Стеклянный прибор не должен иметь внутренних напряжений, которые вызываются неправильным охлаждением после изготовления. Внутреннее напряжение приводит к тому, что стеклянное изделие по истечении некоторого времени самопроизвольно или же при незначительном изменении температуры (безопасном для хорошо охлажденного изделия) дает трещины. Наиболее ценные изделия целесообразно контролировать на отсутствие внутреннего напряжения просвечиванием в поляризованном свете (см. [1]). [c.10]

    Для определения Тд используют аморфные, неориентированные, полимерные образцы без внутренних напряжений. Оценку Тд проводят на образцах, которые предварительно были расплавлены, затем быстро охлаждены и отожжены в течение по крайней мере 30 мин при температуре, лежащей примерно на 20°С выше Тд, но ниже температурного интервала кристаллизации. Важно, чтобы при измерении Тд после повторного отжига получались воспроизводимые результаты. Необходимо также при всех температурах, включая комнатную, отмечать временной проме куток между последующими измерениями. [c.161]

    Усадка при отверждении или термостарении и термическое расширение полимера имеют большое значение, так как они определяют стабильность размеров изделий и внутренние напряжения, возникающие при ограничении деформации полимера. Кроме того, от усадки и термического расширения зависит свободный объем и плотность упаковки молекул, являющиеся одними из основных характеристик полимеров [1, 86]. Здесь под усадкой мы понимаем изменение объема, происходящее прн постоянной температуре вследствие реакции отверждения или старения, под термическим расширением — изменение объема полимера к неизменным химическим строением при изменении температуры. При нагревании неполностью отвержденного полимера происходят одновременно оба процесса, что может привести к сложным зависимостям удельного объема системы от времени и [c.66]

    Таким образом, в процессе отверждения, охлаждения и термообработки эпоксидных смол происходят существенные изменения объема, которые определяют уровень внутренних напряжений и в значительной степени работоспособность и надежность изделий. Объемные изменения полимера связаны с изменением формы и размеров пространств между макромолекулами, составляющих так называемый свободный объем. От величины свободного объема зависит молекулярная подвижность полимеров и многие физические характеристики. До настоящего времени свободный объем рассчитывали разными методами, напри- [c.70]

    Здесь по-прежнему величина 1 = г /0 представляет собой время релаксации напряжений и деформаций, но в вязкоупругом твердом теле Кельвина оно относится к релаксации наблюдаемой деформации и невидимых внутренних напряжений при постоянстве приложенного извне деформирующего усилия. По истечении времени, достаточно большого по сравнению со временем релаксации, деформация достигает постоянной равновесной величины Уо, предопределенной величиной действующего усилия т = Суо. После снятия нагрузки эта деформация исчезнет в соответствии с законами, отражаемыми формулами (3.10.7) и (3.10.8), что и является признаком твердого тела. Время релаксации вязкоупругого твердого тела соответствует времени запаздывания в установлении равновесной деформации. [c.672]

    Определение внутренних напряжений по изменению времени распространения УЗ волны в образце является типичным примером косвенных измерений. Точность таких измерений принято оценивать в соответствии с правилом если некоторая величина функционально зависит от ряда величин у = / х ,х2,. .., л ), [c.148]

    Специфические условия Западной Сибири и Крайнего Севера также снижают надежность проложенных там трубопроводов. Грунты, особенно многолетнемерзлые, характеризуются локальными неоднородностями, которые трудно предусмотреть при проектировании и учесть при строительстве. В ре -зультате со временем происходит смещение первоначального положения пле -ти, увеличиваются внутренние напряжения в теле трубы, что резко повышает вероятность появления трещин и разрывов металла. Переход к трубам большого диаметра сопряжен с увеличением влияния температурных факторов на продольную устойчивость, сохранность и долговечность изоляционных покрытий. [c.22]

    При нагреве и охлаждении змеевики расширяются и сжимаются не одинаково. Входные уч астки расширяются меньше, чем выходные. Поэтому пружинные подвески предназначены для восприятия части нагрузок, возникающих от расширения п сжатия и уменьшения внутренних напряжений в металле труб. Кроме того, для снижения напряжений у опорных деталей пода и свода печи предусматривают зазоры, которые обеспечивают горизонтальное перемещение нижних направляющих и верхних опорных штанг, чем предотвращается их защемление и продольный изгиб труб змеевиков. С течением времени, вследствие явлений ползучести (так называемого, криппа) металла., змеевики постепенно удлиняются и оседают, поэтому при эксплуатации печей необходимо периодически изменять натяжение пружин. Степень натяжения пружин определяют по стрелочному указателю. [c.75]

    Те.мпература и время прессования определяются кинетикой отверждения связующих и являются взаимозавиеящими факторами. Значения темперагуры и времени прессования выбирают с таки.м расчето.м, чтобы обеспечить заданные физико-механические свойства стеклопластиков. Известная зависимость. между степенью отверждения и физико-механическими свойства.ми связующего и стеклопластика позволяет при выборе оптимальных значений этих параметров руководствоваться зависуьмостью степени отверждения от температуры и вре.мени отверждения. Скорость нагрева также влияет на прочность изделий. При большой скорости нафева в изделии наблюдается значительное запаздывание нагрева средних слоев, что ведет к неодновременности отверждения и появлению внутренних напряжений. [c.222]

    Эта характеристика определяется как потеря прочности при его постоянном или циклическом нагружении растяжением, сжатием, кручением. Указанный показатель определяется величиной обратимой деформации или вязкостью КМУП. При постоянстве контактной поверхности между волокном и связующим и модуля упругости под нагрузкой сохраняемость увеличивается. Эти условия достигаются понижением внутренних напряжений при усадке в процессе отверждения [9-40]. Снижение усадочных напряжений в композитах уменьшает скорость накопления повреждений. В результате уменьшение модуля упругости во времени при постоянной температуре становится незначительным. В зависимости от вида нагружения (статического или /синами-ческого) сохраняемость изменяется. [c.536]

    Уравнения (VII. 14) являются математической моделью тела Максвелла. Зависимость деформации от времени представлена на рис. VII.56. Наиболее интересна эта модель для мгновенной и фиксированной деформации (y = onst и y = 0)- Такое состояние реализуется при мгновенном растяжении модели с сохранением в дальнейшем постоянной деформации у. После этого возиики ее внутреннее напряжение постепенно спадает со временем (релак-сирует) вследствие деформирования вязкого элемента. При таких условиях уравнение для скорости деформации принимает вид [c.361]

    Хорошо известна роль дислокаций в процессе деформационного упрочнения [74, 75]. По сути, дислокация представляет собой квазичастицу, преодолевающую при своем движении по кристаллу ряд энергетических барьеров. Крупномасщтабные барьеры, обусловленные дальнодействую-щими полями внутренних напряжений, так же как и среднемасштабные барьеры, являющиеся следствием взаимодействия параллельных дислокаций, могут быть достаточно высоки, и для их преодоления требуется приложить значительные напряжения. Этим след> ет объяснять повьппение временного сопротивления Ов и предела текучести ат при деформационном упрочнении. [c.35]

    Из данных табл. видно, что каждая толщина покрытия требует определенного времени проплавления. Если времени недостаточно, например 1 мин и 2 мин для толщины 0,6 мм, видны частицы непроплав-ленного полиэтилена и относительное удлинение к прочность составляют 72,8% и 1540 Н/см , при 5 мин они составляют соответственно 272% и 2200 Н/см , т. е. имеют максимально значение. При увеличении времени проплавлепия до 10 мин относительное удлинение снижается, прочность остается такой же, при этом наибольшее снижение относительного удлинения имеют пленки толщиной 0,03 и 0,04 см. При указанном времени (3—5 мин) проплавления внутренние напряжения имеют минимальное значение. С увеличением толщины внутренние напряжения имеют тенденцию к увеличению (табл. 5.4). [c.124]

    Даже при таких малых деформациях кажущийся модуль Юнга зависит от скорости деформирования. Это указывает, что Е неоднозначно определяется энергией упругого деформирования угловых связей в цепях, длиной связей и межмолеку-лярными расстояниями, но, кроме этого, характеризуется чувствительностью ко времени смещений атомов и небольших атомных групп. В следующей области деформации (1—5%) напряжение и деформация уже не пропорциональны друг другу. Здесь происходят структурные и конформационные перестройки, которые обратимы механически, но не термодинамически. В этом случае говорят о неупругом (вязкоупругом в узком смысле), или параупругом, поведении. За пределом вынужденной эластичности начинается сильная переориентация цепей и ламеллярных кристаллов, а сам процесс обычно носит название пластическое деформирование . Под чисто пластическим деформированием можно понимать переход от одного равновесного состояния к другому без внутренних напряжений. Последнее особенно важно в связи с тем, что следующая после предела вынужденной эластичности деформация связана главным образом с механически обратимыми неупругими конфор-мационными изменениями молекул, а не с их перемещением друг за другом. До тех пор пока не достигнуто состояние равновесия с помощью соответствующей термообработки, сильно вытянутые образцы могут в значительной степени возвращаться в исходное состояние после снятия напряжения. Исходя из содержания настоящей книги, основное внимание следует уделять не процессам, вызывающим или сопровождающим молекулярную переориентацию (которая в основном понимается как эффект упрочнения), а процессам повреждения, т. е. разрыва цепи, образования пустот и течения. Последние процессы постепенно нарастают в области деформаций сразу же за пределом вынужденной эластичности вплоть до окончательного разрушения. К числу процессов, вызывающих повреждения, следует также отнести явление вынужденной эластичности при растяжении или образование трещины серебра в стеклообразных полимерах, которые будут рассмотрены в гл. 9. [c.38]

    Влияние температурного циклирования в сочетании с ионизирующим и ультрафиолетовым излучением исследовалось при натурных испытаниях [9-41]. Было установлено, что температурная зависимость динамического модуля сдвига КМУП сохраняется в допустимых пределах после 608 суток эксплуатации. В течение указанного времени внутренние напряжения уменьшаются, теплостойкость КМУП повышается. [c.538]

    В последнее время широкое применение в гальванотехнике получило электроосаждение металлов с периодическим изменением направления постоянного тока, так называемый электролиз реверсированньш током. Сущность этого метода состоит в том, что покрываемые изделия периодически, через малые промежутки времени, переключаются на анод и подвергаются действию обратного тока в течение нескольких секунд или долей секунды. Продолжительность прохождения обратного (анодного) тока не превышает 20% времени прямого (катодного) тока [14]. При этом осадки металлов получаются более гладкими, светлыми, иногда блестящими, с пониженными внутренними напряжениями и в некоторых случаях менее пористыми, чем при обычном электролизе. [c.350]

    При восстановлении ионов металла на катоде построение кристаллической решетки совершается обычно со скоростью, значительно превышающей ско- оость, с которой происходит упорядочение структуры решетки, так как последний процесс относится к категории диффузионных, которые в металле при низких температурах завершаются в бесконечно большие промежутки времени. В условиях такой кристаллизации возникают кристаллы с неравномерно распределенными силовыми полями, обусловливающими появление в осадке внутренних напряжений. [c.107]

    Известно, что при увеличении интенсивности наводороживания (скорости накопления водорода) быстрее происходит разрушение стали и при меньших концентрациях водорода. Это связано с изменениями условий релаксаций внутренних напряжений. При низких внешних нагрузках либо при незначительной агрессивности коррозионной среды, когда обеспечивается слабый диффузионный поток водорода, возникшие напряжения успевают частично релаксироваться за счет локальной пластической деформации у краев образовавшейся трещины, поэтому последняя не растет. В этом случае время релаксации значительно меньше времени нарастания напряжений. При интенсивном наводороживании внутренние напряжения быстро нарастают, и процессы релаксации не успевают происходить даже в начальный период наводороживания. В результате блокирования водородом дислокаций подвижность их постепенно уменьшается, что приводит к локальному упрочнению металла. При достижении критических концентраций водорода, когда у краев трещины полностью теряется подвижность дислокаций, происходит хрупкое разрушение металла без следов пластической деформации. [c.40]

    Снижение пористости металлических покрытий — важный резерв повышения защитных свойств. Для каждого способа нанесения существуют определенные технологические приемы, обеспечивающие снижение кол 1чества пор. Тип пор зависит от метода формирования покрытий и, следовательно, от структуры осажденного слоя. Микропоры характерны для структуры покрытий, полученных электролитическим методом, и степень пористости определяется режимом электролиза, влияющим на скорость роста кристаллов, предварительной обработкой поверхности, включением различных чужеродных частиц. Наличие механических загрязнений, облегчающих разряд водородд и затрудняющих разряд осаждаемого иона, способствует возникновению макропор в покрытии. Возникновение пор канального типа связано в основном с внутренними напряжениями, величина которых превосходит временное сопротивление разрушению покрытия и приводит к растрескиванию и образованию сетки трещин. [c.67]

    Многие из величин Стс еще требуется определить количественно или хотя бы качественно. Тем не менее мы предположим, что при определенных составах и микроструктурах сплавов, средах и состояниях напряжения некоторые эффекты должны быть доминирующими. В частности, применяя этот метод анализа к основному примеру поведения I типа, а именно к случаю суперсплава на никелевой основе с умеренно крупным зерном [14, 18—21], мы отметим в соответствии с эффектами, перечисленными в табл. 5, следующие положения. В такой упрочненной системе, как данный сплав (временное сопротивление 1033 МПа даже при 760 °С [169]), маловероятно, чтобы какие-либо эффекты твердого раствора существенно влияли на внутренние напряжения. Выше отмечалось, что зернограничными эффектами также пренебрегали. Основной эффект, как можно предположить, в этом случае будет связан с величинами Стс, аналогичными входящим в уравнение (19), Иными словами, упрочнение рассматриваемой системы на воздухе обусловлено противодействием образованию и движению дислокаций со стороны окалины с хорошей адгезией, формирующейся при испытаниях на ползучесть на воздухе, но отсутствующей при испытаниях в вакууме (см. рис. 10) или в горячей солевой среде [14]. Микрофотографии, представленные на рис. 10, показывают также, что в результате ползучести (как на воздухе, так и в вакууме) поверхностные слои подложки постепенно становятся однофазными. На воздухе образуется фаза 7, вероятно, посредством селективного окисления алюминия и титана, а в вакууме образуется фаза у вследствие испарения хрома. Важно, что ни в одном случае поверхностные слои подложки не являются днсперсноупроч-ненными. Таким образом, эти эффекты будут иметь тенденцию к самокомпенсации при любых попытках, подобных этой, проанализировать сравнительное поведение системы на воздухе и в вакууме. [c.37]

    Этот процесс применяют для снятия внутренних напряжений в литьевых изделиях и отчасти для уменьшения молекулярной ориентации, вызванной однонаправленным течением расплава во время заполнения формы. Изделия погружают в высококипящее масло или парафин и выдерживают при определенной температуре, зависящей от типа полиамида в течение отрезка времени, обусловленного толщиной детали. Для ПА 66 термообработку проводят при 160—190 °С, а длительность выдержки при этой температуре составляет 15 мин на каждые 3 мм толщины. При этом необходим плавный нагрев и медленное охлаждение. [c.183]

    Для снятия внутренних напряжений в полученной отливке рекомендуется осуществлять ее медленное охлаждение сразу после проведения полимеризацпи, особенно в случае формования толстостенных изделий. Другим способом снятия остаточных напряжений является термообработка в масле. Ее рекомендуется проводить в тех случаях, когда медленное охлаждение отливки до комнатной температуры не оказалось эффективным. Термообработка в масле является дорогостоящим процессом, требующим больщих затрат времени ввиду того, что теплопроводность полиамидов небольшая и для снятия внутренних напряжений необходимы длительный нагрев и медленное охлаждение отливки. В процессе термообработки температуру масла в ванне с термообрабатываемым изделием медленно повышают до уровня, соответствующего температуре стеклования полимера. Затем в течение нескольких часов изделие выдерживают при этой тем- [c.203]

    Из уравнения (74) можно заключить, что напряжение снижается с уменьшением усадки, модуля упругости, температуры коксования и размера куска (коксуемого слоя), а также с увеличением температуропроводности коксуемой массы и времени коксования. Это уравнение является основой управления процессом слоевого коксования. Таким образом, величина внутренних напряжений, возникающих в массиве полукокса и кокса, из числа регулируемых факторов зависит от скорости усадки, которая определяется ее общей величиной, и градиента температур по толщине, зависящего при прочих равных условиях от скорости нагрева, поэтому, изменяя величину усадки составом шихты и скорость нагрева, можно регулировать крупность кокса в нужном направлении. Скорость коксования можно увеличить путем повышения температуры стен камер коксовых печей или путем изменения теплофиэических свойств угольной загрузки. [c.194]

    В случае стехио. 4етрического соотношения реакционноспособных групп набухание пленок в течение длительного времени относительно невелико, поэтому и модуль упругости изменяется не очень заметно. Аналогичная картина наблюдается и для пленок, полученных при недостатке отвердителя. Можно полагать, что в данном случае сетка образуется в основном в результате гомополимеризации молекул эпоксидной смолы, катализируемой третичными атомами азота. Наконец, в случае избытка диамина происходит резкое увеличение водопоглощения, вероятно, обусловленное недостаточной густотой пространственной сетки (Гс на 5—7°С ниже, чем у пленок композиций I и И) и избытком полярных аминогрупп, что уже через 24 ч испытания приводит к снижению модуля на порядок. При этом, однако, у данных покрытий, как будет показано дальше, внутренние напряжения снижаются, а адгезия к металлу заметно увеличивается, что позволяет использовать системы, подобные композиции П1, для защиты некоторых изделий, эксплуатирующихся во влажной атмосфере без больших механических нагрузок. [c.190]

    Число разрушений конструкций из титана и его сплавов, произошедших по вине коррозионного растрескивания, к настояшему времени достаточно мало. Однако в ряде сред и условий эксплуатации титановые сплавы оказываются склонны к коррозионному растрескиванию. К основным механизмам коррозионного растрескивания титановых сплавов относятся солевое высокотемпературное растрескивание и растрескивание при комнатной температуре. Растрескивание при комнатной температуре в основном происходит в водных и метанольных средах, содержащих хлориды при прямом контакте сплава с рядом жидких и твердых металлов, газов в ряде других сред, например, тетраоксиде диазота — N2O4, дымящей азотной кислоте и т. п. Солевое растрескивание происходит под действием внешних или внутренних напряжений при непосредственном контакте материала с твердыми хлоридами в присутствии кислорода и водяного пара при температурах выше 250 °С. Такое растрескивание носит преимущественно межкристаллитный характер. В зависимости от степени коррозионного воздействия на титановые сплавы, хлориды по степени интенсивности воздействия можно распределить следующим образом  [c.78]

    В процессе затяжки никелем очень важно поддерживать стабильносгь температуры электролита в течение всего времени осаждения в пределах +1°. При колебаниях температуры электролита в осадках никеля появляются значительные внутренние напряжения, способные привести к растрескиванию нлп отрыву осадка от формы. [c.98]

    Повторные контрольные измерения с привлечением других физических методов измерения (акустической твердометрии и магнитно-шумового метода) подтвердили полученные ранее данные о том, что в верхней части арки-компенсатора величина внутренних напряжений близка к пределу текучести, но не изменяется значимо со временем. [c.278]


Смотреть страницы где упоминается термин Внутренние напряжения временные: [c.500]    [c.577]    [c.75]    [c.156]    [c.173]    [c.36]    [c.58]    [c.672]   
Основы адгезии полимеров (1974) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Напряжения внутренние

Шаг временной



© 2025 chem21.info Реклама на сайте