Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водорода ионы в каталитических реакциях

    Значительная доля исследований каталитических реакций относится к водороду и водородсодержащим соединениям. Во всех изученных реакциях происходит межмолекулярный перенос атомов Н. Имеющиеся данные указывают также на промежуточную реакцию хемосорбции атомов Н (или ионов) на поверхности катализатора. [c.546]

    Каталитический крекинг олефиновых углеводородов в присутствии, например, алюмосиликатных катализаторов происходите гораздо большей скоростью, чом крекинг соответствующих парафиновых углеводородов кроме того, перенос водорода является основной реакцией, особенно для третичных олефинов [17]. В то же время термический крекинг олефинов происходит, примерно, с такой же скоростью, как и крекинг парафиновых углеводородов перенос водорода в этом случае представляет собой неизбирательную реакцию, имеющую значительно меньшее значение [17]. Такие факты характерны для поведения ионов карбония и свободных радикалов. Более легкий каталитический крекинг олефинов обусловлен более легким образованием ионов карбония путем присоединения протона катализатора к олефину. Перенос водорода, при котором имеет место отщепление гидридного иона от олефиновой или парафиновой молекулы. ионом карбония (правило 5), происходит легче в случае третичных ионов, чем вторичных, и является поэтому более избирательным к третичным олефинам. Соединения, являющиеся в реакции переноса донорами водорода, превращаются в диолефины, ацетиленовые и ароматические углеводороды, а также образуют отложения па катализаторе. [c.238]


    Гомогенных каталитических реакций в растворах, ускоряем мых ионами гидроксила и водорода, довольно много. К реакциям этого типа относятся этерификации кислот и спиртов, инверсия сахаров, галоидирование соединений, содержащих карбонильную группу, омыление сложных эфиров и др. [c.286]

    Скорость реакции в присутствии катализатора составляет k [СО2] [ at], причем — константа, характерная для данного катализатора и зависящая от температуры, а [ at] — концентрация каталитической добавки. Реакция имеет, таким образом, первый порядок. В присутствии иона или молекулы, которая будет реагировать с ионом водорода, образующимся по реакции (Х,2), катализированная гидратация будет продолжаться вплоть до достижения равновесия. Так, в присутствии ионов карбоната (и при условии незначительного равновесного давления СОа над раствором) вслед за реакцией [c.243]

    Прямые измерения этих равновесий невозможны, потому что ряд каталитических реакций (полимеризация, изомеризация, перенос водорода и т. п.) начинаются сразу же после образования карбоний-иона в сильнокислых средах. [c.40]

    Кислотно-основными, или ионными, называются такие каталитические реакции, которые объясняются присоединением или отщеплением иона водорода (протона), а также реакции, при которых свободная пара электронов у реагирующих веществ или катализатора перемещается без разобщения электронов, образуя координационную связь в комплексном соединении. Отметим здесь же, что согласно теории Льюиса, кислотами называются соединения, молекулы которых способны присоединять электронную пару, т. е, включать ее в электронную оболочку одного из своих атомов. [c.215]

    Энергия активации гомогенно-каталитической реакции разложения перекиси водорода в присутствии ионов I- как катализатора равна 56,5 кДж/моль, а без ка- [c.80]

    Каталитическая реакция окисления иодид-иона перекисью водорода катализируется вольфрамом. Ход реакции наблюдают по возрастанию тока между электродами, опущенными в 50 мл раствора. При исследовании методом фиксированной концентрации отмечали время достижения тока силой 25 ма. В зависимости от концентрации вольфрама были получены следующие данные  [c.238]

    При проведении каталитической реакции в адсорбированном слое дифференциальный изотопный метод дает возможность проследить, за распределением каталитических функций между разными участками поверхности. Если на поверхность активированного угля при —182° С ввести сначала порцию дейтерия, а затем водорода, то при вакуумировании преимущественно удаляется водород. Это можно было объяснить и тем, что дейтерий имеет большую молекулярную массу. При введении газов в обратном порядке, т. е. сначала водород, а затем дейтерий, в первую очередь откачивается дейтерий теперь вывод однозначен поверхность неоднородна и первые порции адсорбируются с большим выделением тепла. Эти опыты дали прямые доказательства неоднородности поверхности. Дифференциальный изотопный метод позволил обнаружить устойчивую биографическую неоднородность поверхности как при молекулярной адсорбции, так и при хемосорбции для таких систем, как металлы (N1, Ре), окислы с ионной решеткой (2пО, N10) и активированный уголь. [c.55]


    Одним из примеров каталитических реакций в растворах является распад перекиси водорода в воде в присутствии ионов йода  [c.522]

    Действие ядов специфично для данного катализатора и соответствующей каталитической реакции. Наиболее чувствительны к ядам металлические катализаторы, особенно благородные металлы. Ядами для платинового катализатора, широко применяемого в процессах окисления, являются сероводород и другие сернистые соединения, соединения мышьяка, фосфористый водород, ионы металлов РЬ2+, Си " , 5п2+, Ре + и др. К ядам для металлических катализаторов гидрирования (железо, кобальт, никель, палладий, [c.232]

    Для количественного определения бромид-ионов использованы, кроме того, каталитические реакции окисления хромотропа 2Б в присутствии бромат-ионов [20], пирокатехинового фиолетового перекисью водорода [37], цитрат-ионов перманганат-ионами [92] и кадиона ИРЕА персульфатом аммония (катализатор — ионы Ag ) [257], причем в работе [92] предлагается автоматическая запись кривых зависимости оптической плотности от времени. [c.115]

    Вывод уравнений для каталитических токов будет дан на примере восстановления ионов трехвалентного железа в присутствии перекиси водорода [104, 105[. Свободные ионы трехвалентного железа в кислой среде дают предельный диффузионный ток при потенциале растворения ртути. Добавление в раствор перекиси водорода приводит к повышению этого предельного тока. Увеличение тока вызвано тем, что ионы двухвалентного железа, возникающие на поверхности электрода при электровосстановлении, окисляются вблизи электрода перекисью водорода до трехвалентного состояния, и образовавшиеся химическим путем ионы Fe + вновь электрохимически восстанавливаются на электроде. В избытке перекиси водорода увеличение тока определяется скоростью химической реакции между ионами двухвалентного железа и перекисью водорода. Следовательно, каталитический ток косвенно обусловлен химическим восстановлением перекиси водорода, собственное электрохимическое восстановление которой протекает со значительным перенапряжением при более отрицательных потенциалах. Механизм приэлектродной химической реакции можно представить следующей схемой  [c.358]

    Каталитические токи можно использовать для определения констант устойчивости комплексов, если скорость каталитической реакции свободного иона металла значительно отличается от скорости процесса, в котором участвует соответствующий комплексный ион. Такое определение констант описано Яцимирским [184, 185]. Каталитический ток молибденовой кислоты в кислом растворе в присутствии перекиси водорода уменьшается при добавлении в раствор фосфорной кислоты, достигая почти постоянной величины в интервале концентраций фосфорной кислоты 0,01—0,1 М. При дальнейшем увеличении концентрации фосфорной кислоты ток падает до нуля. [c.364]

    Тулупов В. А. Каталитическая активность ионов в реакциях присоединения молекулярного водорода,— Журн. физ. химии, 1965, т, 39, с, 2341—2358, [c.209]

    Т у л у п о в В. А. Каталитическая активность ионов в реакциях присоединения молекулярного водорода. Автореферат докторской диссертации. МГУ, 1965. [c.58]

    Процесс глубокой очистки поверхности металлического образца термообработкой и (или) ионной бомбардировкой неизбежно сопровождается удалением некоторого количества металла, который осаждается в вакуумной камере. Даже если его количество мало, это может заметно влиять на исследование адсорбции (и катализа). Например, очень тонкая металлическая пленка (10- г/м ) состоит из отдельных и редко расположенных весьма мелких кристаллитов, однако в пределах заданной удельной поверхности подложки общая поверхность металлической пленки вполне может быть равна поверхности, на которой осаждены кристаллиты. Чтобы воспрепятствовать адсорбции (или каталитической реакции), можно поддерживать достаточно низкую температуру металла. Поскольку адсорбция многих газов, таких, как кислород, водород или окись углерода, на переходных металлах идет с высокой скоростью даже при 77 К, использование указанного способа для подавления нежелательной адсорбционной активности весьма ограниченно чаще его применяют при каталитических исследованиях, так как не многие каталитические реакции быстро протекают при 77 К. Если подавить нежелательную активность за счет разной температуры невозможно, очищенный образец металла необходимо изолировать от металла, осажденного в процессе очистки. С этой целью необходимо перенести через запираемое отверстие в другую часть вакуумной установки или очищенный образец, или осажденный металл. Выбор определяется характером исследуемой реакции и типом металлического образца. Поэтому, [c.344]


    Гидролиз или инверсия сахарозы и гидролиз сложных эфиров принадлежат к кислотно-каталитическим реакциям, которые были изучены первыми. Оствальд [5] суммировал данные по скорости гидролиза метилацетата и сахарозы в нормальных растворах кислот и показал, что скорость, отнесенная к скорости в растворе нормальной соляной кислоты (с такой же концентрацией реагирующего вещества), полностью соответствует изменениям относительной электропроводности кислот. Оствальд и Аррениус считали, что электропроводность меняется с глубиной диссоциации кислоты согласно константе диссоциации и что соответствие в поведении показывает, что скорости, по-видимому, изменяются с концентрацией водородных ионов, общих для всех этих растворов. Поэтому скорость реакции рассматривалась как величина, пропорциональная концентрации реагирующего вещества и иона водорода  [c.48]

    После проведения многочисленных работ по этим каталитическим реакциям возникли трудности в простой интерпретации процесса катализа, вызванного только ионами водорода и гидроксила. В итоге найдено, что некоторые реакции катализируются недиссоциирован-нымн молекулами веществ, способных давать протоны, и данное явление названо общим кислотным катализом. Однако это было установлено только после объяснения влияния ионной силы на скорость изменения реакционной смеси. В настоящее время известны два главных эффекта  [c.50]

    Этот первичный солевой эффект непосредственнее и меньше по величине, чем вторичный солевой эффект. Так, например, при добавлении солей в концентрациях 0,1 М изменения в величинах констант скоростей каталитической реакции обычно меньше 5% константа возрастает в случае катализа ионами водорода, а для катализа ионами гидроксила то возрастает, то уменьшается. [c.53]

    Реакция распада В+ является медленной стадией. Ряд других интересных каталитических реакций группируется вокруг перекиси водорода [20, 21]. Перекись водорода может каталитически распадаться в присутствии различных ионов металлов и галоидов, поверхностей металлов и ферментов. Многие перекиси претерпевают аналогичные каталитические реакции. Промежуточные вещества, образующиеся в этих реакциях, оказались весьма активными инициаторами реакций полимеризации, и их применение в качестве редокс -катализаторов обсуждается в гл. X. [c.91]

    Уже давно известно, что на скорости ферментативных каталитических реакций влияет изменение концентрации ионов водорода в растворе. Скорость обычно проходит через максимум, по мере того как pH возрастает, и если эти pH не выходят слишком далеко за пределы оптимальной величины, соответствуюшей максимальной скорости, то изменения скорости реакции с pH оказываются [c.130]

    По-видимому, весьма вероятно, что большинство активных центров в молекулах ферментов имеет больше чем одну группу, способную образовать связь с частями субстрата. Низкие величины энергии активации могут являться результатом одновременной атаки несколькими группами, весьма схожей с пуш-пул механизмами, предложенными для реакций гидролиза, катализируемых кислотами и основаниями. Было найдено, что наличие и кислотной,, и основной групп в соответствуюш,их положениях в одной молекуле может быть намного эффективнее, чем наличие тех же групп,, но в раздельных молекулах. Возможно, что в реакциях окисления и восстановления от субстрата к ферменту и наоборот переносятся не ионы, а радикалы. И в этом случае более благоприятным с энергетической точки зрения может быть одновременный перенос к соседним местам и от них, чем определенная последовательность в разрыве и образовании связей. Целесообразно провести сравнение с механизмом Ридила в гетерогенно-каталитических реакциях гидрирования, где один атом водорода удаляется с поверхности,, в то время как другой атом из газовой фазы садится на соседнее место. [c.140]

    В. И. Вернадский, рассматривая А12О3 и 5102 как ангидриды кислот, впервые дал представление об алюмосиликатах как алюмокремневых кислотах. Синтетически полученные алюмосиликатные катализаторы, по предположению ряда авторов, состоят из двух соединений первое типа алюмосиликагеля, второе типа монтмориллонита. Каталитической активностью обладают только кислые алюмосиликаты. Рядом авторов установлена зависимость между каталитической активностью алюмосиликатов и их обменной кислотностью, т. е. содержанием способного к обмену иона водорода. Механизм каталитических реакций на алюйосиликатных катализаторах не вполне выяснен. На поверхности катализатора предполагают присутствие слабо связанного водорода, который может участвовать при реакции перераспределения в реагирующих молекулах адсорбированного на катализаторе вещества и способствовать течению реакций крекинга, изомеризации, полимеризации и др. Считается также, что катализатор структурно должен соответствовать адсорбированной молекуле реагирующего вещества. Ряд авторов предложил свои схемы реакций. Наиболее вероятным, по-видимому, является ионный механизм процесса. Некоторые полагают, что весьма реакционноспособным является окруженный секстетом электронов положительно заряженный ион углерода (карбониевый ион). [c.130]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Некоторые исследователи (И. Тафель, Н. И. Кобозев и др.) иридерживаются в вопросе водородного перенапряжения иных взглядоь. Они считают, что замедленной стадией является не разряд ионов водорода, а процесс молизации,т. е. пятая стадия процесса. Эта теория водородного перенапряження, получившая название рекомбинационной, достаточно обоснована для некоторых металлов, в отношении которых наблюдается параллелизм между величиной перенапряжения на них водорода и каталитической их активностью но отношению реакции рекомбинации водородных атомов. [c.41]

    Можно представить два пути этой реакции (схема III). Этильный катион может прямо алкилировать метан через промежуточное образование пентакоординированного карбоний-иона (путь а), либо реакция может протекать в соответствии с менее предпочтительной схемой (б), по которой этильный катион может отрывать гидрид-ион от метана. Образующийся при этом метильный катион, стабильность которого примерно на 163 кДж/моль ниже Х26], непосредственно взаимодействует с этиленом. В этом случае в результате реакции, вероятно, будут образовываться пропилен и (или) полиме рный иродукт (насхеме его нет), поскольку водород, необходимый для каталитической реакции алкилирования, расходуется на получение этана. [c.153]

    Электрические свойства катализаторов из металлов или окислов бесспорно должны оказывать влияние на ковалентные или элек-тровалентные связи ориентированных или адсорбированных молекул, вызывая деформации их, приводяш,ие к перестройке связей и образованию новых продуктов. Мысль о том, что свободные электроны металла являются причиной каталитической активности, была высказана Л. В. Писаржевским с сотрудниками [58]. Так, например, реакцию 21 2+0. над платиной они объясняли тем, что с поверхности последней вырывается поток электронов, выталкивающий электроны из водорода и превращающий их в свободные протоны. Вытолкнутые электроны образуют с О анионы О", которые сочетаются с платиной в (Р1"0.2)". Это соединение легко превращается в поверхностный комплекс, в котором ион О соединяется с 2Н" в НдО. Аналогично Л. В. Писаржевский объяснял и другие каталитические реакции в присутствии металлов или их окислов как процесс медленно идущей диссоциации на ионы и электроны, например  [c.160]

    Запишите выражение для скоровти v гомогенной каталитической реакции 1-го порядка по реагирующему веществу S для специфического кислотно-основного катализа при осуществлении его одновременно и ионами водорода, и гидроксила. Обозначения ко — константа скорости реакции без катализатора н+—константа скорости реакции в кислом растворе кон--константа скорости реакции в щелочном растворе. [c.83]

    Молекулярный водород не очень реакционноспособен. С галогенами водород реагирует после инициирования по радикально-цепному механизму. Обычно при нагревании молекула Нг гомолнтически расщепляется. Образующийся атомарный водород восстанавливает, к примеру, многие оксиды до низщих оксидов или до металлов (разд. 36.2.1). В присутствии платинового, никелевого или палладиевого катализаторов водород вступает в реакции уже при комнатной температуре. Каталитическое действие оказывают также соединения некоторых тяжелых металлов или их ионы. Например, ионы Ag+ и Мп04 восстанавливаются молекулярным водородом. Реакции водорода при низких температурах протекают вследствие образования реакционноспособной связи с металлом-катализатором (переходным металлом). При этом происходит поляризация молекулы водорода. [c.464]

    Разложение перекиси водорода катализируется иодид-ионом. Предполагается, что каталитическая реакция протекает по двухста- [c.37]

    Наряду с разрывом углерод-углеродных связей ионы металлов способствуют расщеплению связей углерод—водород. Для этого необходимо, чтобы ион металла координировался с субстратом в строго определенном месте. Целый ряд многозарядных катионов (в порядке эффективности медь(П), никель(П), лантан(1П), цинк, марганец(П), кадмий, магний и кальций) катализирует бромирование этилацетоацетата и 2-карбоэтокси-циклопентанона. Аналогично ионы цинка катализируют иодирование пирувата и о-карбоксиацетофенона. В этих процессах галогенирования кетонов скоростьлимитирующей стадией является образование енола с переносом протона на общее основание. Как и при декарбоксилировании, ион металла катализирует реакцию за счет стабилизации отрицательного заряда, генерирующегося в ходе разрыва связи углерод—водород. Относительная каталитическая эффективность перечисленных выше катионов изменяется в том же порядке, что и устойчивость их комплексов с салициловым альдегидом, а также согласуется с ено--лятным механизмом каталитического декарбоксилирования. [c.224]

    Восстановление — это химическая реакция, состоящая в присоединении электронов атомами или ионами. Для реакций между ковалентными соедн-неииями восстаиовлеиие — это понижение степени окисления атомов, входящих в состав реагирующих веществ. В органической химии восстановлением часто называют присоединение водорода к молекуле органического соединения. Различают следующие способы восстановления 1) химические, 2) каталитические, 3) электрохимические, 4) микробиологические В химии душистых веществ находят применение в основном первые два способа. Особенно широко распространено каталитическое восстановление, т. е. присоединение водорода, протекающее под влиянием катализатора (в частности, каталитическое гидрирование — присоединение водорода к ненасыщенным связям) [c.240]

    На то, что алюмосиликаты должны обладать свойствами кислоты, ионы водорода которой, участвующие в каталитической реакции, могут замещаться на катионы металла, указывают Ю. А. Битепаж и А. П. Баллод. [c.107]

    Кроме того, в кислотно-основных каталитических реакциях катализаторы несомненно обменивают протоны с исходными веществами и растворителем, как показано в изотопных исследованиях с применением дейтерокислот или окиси дейтерия. При окислении окиси углерода или разложении закиси азота, катализируемом окислами металлов, применение подобным же образом указало на кислородный обмен между газами и поверхностью окислов [15]. При полимеризации замещенных олефинов типа изобутена, катализируемой трехфтористым бором с окисью дейтерия, присутствующей как сокатализатор , в полимере [16] возникают связи D — С эти реакции полимеризации протекают по ионному цепному механизму, и когда цепь обрывается, а построение молекулы полимера уже завершено, происходит регенерация катализатора, и сокатализатор содержит атомы водорода, перешедшие из мономера. Формально аналогичные свободно-радикальные реакции полимеризации ненасыщенных производных углеводородов можно инициировать фрагментами, получающимися при термическом разложении веществ типа перекиси бензоила и азо-бис-изобутиронитрила. Эти фрагменты действительно появляются в молекуле полимера, как было показано при использовании инициатора, меченного [17, 18]. [c.24]

    Активность ферментов как катализаторов выражали многими способами. Одним из часто используемых способов является выражение ее через число оборотов Т.М. Последнее определяют [1] как число циклов, претерпеваемых во время каталитической реакции одной простетической группой фермента в одну минуту, т. е. как число молекул субстрата, реагирующих в минуту на одном активном центре фермента. Однако применялись и некоторые другие определения числа оборотов при любом способе измерения Т. N. следует указывать концентрацию субстрата и то, была ли она достаточной, чтобы дать максимальную скорость. Другой мерой [8, 3] является начальная константа скорости к реакции при низких концентрациях субстрата, где V = к [8]о[Е]о для реакции с одним субстратом, или к [8]о[Е]о[Т]о для бимолекулярной реакции. Эта характеристика имеет преимущество, являясь доступной мерой для многих реакций, катализируемых ферментами, и, кроме того, для тех же самых реакций в присутствии других катализаторов, которые не могут, например, дать предельно максимальную скорость. Однако, возможно, огромное преимущество может дать отнесение к к числу активных центров в молекуле фермента, точно так же как в кислотно-основном катализе константу скорости каталитической реакции делят на число доступных протонов кислотного катализатора. Аналогичным образом при сравнении фермента каталазы с коллоидальной платиной для реакции разложения перекиси водорода каждая частица может оказаться такой же активной, как и отдельная молекула фермента [8]. Однако каждая частица с радиусом 500 А имеет на поверхности приблизительно 3-10 атомов металла, каждый из которых, возможно, является самостоятельным активным центром, так что, относя к одному центру, можно видеть, что фермент оказывается намного более активным. Как показано в табл. 2, ферментативные реакции характеризуются более низкой энергией активации приблизительно на 10 ктл/моль, это может легко объяснить различие в активностях. В табл. 8 некоторые ферменты сравниваются с другими каталитически действующими ионами. [c.139]


Смотреть страницы где упоминается термин Водорода ионы в каталитических реакциях: [c.494]    [c.618]    [c.34]    [c.375]    [c.43]    [c.471]    [c.242]    [c.283]    [c.291]    [c.364]    [c.209]    [c.49]    [c.52]    [c.92]   
Учебник физической химии (1952) -- [ c.336 ]

Учебник физической химии (0) -- [ c.376 ]




ПОИСК





Смотрите так же термины и статьи:

Водорода ионы

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции каталитические



© 2025 chem21.info Реклама на сайте