Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеризация влияние инициатора

    Стирол и диены являются единственными в своем роде веществами, способными полимеризоваться под влиянием инициаторов всех трех типов. Следует отметить, что скорости, изученные Уоллингом и Майо, представляют собой не что иное, как скорости реакции роста цепи. Иногда по значению констант сополимеризации можно определить, какой именно механизм инициирования полимеризации действует в данных условиях. Так, например, если смесь стирола и метилметакрилата полимеризуется со свободно-радикальным инициированием, образующийся полимер содержит оба мономера. Если инициирование катионное, в результате полимеризации получается только полистирол, а при анионном инициировании — только полиметилметакрилат. [c.94]


    Миллер и Дим [284] разработали рецептуру сверхскоростной сополимеризации бутадиена со стиролом в эмульсии при 5° с целью применения ее для проведения процесса в реакторах непрерывного действия. Исследовалось влияние на кинетику полимеризации природы и количества инициаторов, активаторов, регуляторов, а также pH среды и т. д. [c.505]

    Влияние различных компонентов и условий было исследовано [234] при изучении сополимеризации акрилонитрила с бутадиеном в эмульсии. В качестве инициаторов процесса использовались персульфат калия и гидроперекись кумола. Активаторами служили цианэтилированные амины и декстроза. Система содержала также тринатрийфосфат и едкий натр. Для прекращения реакции прибавляли гидрохинон. [c.158]

    Изучалось влияние природы и количества инициаторов, продолжительности реакции сополимеризации на выход и состав сополимеров (табл. 2). [c.344]

    Примечание. При проведении сополимеризации с одним соотношением мономеров (влияние продолжительности процесса) в колбе готовят раствор инициатора в смеси мономеров и растворителя для всех ампул (с небольшим избытком) и в ампулы загружают полученную смесь. [c.316]

    Блоксополимеры могут также образовываться как побочные продукты при привитой сополимеризации, если активируются концы цепей основного полимера. Тип применяемого инициатора и условия полимеризации могут, как и при гомополимеризации, оказывать значительное влияние на структуру и свойства блоксополимеров. [c.132]

    Исследовано влияние концентрации инициатора на константы сополимеризации. Как и следует ожидать, значения г не изменялись при изменении концентрации инициатора [c.259]

    Сополимеризация в эмульсии. При эмульсионной сополимеризации стирола с акрилонитрилом процесс происходит в углеводородной фазе, по крайней мере в течение первой половины реакции, а возможно, и в течение всей реакции, независимо от того, является ли инициатор маслорастворимым (перекись) или водорастворимым (персульфат). Это заключение было проведено Уитби с сотр. , которые показали, что скорость сонолимеризации и степень полимеризации сополимера гораздо выше в эмульсионном процессе, чем в суспензионном. Данные, полученные Уитби при исследовании полимеризации в эмульсии, свидетельствуют о том, что скорость реакции обратно пропорциональна содержанию нитрила, т. е. обнаруживается зависимость, обратная наблюдаемой в процессах, протекающих в массе и в суспензии. Заметного влияния содержания нитрила на молекулярный вес полимера не было обнаружено. [c.290]


    При отработке режима синтеза полимер-полиолов было изучено влияние ряда параметров на реакцию привитой сополимеризации. Как известно, существенное влияние на характер продуктов сополимеризации оказывает химическая природа используемого инициатора [8—9]. [c.25]

    На примере сополимеризации (мет)акриламидов со стиролом и метилметакрила-том завершено исследование принципиально нового явления в радикальной сополимеризации - влияние избирательной сольватации радикалов роста мономерами на состав и структуру сополимера. Показано, что одно из следствий этого явления - зависимость состава сополимера от молекулярной массы и, следовательно, от концентрации инициатора, позволяет решить проблему сополимеризации активного мономера с неактивным. Так, увеличение концентрации инициатора динитрила азоизомасляной кислоты до 0.01 моль/л при сополимеризации винилацетата со стиролом не только существенно повышает выход сополимера, но и резко увеличивает содержание в нем неактивного винилацетата. [c.100]

    В настоящей статье описаны свойства привитых и блоксополимеров фибриллярной хлопковой целлюлозы химическая структура, морфология, физические свойства. Изучено влияние инициаторов свободнорадикальной сополимеризации целлюлозы с винильными мономерами на свойства полученных образцов. [c.223]

    Как показали Юхновский и Попенкер [1783], при сополимеризации стирола в водно-эмульсионной среде с растительными маслами, имеющими сопряженные двойные связи, образуются прозрачные пленки, быстро желатинизирующиеся при сушке. При применении растительных масел, не имеющих сопряженных двойных связей, сополимеризация протекут медленнее полимеризации и получается чистый полистирол. Изучено влияние природы растительных масел, концентрации раствора и соотношения компонентов на свойства получаемых пленок, а также исследовано влияние инициатора. [c.290]

    В реакциях привитой сополимеризации стирола инициаторы принято разделять на непрививающие (динитрил азобисизомасляной кислоты) и прививающие (бензоилпероксид, дикумилпероксид, ди-грег-бу-тилпероксид и т. д.). Подбор инициатора того или иного типа или использование смеси инициаторов позволяет регулировать молекулярную массу Гомо- и привитого полистирола, количество привитого полистирола, степень сшивания и размер частиц каучуковой фазы [288, 290, 295]. Несколько спорным является вопрос о влиянии концентрации инициатора на реакцию прививки. Опубликованы экспериментальные данные как об увеличении эффективности прививки с ростом концентрации инициатора [296], так и об отсутствии подобного эффекта [288, 295]. Можно предположить, что существует пороговая концентрация инициатора, выше которой он не влияет на степень прививки, являющуюся предельной . [c.164]

    Что касается влияния инициатора на кинетику процесса сополимеризации ММА с ТБОМ (табл. 1), то ПА в области исследованных концентраций (0,3—1,5 масс.%) практически не изменяет начальной скорости полимеризации. На независимость скорости эмульсионной полимеризации в присутствии НПАВ от концеитрацин инициатора указывается также в [6]. [c.40]

    Следует отметить, что процесс сополимеризации протекает при низкой температуре, что можно объяснить влиянием инициатора перекисного типа винилацетат сополимеризуется с винили-денцианидом медленнее, чем стирол и винплиденхлорид, но значительно легче, чем винилхлорид. [c.413]

    Однако самым выдающимся и бессмертным памятником С. В. Лебедеву являются созданная в нащей стране и успешно развивающаяся промышленность синтетического каучука и его классические труды по полимеризации и гидрогенизации непредельных органических соединений. Начатые С. В. Лебедевы.м еще в 1932 г. работы по совместной полимеризации моно- и диолефиновых углеводородов, в частности по сополимеризации диизобутилена с бутадиеном, в настоящее время особенно актуальны. Ждет своего осуществления и значительная часть вопросов, намеченных к разработке С. В. Лебедевым, а именно поиски новых видов полимеризующихся соединений, способных служить исходным хматериалом для получения технически ценных высокополимерных веществ всестороннее исследование процессов полимеризации, включая кинетику и механиз.м реакции, влияние инициаторов полимеризации и внешних условий на направление и скорость процессов глубокое изучение разновидностей синтетического каучука и выяснение зависимости их свойств от химического состава и строения последних. Подчеркивая ограниченность свойств натуральных каучуков, С. В. Лебедев в докладе в Академии наук СССР 18 ноября 1932 г. обратил внимание на безграничные возможности синтетической химии. Синтез каучуков,— говорил он,— источник бесконечного многообразия. Теория не кладет границ этому многообразию. А так как каждый новый каучук является носителем своей оригинальной шкалы свойств, то резиновая промышленность, пользуясь, наряду с натуральными, также синтетичеокими каучуками, получит недостающую ей сейчас широкую свободу в выборе нужных свойств . [c.124]


    Продукты, называемые ненасыщенными полиэфирными смолами , в действительности представляют собой растворы ненасыщенных олигомерных полиэфиров Б жидких мономерах. Характерным для этих олигомеров является то, что они содержат двойные связи и способны вступать в быстро протекающую реакцию сополимеризации с молекулами мономера под влиянием инициаторов радикальной полимеризации. В соответствии с таким механизмом реакции при отверждении ненасыщенных полиэфирных смол не происходит выделе1шя низкомолекулярных продуктов, как это имеет место при реакциях поликонденсации. Поэтому эти смолы могут быть переведены из жидкого в отвержденное состояние без применения давления. [c.124]

    Аналогичное качественное различие наблюдалось и для других пар, причем особо наглядный случай представляет собой система стирол—метилметакрилат, где сополимеризация смеси 1 1 первоначально дает под влиянием свободно-радикальных инициаторов сополимер с составом 1 1, но в процессах, протекающих под воздействием иона карбония и кар-баниона, соответственно [153] получаются практически чистые полистирол и полиметилметакрилат. Имеющиеся довольно ограниченные данные позволяют высказать предположение, что реакционные способности при полимеризации под действием карбаниона идут практически параллельно способности заместителей стабилизировать карбанионы, возрастая в следующем порядке акрилонитрил, метакрилонитрил > метилметакрилат > > стирол > бутадиен. Активными центрами в наиболее реакционных из них является в основном стойкий анион энольного типа. [c.161]

    Работами последних лет показано, что реакционная способность сомономеров может существенно меняться под влиянием среды, различных комплексообразующих добавок, инициаторов. Примерами тому могут служить приведенные в табл. 1.4 значения констант сополимеризации ВА с акриловой кислотой и вц-нилпирролидоном, определенные при сополимеризации мономеров в массе, безводном спирте и спирте-ректификате. Нами показано [а. с. СССР 531814], что при сополимеризации ВА с простыми виниловыми эфирами выход сополимеров и содержание эфиров в. их составе увеличиваются при добавлении воды к реакционной смеси, что также свидетельствует о влиянии комплексообразования на активность мономеров. [c.44]

    Результаты, полученные Фаулером [215], отличаются от приведенных. Он исследовал сополимеризацию галогенированных оле-финов — винилиденхлорида и винилхлорида с мономерными кислотами, главным образом с итаконовой. Было показано сильное ингибирующее влияние итаконовой кислоты на общий гфоцесс полимеризации. Этот факт был объяснен захватом водорастворимого инициатора кислотой, радикалы которой очень мало реакционноспособны. Автор полагает, что итаконовая кислота может вступать в сополимер лишь при ее инициировании у мицелл или на границе между набухшей полимерно-мономерной частицей и водной фазой, однако количество кислоты, вступившей в реакцию, очень мало. [c.137]

    Растворимость. В табл. 1 показано влияние условий сополимеризации акрилонитрила и целлюлозы в присутствии свободнорадикальных инициаторов на растворимость целлюлозы в сополимере в медьэтилендиамиповом комплексе. Растворимость целлюлозы в продуктах, полученных радиационным методом, больше, чем в продуктах, полученных в присутствии ионов церия [34]. Как сообщалось ранее, число молекул целлюлозы, приходящихся на 1 моль привитого полиакрилопитрила, в первом случае в присутствии водного раствора Zn lj колеблется от 5 до 86, а в последнем случае составляет приблизительно 0,4 [42], что объясняется, вероятно, более низкой растворимостью целлюлозы в этом сополимере. Целлюлоза, содержащаяся [c.223]

    Влияние способа инициирования и типа инициатора свободнорадикальной сополимеризации акрилонитрила с фибриллярной целлюлозой на свойства ткани, полученной из этого сополимера, про-иллюстрируется данными табл. 4 [31]. Молекулярный вес привитого сополимера изменяется от 3,3 10 до 5,9-10 и зависит от способа инициирования и условий эксперимента. Между молекулярным весом привитого сополимера и свойствами ткани на его основе нет определенной зависимости. При условиях реакции сополимеризации Б получаются модифицированные ткани с более высокими значениями разрывной прочности, сопротивления раздиру и истиранию при изгибах и в плоскости. Улучшение свойств обусловлено отчасти влиянием условий эксперимента на морфологию волокон, а также тем, что поперечное сечение волокон круглое и привитой полимер распределен однородно по поперечному сечению. При условиях реакции А начальная форма поперечного сечения целлюлозных волокон пе изменяется, а привитой полимер концентрируется в наружных слоях волокна. Ткань, полученная этим методом, характеризуется повышенным сопротивлением истиранию при изгибах и в плоскости и более высокой разрывной прочностью по сравнению с контрольной тканью (из немодифицированной хлопковой целлюлозы). Однако ее сопротивление раздиру меньше, чем у контрольного образца, а сопротивление истиранию при изгибах ниже, чем у образца, полученного в условиях Б. Метод Б может быть развит в непрерывный процесс, при котором ткань вначале погружают в раствор винилового мономера и затем облучают. При всех указанных способах получения сополимеров происходит уменьшение молекулярного веса целлюлозы вследствие окислительной деструкции. [c.229]

    Известно [2, 4], что скорость полимеризации в эмульсии в большой степени зависит от природы и концентрации применяемых мономеров, инициаторов, эмульгаторов. В связи с этим было исследовано влияние концентрации эмульгатора на скорость сополимеризации бутадиена с метилметакрилатом и метакриловой кислотой. Предварительно для получения латекса с необходимыми технологическими свойствами (вязкость, устойчивость) было определено оптимальное соотношение водной и углеводородной фаз, которое оказалось равным 1 2,2 (рис. 1). Дозировка эмульгатора в рецепте изменялась от 0,5 до 5 мае. ч. Установлено (рис. 2), что увеличение содержания эмульгатора в данном интервале исследуемых значений приводит к увеличению скорости процесса полимеризации. На основании полученных экспериментальных данньтх был рассчитан порядок реакции по эмульгатору, который оказался равным 0,73. [c.74]

    Методом эмульсионной полимеризации осуществлен синтез карбоксилатного бутадиен-метилметакрилатного сополимера. Исследовано влияние Компонентов рецепта на скорость процесса. Определены порядки реакции сополимеризации по эмульгатору и инициатору, рассчитана энергия активации процесса сополимеризации бутадиена-1,3 с метилметакрилатом и метакриловой кислотой. [c.114]

    Эммер и Банкофф [523] исследовали влияние концентрации инициатора, температуры и времени сополимеризации винилхлорида с винилацетатом на величину конверсии, теплостойкость, молекулярный вес сополимера и нашли, что конверсия увеличивается с повышением температуры, продолжительности реакции и концентрации инициатора. Теплостойкость сополимера понижается с увеличением в нем содержания винилацетата. Теплостойкость выше у сополимера, полученного при 50°, и мало зависит от концентрации инициатора. [c.362]

    Полимеры простых аллиловых эфиров получают полимеризацией соответствующих мономеров в присутствии кислорода нафтенат или линолеат кобальта ускоряют реакцию. Под влиянием радикальных инициаторов простые аллиловые эфиры, как правило, не полимеризуются, однако вступают в сополимеризацию. Сополимер аллилглицидилового эфира с винилацетатом (мол. масса 5000) применяют в качестве покрытий сополимер триаллилглицеринового эфира и винилхлорида используют для изоляции подземных кабелей высокомолекулярный сополимер акрилонитрила и моноаллилового эфира этиленгликоля образует пленки и хорошо окрашиваемые волокна. В качестве лаковых покрытий холодной сушки нашли применение сополимеры полиалкиленмалеинатов с ал-лиловыми эфирами глицерина, триметилолпропана, пентаэритрита, а также с олигоэфирами, получаемыми из дикарбоновых к-т и моноаллилового эфира глицерина. Сополимеры полиалкиленмалеинатов и полиаллил- [c.44]

    Утида, Нагао [1719—1722] и Мимо [1723] изучили влияние эмульгатора и инициатора (1-азо-бис-1-фенилэтан) при эмульсионной сополимеризации стирола и акрилонитрила. Из данных [c.288]

    Ряд работ посвящен синтезу, свойствам и применению сополимеров акрилонитрила со стиролом. Так, Мино [647] исследовал сополимеризацию акрилонитрила со стиролом в массе и в водной дисперсии при 90—100° с инициатором 1-азо-бис-1-фе-нилэтаном. Константы совместной полимеризации Гх= 0,4 для акрилонитрила и Гг= 0,04 для стирола. Хансон и Зиммерман [648] приводят простой метод получения сополимеров, в том числе акрилонитрила со стиролом,— метод циклической полимеризации, позволяющий получать сополимеры заранее определенного, постоянного состава. Метод основан на непрерывной частичной сополимеризации смеси мономеров, отделении не вступивших в реакцию мономеров от сополимера и возвращении их в реактор вместе с порцией свежих мономеров. В работах Утида и Нагао [649—651] исследовано влияние эмульгаторов на сополимеризацию акрилонитрила со стиролом. Скорость полимеризации смесей, богатых акрилонитрилом, достигает максимума при содержании анион-активного эмульгатора в количестве 1 %. В отсутствие анион-активного эмульгатора наблюдается максимум скорости реакции, что объясняется затрудненной диффузией радикалов в мицеллы при больших концентрациях эмульгатора. Сэкидзима [652] получал водорастворимый порошкообразный сополимер акрилонитрила со стиролом. Описаны специальные типы сополимеров акрилонитрила со стиролом [653], синтез сополимеров в эмульсии [654], блоке [655, 656] и в гранулах [c.575]

    В качестве второго сополимера с повышенной реакционной способностью к прививке применяли метилметакрилат. Детальное исследование влияния различных факторов (концентрации мономера, инициатора, температуры, продолжительность и др.) позволило разработать условия прививки М-вянил-лактамов из смеси к целлюлозным материалам. Такая привитая сополимеризация, сочетающая одновременно и обычную бикомпонентную систему, имеет ряд своих особенностей. Такую систему можно рассматривать как двухкомнонентную сополимеризацию в присутствии третьего компонента — целлюлозных макромолекул, несущих на себе свободные радикалы. Таким образом, реакция с самого начала является гетерофазной, и условия сополимеризации двух мономеров, образующих привитую цепь, существенно отличаются от условий гомогенной сополимеризации. Прививка к целлюлозе метилметакрилата с ВЛ проводилась нами при разных соотношениях компонентов в исходной смеси (концентрация смеси 10%, температура 70° С, время 4 часа, Н2О2 — 0,01%), что позволило установить основные законо- [c.352]

    Влиянием площади поверхности раздела фаз на скорость инициирования можно также объяснить наблюдаемую иногда зависи- мость молекулярной массы полимера от дисперсности образующе гося бисера. Подобная зависимость обнаружена, пкпример, при суспензионной сополимеризации стирола и акрилонитрила [170]. В работе [170] полученный бисер имел довольно широкий гранулометрический состав, при этом обнаружено, что сополимер, содержащийся во фракциях бисера максимального размера, имел наибольшую молекулярную массу. Такой эффект не может быть объяснен различными условиями теплоотвода в бисере разного размера, так как в этом случае наибольшую молекулярную массу должен был бы иметь сополимер в бисере наименьшего размера. Увеличение молекулярной массы сополимера с ростом размера бисера авторы объясняют исчерпанием инициатора на последних стадиях процесса и инициированием сополимеризации мономеров, основная масса которых сосредоточена в частицах большого размера, термически. Можно полагать, однако, что основная причина обусловлена различными условиями инициирования процесса в частицах разного размера и на более ранних стадиях. По-видимому, скорость инициирования в частицах меньшего размера должна быть наибольшей, ввиду максимального соотношения поверхность частицы / ее объем. [c.114]

    Следует заметить, что закрепление инициатора в зоне адсорбционного слоя ПМЧ искусственным образом, независимо от его олярности, приводит к резкому изменению скорости его распада [206]. Локализация реакции разложения инициатора в адсорбционном слое может быть достигнута путем использования инициаторов, обладающих ярко выраженными поверхностно-активными свойствами, или химическим связыванием пероксидных инициирующих групп с поверхностью ПМЧ. Последний способ может быть реализован при эмульсионной сополимеризации виниловых мономеров с ненасыщенными пероксидами, например с метакрило-еым эфиром а-гиДроксиэтил-грег-бутилпероксидом (МЭП), причем пероксидные группы в зависимости от способа синтеза латекса могут быть равномерно распределены по объему частицы или преимущественно сконцентрированы на ее поверхности [207]. В табл. 5.3 приведены данные по разложению пероксидных сополимеров в виде латекса и в растворе хлорбензола, а также константы распада мицеллообразующего поверхностно-активного пероксида П1 в водном растворе. и его аналога IV, не проявляющего склонности к мицеллообразованию [207]. Из приведенных данных видно, что адсорбционный слой латексной частицы или мииелляр-ное состояние вещества оказывает решающее влияние на кинетику распада инициатора. Следует отметить факт разложения чрезвычайно устойчивых диалкильных пероксидных групп с высокими скоростями в латексных системах при относительно низких температурах. Этот факт может быть связан только с локализацией пероксидных групп в зоне адсорбционного слоя. Из рис 5,4 видно, что после разложения поверхностных пероксидных групп распад [c.122]

    Реакционная способность мономеров, сополимеризующихся с этиленом, оказывает влияние на характер зависимости скорости сополимеризации от соотношения мономеров. Мономеры, которые не образуют резонансно-стабилизированных радикалов,, мало влияют на скорость сополимеризации. Скорость реакции приблизительно такая же, как и при гомополимеризации этилена, и определяется условиями реакции (давление, температура, концентрация инициатора). [c.187]

    Сополимеризация в растворе. При изучении сополимеризации стирола с бутилакрилатом в бензольном растворе под действием динитрила азо-бис-изомасляной кислоты, меченного С, было найдено , что константы сополимеризации остаются постоянными в широком интервале значений концентраций бензола при 60° С. Для данной мономерной смеси скорость инициирования пропорциональна концентрации инициатора, причем почти каждая распавшаяся молекула инициатора инициирует образование одной растущей цепи Уоллинг изучал влияние изменения состава мономерной смеси на общую скорость сополимеризации стирола с метилакрилатом при 60° С в этилацетате. В этой системе добавление акрилата к стиролу в количестве вплоть до 90% оказывает малое влияние на скорость [c.295]

    Сополимеризация винилнафталинов. Начальная скорость реакции при сополимеризации 1-винилнафталина со стиролом в массе при 60° С под действием азосоединений была определена Лошаком и Бродериком Данные, приведенные на рис. X.21, согласуются с величиной константы перекрестного обрыва, равной 3. Скорость достигает минимума при содержании в исходной смеси мономеров 60 мол. % стирола. Как показано на рис. Х.22, при добавлении стирола к винилнафталинам молекулярный вес сополимеров увеличивается Стирол оказывает незначительное влияние на молекулярный вес продукта до тех пор, пока содержание стирола в смеси с 1-винилнафталином не достигнет 60 мол. %. Дальнейшее добавление стирола приводит к почти линейному возрастанию молекулярного веса сополимера от 20 ООО до 110 ООО. Увеличение молекулярного веса сополимеров стирола с 2-винилнафталином при добавлении стирола происходит более постепенно, но быстрее при малых концентрациях стирола. Подобное влияние добавления стирола на скорость и молекулярный вес было отмечено Прайсом с сотр. нри сополимеризации стирола с 2-винилнафталином при 60° С в массе под действием перекисных инициаторов. В этих же условиях при введении метил акрилата увеличивается и скорость, и молекулярный вес сополимеров 2-винилнафталина. В более ранних работах Котон изучая сополимеризацию 1-винилнафталина со стиролом и различными акрилатами, показал (в противоположность результатам более поздних работ), что молекулярные веса сополимеров уменьшаются по мере увеличения концентрации стирола илиJ акрилата в исходной маномерной смеси. [c.326]

    В работах по исследованию сополимеризации большинство авторов сообш,ает только о константах сополимеризации и не пытается рассмотреть влияние предпоследних групп, даже если константы сополимеризации близки к нулю. В обш ем случае для получения сополимера данного состава с определенными свойствами достаточно знать константы сонолимеризации гj и г 2. Сводная таблица констант сополимеризации для акрилонитрила, приведенная в Приложении А, основана на упрощенной картине радикальной сополимеризации, согласно которой реакционная способность полимерного радикала определяется структурой последнего звена цепи. Более детальное определение констант сополимеризации, при котором учитывается влияние предпоследних звеньев цепи, описывается в гл. I. Следует еще раз подчеркнуть, что данные этих таблиц относятся к сополимерам, полученным с помощью радикальных инициаторов. При использовании инициаторов анионного или катионного типа указанные константы сополимеризации нельзя считать правильными. [c.378]

    Для синтеза высокомолекулярных сополимеров различного состава на основе этилена с помощью свободнорадикальных инициаторов необходимо проводить процесс при высоком давлении. Применение высоких давлений необходимо прежде всего для увеличения концентрации газообразного этилена и получения высокомолеку-ЛЯ1ЭНЫХ сополимеров, обогащенных этиленом. Реакция протекает в соответствии с общими закономерностями свободнорадикальной сополимеризации, так что можно обычными методами определить константы сополимеризации. Однако сопоставление полученных констант с константами, измеренными при атмосферном давлении, невозможно до тех пор, пока не определено влияние давления на относительную реакционную способность мономеров и радикалов при сополимеризации. Такое исследование желательно проводить при сополимеризации жидких мономеров, чтобы свести до минимума сжимаемость реакционной смеси, осложняющую анализ сополимеризации с участием газообразных реагентов. [c.441]

    Влияние саж на полимеризационные процессы, происходящие в каучуках, рассматривается в литературе лишь с точки зрения изменения комплекса физико-механических свойств резин. Увеличение модуля, твердости, износостойкости и усталостной выносливости резин, несомненно, свидетельствует о протекании трехмерной привитой сополимеризации диметакриловых и полиметакриловых производных в каучуках в присутствии инициаторов радикальных процессов. Однако наличие большого числа функциональных групп на поверхности саж должно существенно влиять как на кинетику и глубину отверждения, так и на морфологию образующихся сетчатых структур. Известно, что углеродные сажи ингибируют радикальную полимеризацию, поэтому следует ожидать, что присутствие усиливающих углеродных наполнителей в ка5П1уках должно привести к созданию дефектной трехмерной сетки полифункциональных соединений По этим причинам преимущества каучук-олигомерных систем не могут быть полностью реализованы в резинах с высоким [c.255]

    Компаунды на основе ненасыщенных полиэфирных смол отверждаются инициаторами (перекисью бензоила, гиперизом и др.) в присутствии ускорителей (диметиланилина, нафтената кобальта и др.). Ненасыщенная полиэфирная смола разбавляется мономерами — стиролом или ММА. Отверждение полиэфирных смол, т. е. переход под влиянием отверждающей системы в твердое неплавкое и нерастворимое состояние, происходит вследствие сополимеризации обоих комцонентов раствора — полиэфира и мономера. Отвержденный продукт имеет сетчатую трехмерную структуру, состоящую из линейных цепей полиэфира, сшитых звеньями стирола или другого мономера. Чаще всего применяют следующую рецептуру (в вес. ч.)  [c.144]

    Для гомонолимеризации винилиденфторида и гексафторпропилена (ГФП) были использованы рассмотренные ранее методы, однако полученные гомополимеры имели небольшое практическое значение научные публикации по исследованию свойств этих соединений также малочисленны. В патентной литературе относительно сополимеров каждого из этих мономеров с ТФЭ, ХТФЭ, винилфторидом и т. д. имеется много предложений [88], однако по существу самым важным полимером на основе этих мономеров является, пожалуй, только сополимер ВФ с ГФП. Один из продуктов этого типа — каучук, известный под фирменным названием вайтон , представляет собой твердый эластичный заменитель натурального каучука. Различные по составу сополимеры указанных двух мономеров получают с помощью перекисных или персульфатных инициаторов, упомянутых выше. Наряду с выяснением принципиальных вопросов сополимеризации предпринимались многочисленные исследования, в которых преследовались специфические цели. Например, в одних работах исследовали влияние давления и присутствия двуокиси кремпия на процесс полимеризации [89], в других — стояла задача усовершенствования метода получения сополимеров с требуемыми для практических нужд свойствами [90]. Попытки получить наилучший прокладочный материал потребовали много времени на изучение сополимеризации [9П. [c.22]

    В зависимости от состава смешанного растворителя на кинетику сополимеризации может оказывать влияние изменение ионизующей способности последнего, а также переход гомофазного процесса (Н2О менее 40%) в гетерофазный (Н2О более 40%). Сравнение приведенных в табл. 1 кинетических параметров позволяет сделать вывод, что на кинетику сополимеризации АК и АН в большей степени влияет образование гетерофазности, чем увеличение ионизующей способности растворителя. Для гетерофазной сополимеризации эффективные порядки реакции по инициатору и концентрации мономеров оказываются более высокими, чем для гомофазной. [c.15]

    Установление постоянной скорости сополимеризации при увеличении скорости инициирования вследствие возрастания концентрации инициатора обусловливается по крайней мере двумя факторами с одной стороны, лимитируюшим влиянием диффузии первичных радикалов инициатора в адсорбционные слои латексных частиц, с другой сторо- [c.40]


Смотреть страницы где упоминается термин Сополимеризация влияние инициатора: [c.160]    [c.123]    [c.47]    [c.230]    [c.630]    [c.130]    [c.315]    [c.20]   
Химические реакции полимеров том 2 (1967) -- [ c.2 , c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Инициаторы



© 2025 chem21.info Реклама на сайте