Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен превращение в ароматические углеводороды

    Олефинам свойственны весьма разнообразные реакции термического превращения, направление которых зависит от температуры и давления. Умеренные температуры (примерно до 500° С) и высокие давления способствуют протеканию реакций полимеризации олефинов напротив, высокие температуры и низкие давления вызывают реакции распада. Так, из простейшего олефинового углеводорода — этилена под давлением 150 ат уже при температуре 370° С образовалось 92% жидких полимеров и 8% бутилена при 625° С и атмосферном давлении выход жидких компонентов снизился до 32,9%, остальное составляли газообразные продукты. При повышении температуры до 800—900° С этилен не полимеризуется — идут реакции распада и частично конденсации в ароматические углеводороды. Такое поведение характерно и для жидких олефинов. [c.29]


    Для проверки механизма образования ароматических углеводородов при термическом превращении этилена Шульце и соавтор поставили опыты термической обработки смесей бутадиена с этиленом я ацетиленом (табл. 99 и 100). [c.117]

    Показана ароматизирующая способность синтезированных образцов цеолитсодержащих катализаторов в превращении низкомолекулярных углеводородов и н-гексана максимально селективно ароматизируются этилен и пропилен, для которых селективность по ароматическим углеводородам равна примерно 70% масс., для парафиновых углеводородов - на 20-25% ниже. [c.18]

    Этилен при 1400 С почти полностью дегидрируется до ацетилена — простейшего из ароматических углеводородов. В результате химических процессов превращения происходит достаточно глубокое дегидрирование, т. е. обильное выделение водорода. При более высоких температурах по мере приближения углеводо- [c.80]

    Алкилирование ароматических углеводородов происходит значительно легче, чем алкилирование парафинов и нафтенов. Изменение свободной энергии при алкилировании ароматических углеводородов может быть подсчитано для реакции превращения бензола с этиленом в гл-ксилол  [c.80]

    Механизм превращения метанола в углеводороды чер( з стадии образования ДМЭ и этилена на цеолите Н-15М-5 исследовался методами газовой хроматографии и ЯМР (С ) [95]. Выявлено, что получающийся этилен при 250-400°С образует ион карбония с кислотными центрами Бренстеда. В дальнейшем реакция превращения проходит через конденсацию олефинов, диспропорционирование, с образованием линейных парафиновых и ароматических углеводородов. [c.79]

    Наглядный пример очистка этилена от примесей ацетилена. Селективное гидрирование, осуществляемое на палладиевых или медь-никелевых катализаторах с введением близкого к сте-хиометрическому количества водорода, позволяет провести процесс превращения ацетилена в этилен. В промышленных условиях реализован также процесс очистки циклогексана от бензола гидрированием последнего на никелевых катализаторах. Гидрирование примесей олефинов и ароматических углеводородов является этапом получения чистых парафинов. [c.206]

    Габер четко показал, что надо связать в единое целое разрыв алифатических молекул, появление осколков (ненасыщенных остатков) и их конденсацию до ароматических углеводородов. Последовательность превращений веществ в процессе коксования угля представлялась Габеру в таком виде разрыв углеродной цепи протекает при температуре 600—800° С ...при 900—1000° продукты расщепления раскалываются на новые концевые звенья , затем идет сложная конденсация, в результате чего возникает кокс и смола. При этом из парафинов остается только метан, из олефинов — этилен. Одновременно происходит новая реакция — выделение свободного водорода. Это объясняется тем, что в продуктах реакции уже присутствуют ароматические углеводороды, у которых более прочна связь С—С и менее прочна связь С—Н. Как видно, картина, представленная Габером в общих, главных, чертах близка к реальной картине коксования угля. [c.69]


    Пиролиз жидких нефтяных фракций. Сырьем для пиролиза служат главным образом керосиновые фракции, реже газойлевые. Температура процесса 700° С, давление атмосферное. При пиролизе получается до 50% газа. Жидкие продукты пиролиза называются смолой. Главные особенности этого процесса глубокий распад и преимущественное развитие реакций, ведущих к образованию ароматических углеводородов. В условиях пиролиза термические реакции идут с большой скоростью, и за короткое время достигается значительная глубина превращения. По сравнению с парофазным крекингом при пиролизе особо важное значение приобретают вторичные реакции синтеза, которые и определяют состав жидких продуктов. В газе пиролиза накапливаются непредельные углеводороды этилен и пропилен, а также предельные метан и этан, которые и составляют главную массу компонентов газа пиролиза средних нефтяных фракций. [c.178]

    Синтезированы и исследованы новые эффективные катализаторы превращения метана в этилен [1] и пропан-бутановой фракции в ароматические углеводороды [2]. Методами рентгеновской дифрактометрии и Рамановской спектроскопии установлено взаимодействие оксида церия с оксидом лантана, приводящее к возникновению новых активных центров активации метана и его превращения в этилен. [c.84]

    Практически такой переход от углеводородов к органическим соединениям других классов осуществляется с различной легкостью для разных групп углеводородов. Если бензол и родственные ему ароматические углеводороды легко вступают в реакции замещения, а этилен и ацетилен вместе с их гомологами могут присоединять к себе хлор, бром, элементы воды, кислот и некоторых органических соединений и тем самым легко включаются в цепь дальнейших, иногда весьма сложных превращений, то метановые углеводороды — парафины — и циклические — полиметилены, часто называемые циклопарафинами, проявляют большую инертность в химических реакциях и поэтому они издавна заслужили репутацию химических мертвецов , неспособных к превращению в органические соединения других классов. [c.236]

    Рассмотрим теперь функцию катализатора в проведении сопряженных реакций. Скрытое сопряжение возможно даже для каталитических реакций одного исходного вещества. Это, в частности, всегда имеет место в тех случаях, когда различные молекулы этого вещества или какого-то промежуточного продукта его превращения выполняют различные функции в суммарном процессе и претерпевают различные превращения. К, числу простейших реакций такого характера относится перераспределение водорода между молекулами непредельных органических веществ, приводящее к повышению непредельности (или превращению в устойчивые сопряженные системы, например в ароматические углеводороды или гетероциклы ароматического строения) одних экземпляров молекул исходного вещества при одновременном уменьшении непредельности других экземпляров его молекул [5]. Последние при этом превращаются в насыщенные алканы или в насыщенные цикланы. Так, на контактах, содержащих переходные металлы УП1 группы, этилен при хемосорбции частично образует ацетилен и этан по схеме [c.10]

    Парциальное каталитическое окисление углеводородов - основной способ получения ценные кислородсодержащих продуктов, таких, как органические кислоты и их ангидриды, оксиды олефинов и др. В качестве исходного сырья в этих процессах обычно используют низкомолекулярные олефины (этилен, пропилен, бутилены), ароматические и алкилароматические углеводороды (бензол, толуол, ксилолы, нафталин и др.). В промышленности реализованы и более сложные процессы, в которых каталитическому окислению подвергают смеси углеводородов с аммиаком (окислительный аммонолиз). В последнее время большое внимание уделяется процессам окислительного превращения насыщенных углеводородов (метан, этан, пропан, бутан). [c.4]

    Химические превращения углеводородов в ходе пиролиза можно условно разделить на две категории первичные и вторичные. В результате первичных реакции образуются олефины этилен, пропилен, бутилен, бутадиен. В ходе вторичных реакций олефиновые и диеновые углеводороды подвергаются реакциям конденсации, полимеризации с одновременным более глубоким разложением, в результате чего образуются ароматические углеводороды бензол, нафталин, дифенил, более конденсированная ароматика. Кроме того, в ходе процесса образуются кокс и сажа. [c.20]

    Грин и другие [25] изучали разложение ацетилена в интервале температур 1600—2500 °С в простой ударной трубе. Сырье представляло собой чистый ацетилен или смесь 37% ацетилена и 63% аргона. К концу опыта газы откачивали из ударной трубы и конденсировали при температуре жидкого азота. Конденсат анализировали методом инфракрасной спектроскопии. Были обнаружены только ацетилен и диацетилен этан или. этилен отсутствовали. Эти наблюдения, по-видимому, подтверждают предложенный Портером [46] механизм, согласно которому никакие высшие углеводороды, например ароматические, из ацетилена до начала превращения его в кокс не образуются. Первым продуктом, получаемым из ацетилена при температуре выше 1500 °К, по-видимому, является диацетилен. [c.321]


    Поскольку выделение непредельных углеводородов любым методом относительно дорогостоящий процесс, в последнее время проводятся большие исследования по разработке процессов использования этилена и пропилена без выделения их из газов пиролиза. Один из таких процессов недавно разработан в США и известен под названием процесса Алкар [70]. Он проводится в стационарном реакторе обычной конструкции и основан на каталитическом взаимодействии этилена с ароматическими углеводородами на катализаторе, состав которого не приводится. На данном катализаторе олефины вступают в реакцию с ароматическими углеводородами бензина и количественно превращаются в моноалкилароматические соединения этилен при этом образует этилбензол пропилен дает изопропилбензол и бутилены — бу-тилбензолы. Степень превращения этилена на указанном катализаторе, по сообщению печати, достигает 90%. [c.57]

    Алкилирующие агенты, в частности олефины, при взаимодействии с кислотными катализаторами способны димеризоваться и тримеризоваться с образованием более высокомолекулярных ароматических углеводородов. Подобные превращения могут протекать и при отщеплении от полиалкилбензолов алкилкарбо-ниевых ионов, которые в результате элиминирования протона образуют олефин.. По-видимому, реакциями полимеризации олефинов и распадом промежуточных карбокатионов объясняется появление пропил- и бутилбензолов при алкилировании бензола этиленом. [c.152]

    Реакции Циглера открывают совершенно новые пути использования олефинов синтез полиэтиленов и димеров олефинов для превращения в синтетические каучуки и ароматические углеводороды, получение первичных спиртов, синтетического волокна и т. д. Полимеризация этилена в смазочные масла в Германии проводится с 95—99% этиленовой фракцией путем обработки ее, после очистки от кислорода и сернистых примесей, хлористым алюминием при 180—200° и 10—25 ат. Давление в автоклавах при этом процессе приходится регулировать, так как оно непрерывно растет из-за образования газов (метана, этана и других углеводородов). Сырой полимеризат после дегазации нейтрализуют при 80—90 взвесью извести в метаноле (разложение А1С1,-комплекса), фильтруют центрифугируют. Из остаточных газов выделяют этилен, который поступает обратно на полимеризацию. Для обеспечения низкой температуры застывания и пологой температурной кривой вязкости к таким смазочным маслам прибавляют эфиры адипиновой кислоты или другие добавки [18]. [c.597]

    Температура гидрирования зависит от природы гидрируе.мого вещества. Так, например, этилен и его гомологи восстанавливаются при 150—200°, тогда как для гидрирования ароматических углеводородов необходима температура около 200°. Этим же способом можно пользоваться для гидрирования ненасыщенных кетонов и альдегидов, равно как и для восстановления альдегидов и кетонов в соответствующие спирты и превращения нитросоединений в амины. [c.21]

    Олефины. В УСЛОВ1ИЯХ деструктивной гидрогенизации, т. е. крекинга при давлении водорода, основной реакцией превращения олефинов является их гидрирование в соответствующие парафины. Применение катализаторов (платина, палладий, никель) позволяет снизить температуру гидрирования. Экспериментально показано, что скорость гидрирования снижается по мере увеличения числа атомов углерода в молекуле олефнна — для этилена относительная скорость равна 1, для пропилена — 0,8, для н-октена 0,6. Указанные данные позволяют объяснить, почему на первой стадии гидрогенизации (в жидкой фазе) в полученных тяжелых жидких продуктах содержится значительное количество непредельных соединений, а в газах почти отсутствует этилен. При деструктивной гидрогенизации практически сведена до м инимума лолимеризация олефинов, поскольку скорость 1ИХ гидрирования значительно выше скорости полимеризации. В условиях деструктивной гидрогенизации возможна циклизация олефинов с образоваиием ароматических углеводородов — циклодегидрогенизация. Этот процесс проводят в присутствии оксидных катализаторов. [c.166]

    Еще со времени работы Ба Лсона [1] и Густавсона [5, 6] было известно, что ароматические углеводороды можно алкилировать олефинами в присутствии хлористого алюминия, употребляемого в качестве катализатора. Больше того, реакция Фридель-Крафтса показывает, что галоидпроизводные алкилирунуг углеводороды в присутствии хлористого алюминия. Алкилирование парафинов ыло обнаружено Ипатьевым, показавшим, что насыщенные углеводороды, например гексан, алкилируются этиленом при 60— 70° и обыкновенном давлении над катализатором безводным хлористым алюминием с образованием алкил--замещенных парафинов. Хлористый алюминий способен расщеплять парафиновые цепи на части. Так как углерод - углеродные связи парафиновых и олефиновых цепей легко разрываются хлористым алюминием, то это может вести ак крекингу, превращениям в изомеры и другим реакциям. [c.625]

    Исследование углеводородов, содержащих радиоактивный углерод, методами масс-спектросконии позволило уточнить представления о подобных реакциях. Например, Эмметт и другие авторы [13—15] нашли, что олефины, образующиеся в первичной реакции крекинга, подвергаются многочисленным параллельным и последовательным превращениям, в отличие от образующихся парафинов, которые из-за небольшой длины цепи почти полностью инертны. Олефины с 6 и более углеродными атомами быстро крекируются, тогда как олефины С4 и Сд образуют высокомолекулярные полимеры, ароматические углеводороды и кокс. Этилен и бензол проявляют практически полную инертность. В другом эксперименте [16] в качестве сырья использовалась смесь радиоактивного пропилена и гексадекана, крекинг осуществлялся на алюмосиликате при 370 °С. Было найдено, что большая часть (=х90%) пропилена превратилась в пропан и продукты Сб—С12. Кроме того, из пропилена образовалась почти треть бензола (моль на 100 моль)  [c.78]

    Тепловой эффект крекинга имеет большое значение как с точки зрения практической, так и теоретической. Крекинг-процесс состоит из сложной последовательности реакций, одни из которых эндотермичны, а другие— экзотер-мичны, так что конечный тепловой эффект зависит от характера материала, подвергаемого крекингу, от температуры крекинга (которая до некоторой степени влияет на главенствующий тип реакций крекинга) и от степени разложения. Как правило, собственно реакции крекинга, такие, как например разрыв связи С— С, и реакции дегидрогенизации, как например дегидрогенизация циклогексана в бензол и этана в этилен, являются реакциями сильно эндотермичными. С другой стороны, реакции полимеризации обычно экзотермичны. Frey и Нерр показали, что при пиролизе низших парафинов с целью получения ароматических углеводородов вслед за быстрой начальной сильно эндотермической реакцией образования олефинов (которая сопровождается поглощением около 450 кал/т) следует более медленная реакция ароматизации, которая является экз. термичной (около 190 кал1г). Таким образом, следовательно, превращение олефинов в ароматические углеводороды состоит в ряде изменений, общий тепловой эф фект которых, несомненно, экзотермичен. [c.115]

    Непредельные углеводороды — этилен, пропилен, бутилен или изоамилен — реагируют с сероводородом в присутствии силикагеля при температуре от 650 до 725° В результате этой реакции получаются самые разнообразные соединения, как например водород, метан, этиленовые, насыщенные и ароматические углеводороды, меркаптаны, тиоэфиры, тиофен и его гомологи, а также сероуглерод. Меркаптаны образуются при взаимодействии непредельных углеводородов с сероводородом. Разложение мерка птанов ведет к образованию тиоэфиров, которые затем переходят в тиофен и его гомологи. Бутилсульфид, или бутилмеркаптан, был превращен в тиофен в присутствии силикагеля при 700 При более высоких температурах повышалось содержание сероуглерода. [c.462]

    Олефины. Основным направлением в превращении олефинов является гидрирование их в соответствующие предельные углеводороды. Закономерности гидрирования олефинов описаны в 46. С наибольшей скоростью присоединяют водород этилен и его низшие гомологи, поэтому газы гидрогенизации имеют предельный характер. С увеличением молекулярного веса скорость гидрирования понижается, и в первой ступени гидрогенизации, где расщепление идет не слишкОлМ глубоко и получаются относительно тяжелые продукты, обнаруживается присутствие значительного количества олефиновых углеводородов. Термодинамически, наиболее благоприятными для гидрирования являются низкие температуры, но, в отличие от ароматических углеводородов, где выше 300° равновесие смещено в сторону обратной реакции дегидрирования, олефины количественно превращаются в предельные углеводороды при температурах вплоть до 500° С, даже при низком парциальном давлении водорода. При темнературах выше 500° Изменение свободной энергии гидрирования олефинов АХтящ, [c.436]

    Олефины. Низшие олефины (этилен, бутилены) при 400° над алюмоси-ликатным катализатором изменяются сравнительно мало. Но уже при 500° бутилены подвергаются глубоким иревращениям в основном, это — распад, изомеризация, полимеризация и диспропорционирование водорода в результате наблюдается образование изобутилена и до 21 % жидких углеводородов. Аналогичные превращения претерпевают н. пентены и н. октилены, причем в жидком катализате обнаруживается наличие ароматических углеводородов, а в газообразных продуктах крекинга ок-тиленов — пропилен, бутилены, бутан и изобутан. [c.497]

    Не подлежит сомнению, что начальной стадией термического распада метана является диссоциация его на водород и различные органические радикалы Hg, Hg и СН. В зависимости от условий эти мимолетно образуюпциеся свободные радикалы либо распадаются дальше на элементы, либо конденсируются между собой с образованием высших углеводородов. Это последнее направление реакций представляет, конечно, совершенно исключительный интерес, открывая перспективы превраш,епия метана в жидкое топливо для двигателей внутреннего сгорания или в сырье для химической промышленности. Работы последнего времени, особенно Ф. Фишера и его сотрудников, установили полную возможность такого превращения метана [13]. Его основными условиями являются достаточно высокий нагрев метана и быстрое выведение продуктов реакции из области высокой температуры. Давление, повидимому, также способствует конденсации продуктов диссоциации. В получаемой таким образом жидкой смоле обнаружено присутствие жидких и твердых насыщенных и ароматических углеводородов (бензол, толуол, ксилол, нафталин и др.), в отходящих же газах найдены водород, этилен и ацетилен. Аналогичные результаты получены также нри действии на метан электрических разрядов, и едва ли можно сомневаться, что превращение метана в жидкие углеводороды займет со временем видное место среди различных методов рациональной утилизации естественного газа. [c.773]

    Таким образом, он предположил, что бензол может образоваться как по направлению 2, так и по направлению 1 (взаимодействие этилена и бутадиена). Исследования превращений гидроароматических углеводородов послужили истоками современной этилен-бутадиеново11 теории образования ароматических углеводородов в смоле. Кроме того, они очень тесно переплетались с пиролизом алифатических углеводородов, с выводами Габера, по- [c.76]

    Генерированием ароматических анион-радикалов в процессе трения экспериментально доказано весьма высокое каталитическое действие трущихся металлов на деструкцию углеводородов. Наиболее подробно основы такого действия рассмотрены в статье Эйхенса Исследования катализа применительно к граничному трению , включенной в фундаментальный обзор [8]. В этой статье рассматриваются результаты изучения каталитических превращений индивидуальных углеводородов на поверхностях разных металлов (этилен на никеле, палладии и иридии метан, н-пентан, 2,2-диметилбутан, циклогексан и циклогексен на никеле и др.) и возможная роль этих превращений в физико-химических процессах, развивающихся в условиях граничного трения. Например, в результате ИК-спектральных и других исследований для метана и этилена были предложены следующие схемы их хемосорбции и превращений на никеле  [c.82]

    Сырье пиролиза. При выборе сырья для установок пиролиза следует учитывать характер превращений, которым подвергаются различные классы углеводородов. При пиролизе нормальных алканов имеют место следующие основные закономерности этан почти полностью превращается в этилен, из пропана и бутана с большим выходом образуются этилен и пропилен, из алканов с числом углеродных атомов более 4 получают 45—50 % этилена, пропилен и непредельные углеводороды С4 и выше. При пиролизе изоалканов выход этилена меньше, образуется больше газообразных алканов и в особенности метана. Арены при умеренных температурах пиролиза являются балластом, а при более жестких в значительной степени образуют кокс и смолу. При пиролизе циклоалканов образуется заметное количество бутадиена (до 15 %). В промышленной практике на установках пиролиза обычно перерабатывают газообразные углеводороды (этан, пропан, бутан и их смеси) и жидкие нефтяные фракции (прямогонный бензин, бензин-рафинат с установок экстракции ароматических углеводородов — см. 53). Прямогонный бензин обладает преимуществами в сравнении с рафинатом, так как содержит в основном нормальные алканы, тогда как в рафинатах до 50 % изоалканов, при пиролизе которых, как уже указывалось, образуется много газа. В последние годы в качестве сырья крупнотоннажных этиленовых установок применяются в основном бензиновые фракции. Использование этого вида сырья позволяет получить наряду с низшими алкенами ценные ароматические углеводороды, сырье для производства технического углерода и нафталина. [c.189]

    И олефинов и следов бензола понышение температуры увеличивает образование жидких продуктов, а понижение содержания водорода увеличивает выход ароматических углеводородов. Эти же авторы сообщают об аналогичных результатах, полученных в присутствии платинового катализатора. Харичков [37] получил жидкие продукты, в состав которых входят олефины, при конденсации смеси ацетилена и водорода над никелем при 300°. Фишер, Петерс и Кох [38] нашли, что в контакте с железом при 300—350° смесь из 91 части водорода и 9 частей ацетилена претерпевает некоторое разложение ранее, чем начнется образование жидких продуктов. Сабатье и Сандерен [34] считают, что в реакциях подобного типа кобальт как катализатор занимает промежуточное положение между железом и никелем. Фишер, Петерс и Кох [38] конденсировали смесь из 10% ацетилена и 90% водорода при 250° над различными сплавами железа, никеля и меди, железа и меди, железа и никеля и получили 30—70Уо (в пересчете на ацетилен) жидких продуктов основным компонентом полученной смеси жидких продуктов был бензол. В случае сплава, состоящего из десяти частей хрома и одной части никеля, при тех же условиях конденсации, в легких фракциях преобладали ненасыщенные углеводороды. Фишер и Петерс [39] сообщают, что для наилучшего регулирования температуры реакции, металлический катализатор можно суспендировать в парафиновом масле или гидрированном метилнафталине. В этих условиях никель вызывает более сильное гидрирование и меньшую полимеризацию, чем в сухом состоянии при той же температуре при 250° образовалось только 28% масла, остальной ацетилен превратился в этилен и этан. Катализатор из сплава никеля и железа в отношении 1 9, действуя при 200° на смесь одной части ацетилена и двух частей водорода, дал примерно 75%, жидких углеводородов. Петерс и Нейман [40] изучали влияние железа, содержащего различные промоторы, на превращение 15  [c.227]

    Недавно мы наблюдали возникновение метеповых радикалов при термическом разложении циклогексана под влиянием контакта при невысокой температуре 300—330° (Зелинский и Шуйкин, 1934, [6]). На этом основании становится ясным, что сочетание метеновых радикалов между собой, завершенное присоединением двух метильных групп, ведет к синтезу предельных парафиновых углеводородов нормального строения. Этилен и ацетилен, возникшие также из метана дают полиметиленовые циклы, ароматические углеводороды и гидрированные многоядерные системы. Все они и находятся в нефти. Таким образом, метан, как продукт распада в метаболизме превращений органической материи, может вновь стать источником, ведущим к усложнению химических форм и образованию сложных углеводородов. Но и непредельные углеводороды, возникающие из метана,— этилен, пропилен и бутилен,— дают при кратковременном термическом воздействии на них (600—800°), большие выходы на горючие масла (35—40% от веса взятого олефина). [c.569]

    Ранее сообщалось, что некоторые химические превращения ПСС ускоряются в присутствии парамагнитных продуктов, которые образуются при различных полиреакциях или специально добавляются к диамагнитным веществам 1 -14б Полимеры, содержащие нарамагг нитные центры, могут образовываться при термообработке ароматических соединений, например антрацена Поскольку термодеструкция ПСС включает как одну из основных стадий процесс химического структурирования системы, можно полагать, что парамагнитная составляющая ПСС должна играть при этом существенную роль. Установлено, что при пиролизе антрафна добавка 1% парамагнитной фракции влияет на скорость образования полимеров, увеличивает общее количество газообразных продуктов и приводит к их качественному изменению (кроме насыщенных углеводородов в продуктах пиролиза появляются этилен, пропилен и бутадиен) [c.29]

    Вастола и Уайтмен рассматривали поведение ряда углеводородов в высокочастотном разряде. Ими были исследованы две группы соединений группа А- этан, метан, этилен и группа Б-ацетилен, бензол, нафталин. Основным продуктом превращения для обеих групп углеводородов были пленки толщиной в несколько тысяч ангстрем, содержащие углерод и водород. Все пленки дополнительно поглощали водород из водородного разряда и отношение Н/С в них приближалось к 1,6. Изучение их ИК-спектров показало, что пленки группы Б более ненасьшхенные, а в пленках группы А не обнаружено связей, характерных для ароматических соединений. [c.4]


Смотреть страницы где упоминается термин Этилен превращение в ароматические углеводороды: [c.371]    [c.111]    [c.34]    [c.18]    [c.54]    [c.198]    [c.168]    [c.90]    [c.161]    [c.272]    [c.168]    [c.773]    [c.138]    [c.74]    [c.140]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен к ароматическим углеводородам



© 2025 chem21.info Реклама на сайте