Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия активации орбитали

    Известно, что образование промежуточных пятикоординационных соединений в реакциях замещения квадратно-плоскостных комплексов металлов протекает с меньшей энергией активации для лигандов, склонных наряду с ст-донорным к л-дативному взаимодействию, обусловленному переходом электронов -орбиталей переходного металла на пустые или частично пустые орбитали лигандов. Эти представления позволяют разделить основания по их реакционной способности на два типа  [c.122]


    Чтобы диэлектрик (изолятор) стал проводить электрический ток, необходима энергия, достаточная для возбуждения электронов из заполненной зоны через межзонную щель в свободную зону молекулярных орбиталей. Эта энергия является энергией активации процесса проводимости. Лишь высокие температуры или чрезвычайно сильные электрические поля могут обеспечить энергию, необходимую для возбуждения значительного числа электронов, которые придают кристаллу проводимость. В алмазе межзонная щель (интервал между потолком заполненной, или валентной, зоны и низом свободной зоны, называемой зоной проводимости) составляет 5,2 эВ, т.е. 502 кДж моль . [c.631]

    При измерениях и расчетах по методу молекулярных орбиталей энергия активации для присоединения атома Н составила 8,5— 17 кДж/моль [55, 56], а для присоединения радикала СНз она равна 29—38 кДж/моль, т. е. менее 0,4 эВ на 1 молекулу. Такой энергетический барьер легко может быть преодолен возбужденными частицами (энергия возбуждения обычно больше 3 на 1 молекулу). [c.81]

    Энергия активации перегруппировки будет определяться разностью энергий соединения А и промежуточного комплекса В. Трехатомной структуре соответствуют три орбитали, одна из которых связывающая, а две другие вырожденные, разрыхляющие. В случае иона карбония, тенденция которого к перегруппировкам хорошо известна, имеются только два электрона, и они могут быть отнесены к самой низшей связывающей орбитали (рис. 23,1а). Свободный электрон радикала должен идти на одну из разрыхляющих орбиталей (рис. 23, 1 б), что увеличивает энергию радикала. Стабилизация и снижение энергии переходного состояния В достигается за счет перераспределения электронной плотности при движении мигрирующей группы. Это перераспределение в свою очередь определяется строением группы [336]. В то же время довольно легко протекающая 1,2-миграция атомов галогенов 293] не может быть объяснена на основании сказанного выше. [c.197]

    Энергия активации. Для того чтобы произошла химическая реакция при столкновении А и В, необходимо значительное перекрывание их орбиталей, а так как молекулы при их сближении отталкиваются, то для такого сближения необходимо затратить энергию, источником которой является как кинетическая энергия движения молекул, так и внутримолекулярная энергия. В газе в условиях равновесия существует максвелл-больцмановское распределение молекул по скорости (см. выше), и в соответствии с этим фактор частоты столкновений А и В с относительной скоростью от и до и + равен [c.76]


    Во всех рассмотренных случаях реакций с линейным трехцентровым активированным комплексом происходит разрыв одной химической связи. Если бы этот разрыв предшествовал образованию новой химической связи, то энергия активации реакции была бы равна энергии разрыва связи, а такие реакции могут идти лишь при достаточно высоких температурах. Между тем все приведенные и многочисленные другие реакции замещения идут с измеримой скоростью при комнатной или, по крайней мере, при умеренно высоких температурах. Следовательно, новая связь А—В начинает образовываться при еще не разорванной связи В—D. Значит взаимодействие А с В начинается, когда еще существует молекулярная а- или я-орбиталь, связывающая В с D. [c.282]

    При рассмотрении кинетических свойств внутриорбитальных комплексов видно, что диссоциативным механизмам реакций замещения, связанным с временным удалением замещаемого лиганда или с переходом его в слабо связанное состояние, должны соответствовать большие энергии активации и малые скорости процесса. Другой путь для реакций замещения открывается ассоциативными механизмами, для которых характерно временное присутствие обоих (уходящего и входящего) лигандов в связанном состоянии. При этом для связывания входящего лиганда в комплексе должна иметься акцепторная орбиталь. [c.33]

    Энергия, необходимая для разрыва связи С—X, поставляется за счет синхронного процесса образования связи С—Y. Взаимное расположение атомов, соответствующее максимуму на кривой свободной энергии активации, может быть изображено с помощью формулы 1. Естественно, реакция на этом не останавливается—это переходное состояние. Как только группа Y включается в соединение, группа X должна уйти, поскольку атом углерода не может иметь более восьми электронов на внешнем уровне. В переходном состоянии исходная sp -гибридизация центрального атома углерода изменяется на 5/ 2-гибридизацию с примерно перпендикулярной р-орбиталью. Одна доля этой р-орбитали перекрывается с нуклеофилом, а вторая — с уходящей группой. Поэтому механизм Sn2, в котором происходила бы фронтальная атака, никогда не наблюдался. В гипотетическом переходном состоянии с фронтальной атакой орбитали как нуклеофила, так и уходящей группы должны перекрываться с одной и той же долей р-орбитали. Механизм, в котором происходит атака с тыльной стороны, включает максимальное перекрывание орбиталей в ходе реакции. В переходном состоянии три нереагирующие группы и центральный атом углерода примерно [c.12]

    Тот факт, что Н , СНз, 2H и аналогичные анионы обладают большим транс-влиянием, указывает на значимость не только я-, но и ст-электронных эффектов. транс-Расположенные лиганды конкурируют за Рз -орбиталь Pt " , например, за Рх- Поскольку ст-орбитали Н", фосфинов, H и некоторых других лигандов перекрываются с ней очень сильно, то транс-расположенный лиганд становится относительно слабо связанным и легко замещается по механизму А. Действительно, в интермедиате MX LY входящий лиганд Y также относительно слабо связан орбиталью p , перпендикулярной плоскости комплекса. Так как обмен слабо связанных групп требует низкой энергии активации, то скорость его будет высока. Таким образом, за счет ст-транс-влияния должна уменьшаться и прочность, и инертность связи уходящего лиганда. Экспериментально наблюдаемый эффект, по-видимому, может быть или чистым а-транс-влиянием ( в случае Н , H ) или чистым я-транс-влиянием (в случае олефинов), или суммой двух эффектов (в случае S N", СО, га-логенид-ионов и т. п.). [c.152]

    Рассмотренный механизм гидролиза невозможен в случае тетрахлорида углерода, так как в L-оболочке атомов углерода нет вакантных орбиталей, а Зб(-орбитали слишком отличаются по энергии. Гидролиз U должен происходить по другому механизму с высокой энергией активации, а потому очень медленно. [c.493]

    Утверждение о том, что химическая реакция разрешена по симметрии или запрещена но симметрии , не надо понимать буквально. Если реакция разрешена по симметрии, это означает, что ее энергия активации мала. Такая реакция становится возможной, но это не значит, что она обязательно произойдет. Имеются дополнительные факторы, которые могут быть причиной возникновения существенного активационного барьера. К ним относятся стерические отталкивания, трудность подхода к реакционному центру и неблагоприятные относительные энергии орбиталей. Аналогично термин запрещенная по симметрии означает, что данная согласованная реакция будет иметь высокий активационный барьер. Однако по ряду причин такая реакция все же возможна например, она может протекать ступенчато, через промежуточные соединения. В таком случае она перестает быть согласованной реакцией. [c.314]

    Несмотря на то что такие расчеты выполняются теперь весьма просто при помощи стандартных программ для ЭВМ, подготовленных на различных уровнях, например хюккелевском, таким положение стало лишь недавно. По этой причине в течение 40—70-х годов наблюдалась значительная активность в области исследований реакционной способности органических соединений, направленная на развитие приближенных методов оценки энергии активации по методу молекулярных орбиталей. Имена Дьюара, Фукуи, Брауна, Хадсона и Клопмана — лишь некоторые нз многих, связанных с этой область о исследований. Поскольку эта работа привела к ряду важных концепций, в частности к понятию так называемой граничной орбитали, она сохраняет свое значение, несмотря на прогресс вычислительной техники. Основу всей этой работы составляет теория возмущений, которая была изложена в гл. 11 и которая будет использована в следующем разделе. [c.317]


    Многие согласованные реакции проходят при участии орбиталей, изображаемых в виде лепестков или долей (например, /)-орбитали). Мы отмечали в разд. 13.2, что две атомные орбитали могут быть связывающими пли разрыхляющими в зависимости от того, сближены ли доли с одинаковыми или противоположными знаками. Очевидно, что согласованные процессы, при которых сближаются доли орбиталей с одинаковыми знаками, и будут иметь низкую энергию активации. [c.537]

    В металлокомплексном Г. к. р-ции ускоряются в присут. комплексных соед. 11, Ре, Си, Р1 и др. переходных металлов, к-рые способны к образованию комплексов с молекулами субстратов. Каталитич. активность м.б. обусловлена след, факторами 1) пространств, близостью молекул субстратов, входящих как лиганды в координац. сферу металла, 2) ослаблением хим. связей в молекулах субстратов и снижением энергии активации при их разрыве 3) усилением вследствие электронных эффектов донорных или акцепторных св-в молекул субстратов, входящих в металло-комплекс 4) снятием запретов по симметрии молекулярных орбиталей благодаря участию ( -орбиталей метал- [c.592]

    Если имеется запрет по симметрии мол. орбиталей, препятствующий взаимод. молекул, то при р-ции в координац. сфере металла он может сниматься или значительно ослабляться. Во внутр. сфере процессы, протекающие через переходное состояние, м. б. разрещены и могут протекать с малыми энергиями активации, напр.  [c.43]

    Физическое взаимодействие не изменяет или очень слабо сказывается на строении взаимодействующих молекул. Но, кроме физического взаимодействия, молекулы очень часто образуют друг с другом молекулярные комплексы с участием определенных атомов и молекулярных орбиталей. Молекулярные комплексы делятся на два больших класса комплексы с водородной связью и комплексы с переносом заряда (КПЗ). Молекулярные комплексы занимают промежуточное положение между ассоциатами молекул, возникающими за счет физического взаимодействия, например диполь-дипольного притяжения, и молекулами. Физическое взаимодействие возникает в результате электростатического притяжения молекул, обладающих постоянным или наведенным диполем, Число взаимодействующих молекул, образующих ассоциат, может быть достаточно велико и меняться в зависимости от условий. Молекулярный комплекс имеет постоянный состав (чаще всего 1 1 или 1 2) если он меняется, то меняется и структура комплекса. Водородная связь в спиртах возникает путем взаимодействия группы О—Н с парой электронов атома кислорода другой молекулы. В отличие от молекул, которые образуются из других молекул в реакциях, протекающих с энергией активации, молекулярные комплексы образуются в процессах ассоциации, происходящих без энергии активации. Поэтому молекулярные комплексы находятся в равновесии с исходными молекулами. [c.337]

    Исключительная химическая активность фтора обусловлена, с одной стороны, большой прочностью образуемых им связей, так, энергия связи (Н—Р) == 566, (51—Р)= 582 кДж/моль, с другой стороны, низкой энергией связи в молекуле Ра [ (Р—Р) = 151 кДж/моль, ср. для СЬ = 238 кДж/моль]. Большая энергия связей Э-—Р является следствием значительной электроотрицательности фтора и малого размера его атома. Низкое значение энергии связи в молекуле Ра, по-видимому, объясняется сильным отталкиванием электронных пар,, находящихся на л-орбиталях, обусловленным малой длиной связи Р—Р. Благодаря малой энергии связи молекулы фтора легко диссоциируют на атомы и энергия активации реакций с элементным фтором обычно невелика, поэтому процессы с участием Ра протекают очень быстро. Известно много прочных фторндных комплексов ([Вр4] , [81Рб] ", [А1Рб] и др.). Большое значение АО/ обусловливает малую реакционную способность координационно насыщенных соединений фтора (5Рб, Ср4, перфторалканы и др.). [c.469]

    Установлено, что энергия активации вязкого течения увеличивается с понижением ПИ и роста СЭ соответствующих систем. На основании представленных результатов можно сделать неожиданный вывод, что вязкое течение полисопряженных ньютоновских углеводородных жидкостей связано с сильным химическим обменным взаимодействием или процессом переноса заряда. Таким образом, ньютоновское ючение жидкостей, содержащих п-электронные ароматические или непредельные соединения, связано с коллективным химическим взаимодействием частиц. Чем выше энергия химического взаимодействия молекулярных орбиталей, тем выше вязкость жидкости. Изложенное не прогиворе-чит существующим взглядам на природу жидкого состояния, как системы слабых химических связей [35] и решеточной теории растворов полимеров [c.102]

    Радикал (38) более стабилен и, следовательно, образуется с меньшей энергией активации. Это объясняется следующими причинами. В свободном радикале (38) неспаронный электрон, занимающий р-орбиталь, взаимодействует с электронами, находящимися на 5р -орбиталях соседних связей С—Н. В результате такого взаимодействия у связей С—Н усиливается тенденция к гомолитическому разры , а у атомов водорода — способность к отщеплению в виде Н [условно изображается [c.33]

    Обычно 2о 10 > смз/молекула-с или 10 л/моль-с. Как правило, химическая реакция протекает с энергией активации, поэтому в превращении участвуют только такие пары столкнувшихся частиц, энергия столкновения которых, переходя в потенциальную, равна или превышает Е. Если в активации участвует только кинетическая энергия столкнувшихся частиц (точнее, кинетическая энергия движения частиц вдоль оси, соединяющей центры их масс), то доля таких столкновений, согласно закону Больцмана, равна е Е/ят Кроие того, многоатомные частицы могут прореагировать, если они должным образом ориентированы друг относительно друга при столкновении. Необходимость взаимной ориентации частиц вытекает из того, что для реакции необходимо перекрывание определенных атомных орбиталей—частицы реагируют своими реакционноспособными участками. Например, для реакции СН с СВ необходима следующая ориентация  [c.61]

    Благоприятная ситуация существует для перекрывания л1- и Я2-орбиталей (в), которые соответствуют друг другу по симметрии. Однако чтобы электроны могли попасть на образующуюся орбиталь, они должны оказаться либо на л -, либо на лгорбитали, т.е. одна из молекул этилена должна быть электронно возбуждена. Это. сопряжено с затратой большой энергии, и акой процесс может идти лишь с высокой энергией активации. [c.285]

    Особый интерес представляет реакционная система К + Оз. Казалось бы, в соответствии со старыми представлениями молекула — бирадикал О2 должна легко взаимодействовать с N2, но этого не происходит. Здесь для образования активированного комплекса электрон должен переходить в ВЗМО азота на НСМО кислорода, поскольку СЭ молекулы О2 выше, чем у молекулы N2. Однако переход с ст2д -орбитали N3 на % — п -орбиталь О2 запрещен по симметрии. Обратный переход с л = л -орбитали О2 (она заполнена наполовину и может играть роль как НСМО, так и ВЗМО) на НСМО молекулы азота симметрии к = = л разрешен по симметрий, однако он невозможен по химическим соображениям [СЭ(02)>СЭ(М2)]. Кроме того, уход электронов с разрыхляющей 71 = 71 -орбитали О2 только упрочил бы связь в молекуле вместо того, чтобы ослабит , ее, как происходит при образовании активированного комплекса. Итак, реакция запрещена по симметрии, вследствие чего энергия активации равна 390 кДж/моль. Вот почему в атмосфере оба газа миллионы лет существуют без взаимодействия (исключая мгновения грозовых разрядов). [c.147]

    Во многих расчетах величины у принимают одинаковыми для всех МО данной молекулы. Тогда в качестве индекса реакционной способности вместо О используют безразмерную веЗшчину 5 = В(—Р)/у где Р —резонансный интеграл между связывающими углеродными зр -гибридизованг ными орбиталями двойной связи С = С. Индекс реакционной способности называется способностью к делокализации. В гомологических рядах органических молекул увеличение способности к делокализации симбатно уменьшению энергии активации реакции (табл. 13). [c.196]

    Главная особенность перициклических реакций — возможность выделения циклической системы базисных орбиталей в промежуточной между исходными реагентами и продуктами молекулярной конфигурапли или комплексе. Если такая циклическая система орбиталей оказывается изосопряженной с ароматической Ад + 1)-ал-стемой, как, например, в структуре III (см. разд. 13.1.1), соответствующее переходное состояние можно рассматривать как ароматическое, т. е. стабилизированное. Такая реакция должна протекать с малой энергией активации и относится к разрешенным по симметрии. [c.506]

    НОВНОМ СОСТОЯНИИ, требуют, как правило, низких энергий активации. К числу разрешенных циклоприеоединений относится реакция (tTjл )-црисоединения при геометрии сближения III. На рис. 13.5 показана орбитальная корреляционная диаграмма для реакции циклоприсоединения бутадиена и этилена, а на рис. 13.6 приведены данные неэ ширического расчета, позволяющего проследить действительный характер изменений энергетических уровней основных взаимодействующих орбиталей в ходе данной реакции. [c.501]

    В большинстве соединений кремний образует только простые связи. Кратные связи, столь типичные для углерода, в химии кремния являются редкостью. Тем не менее имеются данные, позволяющие утверждать, что атом кремния способен иногда использовать свободные -орбитали для образования dn—ря-связей. Такая связь, по-видимому, существует в трисилиламине Н(51Нз)з. в котором 2рг-орбиталь атома азота перекрывается с пустой -орбиталью атома кремния. Это дополнительное связывание способствует образованию плоской формы молекулы, тогда как молекула аналогичного соединения углерода Ы(СНз)з имеет форму пирамиды. В твердом кремнии энергии связи между атомами довольно прочны велики и значения энергии активации реакций с участием свободного кремния. [c.168]

    При соединении двух частиц по мере их сближения атомные орбитали начинают перекрываться и переходят в молекулярные орбитали — связывающую и разрыхляющую. Ехлн на исходных атомных орбиталях имелось в сумме два электрона, то образуется прочная химическая связь и ее образование не связано с преодолением какого-либо энергетического барьера. В табл. 7 приведены значения предэкспоненциальных множителей и энергий активации для некоторых реакций рекомбинации свободных радикалов (гомолитическая рекомбинация). Энергия активации, в соответствии со сказанным, близка к нулю. Предэкспоненциальные множители имеют при рекомбинации несложных свободных радикалов значе- [c.138]

    Новый подход к обсуждению синхронных реакций был введен с предложением использовать корреляционные диаграммы [3, 17].Этот подход сосредотачивает внимание па орбитальной симметрии как реагентов, так н продуктов м рассматривает свойства симметрии всех орбиталей. В любом синхронном процессе орбитали исходного вещества должны превратиться в орбитали продукта, имеющие такую же симметрию, т. е. в синхронных реакциях происходит сохранение орбитальной симметрии. Если в синхронной реакции связывающие орбитали исходного вещества превращаются в связывающие орбитали продукта такой же симметрии, то реакция будет протекать с низкой энергией активации, и говорят, что она разрешена. Если же связывающие орбитали реагирующего вещества коррелируют с антисвязывающими орбиталями продукта, то реакция энергетически неблагоприятна, так как она приводит к молекуле в возбужденном состоянин, и говорят, что реакция запрещена. [c.383]

    Если известна геометрия реагирующих молекул и переходного состояния, то можно непосредственно рассчитать энергию активации при помощи метода молекулярных орбиталей. Для этого просто рассчитывают полную энергию активированного комплекса и полную энергию вступающих в реакцию молекул разность между ними и есть интересующая нас величина. Чтобы все это имело отношение к экспериментальной ситуации, необходимо предположить, что метод молекулярных орбиталей (который, как следует подчеркнуть, не дает точного решения уравнения Шрёдингера) вносит одну и ту же погрешность для реагирующих молекул и продуктов реакции. Следует также принять во внимание любые усложнения, вносимые окружающей средой, как, например, влияние растворителя. [c.314]

    Аллилбромид СН2 = СН—СНа—Вг — первичный галогенид, реагирует по 5к2-типу несколько быстрее этилбромида и гораздо быстрее неопентилбромида (табл. 5-1). Поскольку этилбромид принят нами за стандарт (согласно табл. 5-1, относительная скорость его реакции равна 1), мы должны полагать, что в случаеаллилбромида 8ц2-реащия ускоряется. Почему это происходит Простейший ответ, который, однако, порождает и новый вопрос, состоит в том, что реакция ускоряется вследствие стабилизации переходного состояния 2-процесса (понижение энергии активированного комплекса и соответственно уменьшение энергии активации процесса). Теперь надо задать следующий вопрос Почему активированный комплекс 8к2-реакции в случае аллилбромида обладает меньшей энергией, чем в случае этилбромида Предполагают, что стабилизация активированного комплекса в реакциях с участием аллилбромида осуществляется благодаря взаимодействию (перекрыванию) я-электронной системы с образующимися и разрывающимися в этом комплексе связями. Точное обоснование того, что перекрывание я-орбиталей стабилизирует переходное состояние, не может быть сделано без детальных математических выкладок. [c.174]

    Фотохимическое циклоприсоединение этилена к этилену включает перекрывание ВЗМО фотовозбуждепной молекулы этилена с НСМО второй молекулы в основном состоянии. ВЗМО фотовозбужденного состояния — это я -орбиталь как показано ниже, такое взаимодействие приводит к связыванию как таковому и разрешено по симметрии. Вот почему фотохимическая димернзация этилена имеет низкую энергию активации. [c.544]

    Почему же обращение конфигурации у атома азота производных азириди-на происходит медленнее, чем в случае простых ациклических аминов Ответ на этот вопрос следует искать в напряжении валентных углов, которое создается в результате превращения зр -орбитали азота трехчленного цикла в другую 8р -гибридную орбиталь через Ар -гибридизованное плоское переходное состояние. Возрастающее напряжение при этом требует сравнительно высокой энергии активации для обращения пирамидальной конфигурации. С другой стороны, ациклические амины не претерпевают какого-либо значительного увеличения энергии напряжения при переходе от пирамидальной конфигурации у азота к плоской конфигурации поэтому обращение в данном случае протекает очень легко. [c.208]

    Р-ции, протекаюпше в жидкой фазе, чрезвычайно разнообразны как по строению реагентов, так и по механизмам превращения (с.м. Реакции в жидкостях). При диссоциации молекулы на свобод, радикалы и атомы наблюдается клетки эффект. Медленная (в сравнении с газом) диффузия частиц в жидкости щзиводит к тому, что безактивационные бимолекулярные р-ции протекают как диффузионно-контролируемые реакгрш. Р-ции, имеющие значит, энергию активации, протекают, как правило, в кинетич. режиме. Реагенты в р>-ре часто образуют между собой мол. комплексы и разнообразные ассоциаты. Это отражается на кинетике р-ции и часто существенно меняет кинетич. закономерности процесса. Полярный р-ритель облегчает ионизацию молекулы, в р-ре появляются контактные и разделенные ионные пары. Возникает вероятность параллельного протекания р>-ции по разным механизмам. Нередко, однако, р-ния прютекает по мол. механизму как самосогласованный процесс перестройки мол. орбиталей реагирующих частиц (см. Вудворда Хофмана правила). Окислит.-восстановит. р>-ции могут происходить в жидкости по механизму квантового туннелирования (см. Туннельный эффект). [c.382]

    Если В синхронной реакции связывающие орбитали молекул исходного вещества превращаются в связывающие орбитали продукта такой же симметрии, то реакция будет протекать с низкой энергией активации, и говорят, что она разрешена Если же связывающие орбитали реагирующего соединения коррелируют с антисвязываюпцши орбиталями продукта, то реакция энергетически неблагоприятна, так как она приводит к молекуле в возбужденном состоянии, и реакхщя запрещена [c.328]

    Исследование электронных спектров поглощения, кислотно-основных свойств в ряду лигандов 7.3, а также реакций этих лигандов с пиридином показывает, что при движении слева направо происходит сближение граничных орбиталей (ВЗМО и НВМО), сильная поляризация ЫН-связи вплоть до возможности ее полной внутримолекулярной ионизации у фталоцианина [28-33], бром- и сульфозамещенных тетра-азапорфина [34, 12]. В результате этого исчезает наиболее энергоемкая составляющая энергии активации - растяжение ЫН-связей в переходном состоянии (7.2) и создаются условия для стабилизации электронных пар атомов азота в дианионах ТБП , ТАП " и Фц ", возникающих, как мы предполагали, на стадии переходного состояния. Точнее, электронная составляющая МЦЭ стабилизирует переходное состояние и благоприятствует протеканию реакции (7.1). [c.333]

    Ускорение реакции С—Н-связи с озоном под действием нагрузки объясняется следующими обстоятелы твами. В молекуле полимера каждый атом С имеет sp -гибридизацию орбита-лей, в силу чего угол ССС равен 109°. Реакция озона с G—Н-связью сопровождается образованием радикала, где для атома С характерна уже 5/ 2-гибрш1изация орбиталей с углом ССС в 120°. Под влиянием нагрузки происходит деформация углов ССС в сегментах макромолекулы в проходных цепях. Это снижает энергию перегибридизации у атома углерода атакуемой С—Н-связи и соответственно энергию активации. Нагрузка повышает энергию таких участков макромолекулы - следовательно, снижает активационный барьер. Установлена четкая симбатность в том, как механическая нагрузка в полимере и деформация углов С—С-связей в циклических углеводородах отражаются на реакционной способности С—Н-связей в их реакции с озоном. Нагрузка ускоряет также реакцию озона с двойными связями и гидролиз полиамидов парами воды. [c.244]


Смотреть страницы где упоминается термин Энергия активации орбитали: [c.140]    [c.182]    [c.366]    [c.501]    [c.141]    [c.248]    [c.1871]    [c.1886]    [c.2202]    [c.366]    [c.200]    [c.265]   
Современная неорганическая химия Часть 3 (1969) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия активации



© 2025 chem21.info Реклама на сайте