Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомные орбитали спектры

    Чтобы применить полученные результаты для обсуждения электронного строения двухатомных молекул, нужно знать относительные энергии всех молекулярных орбиталей. Порядок устойчивости отдельных орбиталей можно установить экспериментально по молекулярным спектрам в УФ-области. Теоретически удается воспроизвести такую картину, если учесть взаимодействия различных атомных орбиталей, имеющих одинаковую симметрию. Так, например, если разность энергий между 25- и 2р-состояниями невелика, то при построении молекулярной (т-орбитали их необходимо учитывать совместно. В результате возникнут МО, не имеющие чистого 5- или р-характера, с некоторыми гибридными функциями, аналогичными тем, которые были введены в методе ВС. Не вдаваясь в дальнейшие подробности, перейдем непосредственно к окончательному виду энергетической диаграммы. На рис. П1.22 слева и справа находятся атомные уровни, которые при взаимодействии дают систему молекулярных уровней, изображен- [c.188]


    Таким образом, общие и специфические свойства определяются схожестью электронного строения атомов ( в свободном или связанном состоянии), проявляемой в близости радиусов, величин электроотрицательности атомов, в изоморфизме соединений, равенстве и однотипности валентных возможностей атомов и т. д. Индивидуальные свойства — это свойства, присущие только данному атому это результат проявления всех особенностей его электронной структуры, его заряда ядра и всех вытекающих особенностей (энергии, геометрии атомных орбиталей). Электронная структура атома в свободном состоянии индивидуальна, неповторима. Атом занимает определенное место в непрерывном ряду элементов и обладает физической индивидуальностью спектром, атомной массой, набором изотопов и т. д. и т. п. [c.48]

    Фотоэлектронный спектр метана [13] имеет две полосы [14] — при 23 и 14 зВ, а не одну полосу, как можно было бы ожидать, исходя из представления об эквивалентности четырех связей С—Н. Причина этого заключается в том, что обычной р -гибридизацией нельзя адекватно объяснить процессы, происходящие в ионизованных молекулах (таких, как ион-радикал СН +, остающийся после выброса электрона из молекулы метана). В этих процессах участвуют иные комбинации атомных орбиталей (разд. 1.3). Полоса при 23 эВ соответствует двум электронам с низкоэнергетического уровня (называемого уровнем й]) можно считать, что он возникает в результате комбинации 2з-орбитали атома углерода с подходящей комбинацией Ь-орбиталей атомов водорода. Полоса при 14 эВ соответствует шести электронам трижды вырожденного уровня (называемого уровнем г), возникающего в результате комбинации трех 2р-орбиталей углерода с другими комбинациями 15-орбиталей водорода. Как уже говорилось, в большинстве физических и химических процессов эти уровни неразличимы, но фотоэлектронная спектроскопия позволяет их различить. [c.26]

    Согласно П. п., в атоме не м. б. двух электронов, характеризуемых одинаковыми наборами всех четырех квантовых чисел и, I, ГП1, ш , т. е. одну и ту же атомную орбиталь (при заданных п, I, ГП1) не могут занимать электроны в одинаковом спиновом состоянии. Поскольку у электрона возможны только два спиновых состояния, характеризуемые спиновыми квантовыми числами -Ь /г и — /г, то одну орбиталь могут занимать не более двух электронов. П. п. позволил дать совр. интерпретацию периодич. закона Менделеева он имеет важнейшее значение для объяснения атомных и молекулярных спектров, для квантовой теории тв. тела, теории ядра, ядерных р-ций и р-ций с участием элементарных частиц. Ю. А. Пентан [c.424]


    Антифазная структура спектра ЭПР спин-коррелированных РП (см. рис. 4) также может быть наглядно представлена в терминах неравновесной заселенности спиновых уровней спин-коррелированных РП. Подробнее этот вопрос будет обсуждаться в следующей лекции в связи с изучением спектров ЭПР состояний с разделенными зарядами в реакционном центре фотосинтеза. Для объяснения упомянутых выше осцилляций интенсивности линий ЭПР спин-коррелированных РП уже оказывается недостаточно привлекать неравновесные населенности спиновых уровней энергии. Для этого надо учитывать квантовую когерентность в состоянии спинов РП. Мы еще вернемся к вопросу о спиновой когерентности в РП. Пока только поясним кратко, о чем идет речь. Пусть система может находиться в двух стационарных состояниях и ср . Система может тогда находиться и в состоянии линейной суперпозиции (р= + В этом состоянии с , к = 1, 2 дает вероятность найти систему в А -ом стационарном состоянии. Величина характеризует когерентность состояния. Те, кто знакомы с методом молекулярных орбиталей в теории электронного строения, могут заметить, что можно провести аналогию между квантовой когерентностью в суперпозиционных квантовых состояниях и порядком связи в методе молекулярных орбиталей, выбранных в виде линейной суперпозиции атомных орбиталей. [c.95]

    Два или большее число атомов могут образовывать связь, если они обобществляют между собой пару электронов. Наиболее известная связь такого типа — когда объединяются два электрона от двух атомов (по одному от каждого). Двухэлектронная связь возникает в результате увеличения электронной плотности между двумя ядрами. Можно себе представить, что каждое из ядер прочно связано с двумя электронами, и в результате оба ядра удерживаются в непосредственной близости друг от друга. Связь, которая требует взаимодействия (или перекрывания ) двух атомных орбиталей атомов, вовлеченных в связь, называется ковалентной связью. Электронная пара в этой связи поделена между двумя атомами . В конечном счете ионные и ковалентные связи представляют два крайних случая в спектре типов связей (рис. 2-6). Промежуточной является поляризованная ковалентная [c.31]

    Реальная схема первоначально ие была выведена нз к.-л. строгих теоретич. представлений. Оиа основывалась иа известных хнм. св-вах элементов н сведениях об нх спектрах. Действит. физ. обоснование реальная схема получила благодаря применению методов квантовой механики к описанию строения атомов. В квантовомех. интерпретации теории строения атомов понятие электронных оболочек и подоболочек прн строгом подходе утратило свой исходный смысл ныне широко используется представление об атомных орбиталях. Тем не меиее разработанный Бором принцип физ. интерпретации явления периодичности не потерял своего значения н в первом приближении достаточно исчерпывающе объясняет теоретич. основы П. с. Во всяком случае, в публикуемых формах изображения П.с. отражается представление о характере распределения электронов по оболочкам н подоболочкам. [c.484]

    Изучение переходов разл. серий во всех атомах, образующих исследуемое соед., позволяет детально определить структуру валентных уровней (или зон). Особенно ценную информацию получают при рассмотрении угловой зависимости интенсивности линий в эмиссионных спектрах монокристаллов, т.к. использование при этом поляризованного рентгеновского излучения существенно облегчает интерпретацию спектров. Интенсивности линий рентгеновского эмиссионного спектра пропорциональны заселенностям уровней, с к-рых совершается переход, и, следовательно, квадратам коэф. линейной комбинации атомных орбиталей (см. Молекулярных орбиталей методы). На этом основаны способы определения этих коэффициентов.  [c.240]

    Большое влияние на цвет орг. соед. оказывает присутствие в его структуре металла. При образовании комплекса создаются новые возможности электронных переходов, обусловливающие появление новых полос поглощения в спектрах комплексов. Появление этих полос связано с переносом электрона с высшей занятой МО (ВЗМО) орг. молекулы (лиганда) на своб. атомную орбиталь металла, с переходом -электрона металла на НЕМО лигавда ( ->я -переход), а также с возможностью - -перехода, к-рый возникает благодаря Синтию вырождения с вакантных -орбиталей металла под влиянием поля лигавда. Обычно - -переходы существенно на цвет комплексов не влияют, т. к. их полосы большей частью находятся в ИК области спектра [c.329]

    Из фотоэлектронных спектров (рис. 32.2) получают важную информацию, касающуюся энергий связи атомных орбиталей, энергий процессов встряхивания и стряхивания, энергии валентных электронов, распределения неспаренных электронов, спиновых состояний, идентификации структурных факторов, неоднородностей поверхностного слоя образца и области, прилегающей к этому слою. [c.140]


    Можно отложить изучение всей гл. 2 или некоторых ее частей до ознакомления с гл. 5, посвященной описанию органических молекул в терминах атомных орбиталей,— вопроса, который существен для понимания электронных спектров, или наоборот, с материалом гл. 5 можно ознакомиться прежде, чем с главами 2—4. [c.33]

    Интенсивность d — /-переходов в электронных спектрах. Еще одно указание на то, что орбитали металла и лигандов взаимно перекрываются и d-орбитали центрального иона не являются чистыми орбиталями металла, следует из анализа интенсивности полос поглощения, обусловленных d—d-переходами. Если бы предположения теории кристаллического поля были справедливы, то причиной, объясняющей заметную интенсивность соответствующих им полос поглощения, могло быть только взаимодействие волновых функций d-орбиталей с колебательными волновыми функциями комплексного пона и смешение d-орбиталей с другими орбиталями иона металла (в комплексах, не имеющих центра симметрии, например в тетраэдрических). Однако бывают случаи, когда указанными причинами нельзя объяснить наблюдаемую интенсивность полосы поглощения. Остается предположить, что существует еще один механизм, приводящий к появлению запрещенных переходов,— это смешение d-орбиталей металла с различными атомными орбиталями лигандов. [c.88]

    Ранее мы уже убедились, что спектральные данные помогают разобраться в энергетических состояниях атомов. На основании этих данных можно определить энергетические уровни для различных электронных состояний атомов и понять характер атомных орбиталей, на каждой из которых размещаются не более двух электронов с определенной энергией. Такие представления позволяют дать качественное объяснение экспериментальных данных о свойствах атомов. Возможно, спектры поглощения молекул могут дать подобные сведения об их вращательных и колебательных энергиях. Но в какой области спектра следует пытаться найти нужную для этого информацию Этот вопрос обсуждается в гл. 8. [c.265]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Был исследован [9] МБ-спектр нитропруссида натрия Na2Fe( N)5NO. Поскольку этот комплекс диамагнитен, его рассматривали ранее как содержащий железо(П) и N0 . МБ-спектр представляет собой дублет с AEQ и 6, равными соответственно 1,76 и —0,165 мм/с. Сопоставление последней величины с опубликованными результатами [8] для ряда комплексов железа позволило заключить, что она близка к величине 6 железа(1У). МБ-спектр и магнетизм согласуются со структурой, в которой имеет место интенсивное л-связывание неспаренного электрона на совокупности 2 -орбиталей железа с неспаренным электроном азота, как это показано на рис. 15.8. Для возникновения железа (IV) в заполненную связывающую я-орбиталь должна давать большой вклад атомная орбиталь азота, а в вакантную разрыхляющую я-орбиталь — атомная орбиталь железа. Поскольку экранирование -электронов -электронами снижается, на азоте должна локализоваться большая я-электронная плотность, а величина 5 железа должна приближаться к величине 5 железа (IV). Так как электронная плотность находится там, где ранее была разрыхляющая я-орбиталь окиси азота, наблюдается снижение частоты валентного колебания N — О в инфракрас- [c.300]

    Сравнительно недавно [27] были получены спектры РФС газообразных веществ, ранее исследуемых методом УФС. Полученные интересные результаты основаны на относительных поперечных сечениях фотоионизащ1и валентных электронов в зависимости от энергии источника. Например, для рентгеновского излучения с больщей энергией электроны на молекулярной орбитали, составленной главным образом из атомных 5-орбиталей, имеют более высокое относительное поперечное сечение (и, следовательно, большую интенсивность спектральной линии), чем электроны на молекулярной орбитали, составленной в основном из атомных 2р-орбиталей. Сопоставление спектров РФС и УФС указывает на различные относительные интенсивности соответствующих пиков. Пик, обусловленный электронами на молекулярных орбиталях, составленных главным образом из атомных орбиталей 5-типа, имеет большую относительную интенсивность в спектре РФС, чем в спектре УФС. [c.340]

    Источником монохроматического излучения обычно служит разряд в атмосфере гелия при низком давлении с йу = 21,22 эВ [линия Я. = 58,4 нм (584А)]. Кванты данной энергии выбивают электроны не только с ВЗАО, но и других, не очень глубоко лежащих АО, что позволяет измерять ПЙ с разных атомных орбиталей. Для определения ПИ с более глубоких АО используется особая ламти с разрядом в гелии с йу = 40,7 эВ [линия Х= 30,4 нм (304А)]. Для этих же целей используется и рентгеновское монохроматическое излучение (РЭС). В спектре каждому орбитальному ПИ отвечает свой пик. При ионизации с вырожденных АО интенсивность выше, так как вероятность ионизации возрастает (например, для атома азота она втрое выше с р-АО, чем с 5-АО). ФЭС и РЭС используются и для исследования молекул, где наряду с орбитальной энергией они дают сведения о колебательных состояниях молекул, их структуре и т. н. [к-7] и [к-39]. Метод ФЭС" (РЭр является мощным средством для изучения электронной структуры вещества — атомов, молекул, твердых тел. Особое значение он приобрел для исследования химической связи и для элементного химического анализа —электронная спектроскопия для химического анализа (ЭСХА) [к-41]. [c.59]

    Поглощение частицами электромагнитного излучения происходит квантами и сопровождается переходом их в возбужденное состояние, отличающееся от исходного на величину /IV. Поэтому поглощение может произойти лишь в том случае, если у частицы существует состояние с энергией, отличающейся на величину /гv от исходного (как правило, основного) состояния. Поглощение электромагнитного излучения в ультрафиолетовой, видимой и близкой инфракрасной области спектра (К = 100 1000 нм) сопровождается возбуждением электронов, т. е. переходом одного из них на вакантную молекулярную или атомную орбиталь. Поглощение излучения в средней инфракрасной области (А. = 3000 ч- 30 ООО нм) сопровождается переходом молекул на более высокие колебательные уровни энергии. В соответствии с этн.м спектры поглощения в ультрафиолетовой, видимой и ближней инфракрасной областях являются электронными пeктpa пI, а спектры в средней инфракрасной области — колебательными спектрами. [c.35]

    Потенциалы ионизации. Сложность уравнения Шредингера не дает возможности строго рассчитать энергию орбиталей многоэлектронных атомов. В связи с этим разработан ряд приближенных методов, которые требуют применения быстродействующих электронных счетных машин, однако погрешности получаемых результатов большие. Поэтому по точности теоретический расчет энергий атомных орбиталей не может пока конкурировать с экспериментальными способами. Наиболее разработанными и универсальными методами экспериментального определения эргергий атомных орбиталей являются спектроскопические. Спектры атомов, как известно, представляют собой совокупности серий спектральных линий, причем каждая из таких серий отвечает переходам электронов с различных удаленных орбиталей (в том числе и из бесконечности) на одну из близлежащих к ядру. При этом самой коротковолновой границе спектральной серии, которая характеризует переход электрона из бесконечности на ближайщую к ядру незанятую орбиту (переход в основное состояние), будет соответствовать выделение энергии, численно равной энергии отрыва электрона, т. е. энергии ионизации, или потенциалу ионизации [c.215]

    Тогда Я, = (е —а)/ , <0. Кроме того, собственные векторы у матриц аЕ + рА и А одинаковы. Следовательно,. задача исследования свойств модельной я-электронной системы сводится к анали.чу спектральных характеристик матрпны смежности некоторого МГ. Эту матрицу иногда называют топологической, подчеркивая тем самым, что она описывает лишь бинарное отношение на базисном множестве атомных орбиталей, определяемое признаком наличия химической связи. Собственные значения матрицы А дают информацию о спектре электронов. [c.31]

    Есть две области, в которых молекулярные орбитали оказались полезными для химии. Первая — это область качественных оценок, когда достаточно лишь в обохих чертах знать форму и симметрию молекулярной орбитали, а также ее приближенную энергию, чтобы дать правильное отнесение спектра или интерпретацию механизма химической реакции. Вторая — это область количественных расчетов некоторых молекулярных свойств для предсказания или подтверждения результатов химических наблюдений. Для количественных расчетов главное обычно заключается в получении наиболее точного представления молекулярных орбиталей в виде разложения (6.2). При этом в разложении учитывается много базисных атомных орбиталей. Для качественных оценок главным является получение минимального разложения, дающего удовлетворительные результаты для той задачи, которая поставлена. В этой книге основное внимание будет уделено качественному аспекту. Из дальнейшего изложения будет видно, что качественно удовлетворительные результаты можно получить с так называемым мини- [c.88]

    Относит, интенсивности полос фотоэлжгронных спектров позволяют качественно судить о составе атомных орбиталей, линейная комбинация к-рых образует данную мол. орбиталь (см. ЛКАО-приближение). Интенсивность полосы /мot связанной с нек-рой мол. орбиталью, определяется интенсивностями полос связанных с атомными орбиталями АХ, и заселенностями этих орбиталей (по Малликену)  [c.185]

    ПИКОВ (напри.мер, переход 2р- 8 в меди). Это означает, что в металлической меди 2р- и )5-орбитали ивляются дискретными атомными орбиталями. Переходы е участием внешних валентных электронов регистрируюгся в ви.те широких полос, особенно в спектрах металлов. Это означает, что валентные электроны характери, уются широким спектром энергий, и, следовательно, электроны находятся на делокализованпы.х уровнях в энергетических зонах. [c.67]

    Переходы молекулы из одного состояния в друтое сопровождаются перераспределением электронной плотности. Имеется несколько способов разделять наблюдаемые переходы по типам изменений, происходящих в молекуле под действием электромагнитного излучения. Электронные спектры поглощения молекул, наблюдаемые в УФ- и видимой областях спектра, связаны, главным образом, с возбуждением электронов валентной оболочки. Принято считать, что при возбуждении меняется состояние (энергия и волновая функция) только одного электрона. Одноэлектронные волновые функции молекулы (молекулярные орбитали) принято обозначать в соответствии с типом связи между атомами. Орбитали, симметричные относительно оси связи, обозначаются а. Если орбитали не меняют знака вдоль связи, они являются связывающими. Им соответствуют наиболее глубоко расположенные энергетические уровни. Электроны, находящиеся на этих орбиталях, обеспечивают а-связь между атомами. Если а-орбиталь меняет знак между связываемыми атомами, она является разрыхляющей и обозначается а. Соответствующий ей энергетический уровень расположен много выше уровней орбиталей несвязанных атомов. Орбитали, меняющие знак на оси связи, обозначаются как тг-орбитали, которые тоже могут быть как связывающими (тс), так и разрыхляющими (тг). Уровни этих молекулярных орбиталей расположены соответственно ближе к уровням несвязывающих атомных орбиталей. При возбуждении могут меняться и состояния электронов, не участвующих в связи, орбитали которых локализованы на отдельных атомах ( -электроны). В спектрах комплексов ионов переходных металлов участвуют электроны, расположенные на с1-орбиталях. Электронные переходы обычно обозначают символами, соответствующими исходному и конечному одноэлектронным состояниям (например, а->а, тг->тг, п- а, и—). Однако по мере увеличения числа атомов в молекуле классификация электронньгх переходов усложняется. [c.221]

    Преимущества П. м.— относит, простота вычислений и легкость качеств, иатерпретации их результатов. Эти методы дают удовлетворит, результаты для рядов родств. соединений, для к-рых параметры одинаковы. Часто качеств. выводы не зависят от выбора параметров, и тогда они наиб, надежны. Совр. качеств, теория физ. и хим. св-в сопряженных орг. систем основана на методах Хюккеля и ППП, причем последний также позволяет вычислить оптич. и УФ спектры. Полуэмпирич. расчеты с учетом всех валентных электронов менее надежны, потому что нрин-цип ПДП, удовлетворительно соблюдающийся в я-элек-тронных системах, плохо обоснован для систем, где перекрывание атомных орбиталей более значительно. [c.473]

    Приступим теперь к изложению результатов, полученных с помощью одного из вариантов метода ограниченного учета конфигурационного взаимодействия в приближении Паризера — Парра, и проведем сравнение этих результатов как с результатами соответствующих расчетов по методу Хюккеля, так и с экспериментальными данными по ультрафиолетовым спектрам поглощения. В методе Паризера — Парра используется много приближений, и из- этого вытекают два нежелательных следствия. Первое из них заключается в том, что в литературе трудно найти достаточное число соединений, для которых вычисления проводились бы иа основе одинаковых предноло/кений. Второе следствие связано с тем, что почти всегда неизвестно, насколько полученные результаты чувствительны к выбору параметров и другим исходным предположениям метода, а насколько они связаны с самой сущностью метода. Ввиду указанных трудностей мы выбрали в качестве предлагаемого стандартного метода следующий вариант метода Паризера — Парра. Геометрия молекул предполагается идеализированной, а именно все длины связей считаются одинаковыми. При составлении слэтеровских детерминантов используются простые молекулярные орбитали Хюккеля. Значения интегралов для атомных орбиталей берутся но Паризеру — Парру — Поплу [1]. Численные значения интегралов электронного отталкивания оцениваются на основе работы [7]. Величина резо- [c.179]

    Для современного состояния спектральных методов характерно существенное расширение диапазона энергий используемого излучения. Так, наряду со спектроскопией в видимой и близких к ней областях, возникли рентгеновская и фотоэлектронная спектроскопия. Оба эти раздела до сих пор не обсуждались в книгах по применению физических методов в неорганической химии. Статья Боннелля должна быть полезна в качестве введения в рентгеновскую спектроскопию. Следует, однако, иметь в виду, что она не охватывает всех вопросов, связанных с этой интересной и исключительно важной для неорганической химии областью. Тем не менее, ее можно рекомендовать, так как она позволяет читателю, заинтересовавшемуся предметом, познакомиться с более специальными работами, например с книгой Баринского и Нефедова [9], посвященной определению эффективных зарядов атомов в неорганических соединениях по рентгеновским спектрам, и с новым направлением, пока еще не отраженным в монографической литературе, — определением положения внутренних энергетических уровней (молекулярных орбиталей) молекул. Метод фотоэлектронной спектроскопии, созданный академиком Терениным и независимо автором соответствующей главы Тернером, также весьма перспективен для неорганических веществ. Этот метод позволяет судить об энергиях высших заполненных молекулярных орбиталей, так что в настоящее время, комбинируя результаты исследования электронных спектров в видимой и ультрафиолетовой областях, фотоэлектронных спектров и рентгеновских спектров, можно на основании опытных данных в благоприятных случаях построить полную картину электронных уровней системы (их последовательности по энергиям), а иногда и выяснить вопрос о том, из каких атомных орбиталей и в каких соотношениях образуются соответствующие молекулярные орбитали. Тем самым схемы молекулярных орбиталей, которые до сих пор строились только на основании теоретического рассмотрения и казались многим химикам искусственным и сомнительным описанием молекул, становятся непосредственным следствием эксперимента. Правда, до последнего времени метод фотоэлектронной спектроскопии применялся только к сравнительно простым неорганическим молекулам, но можно надеяться на расширение круга объектов при дальнейшем совершенствовании методики и теории. [c.8]

    При быстром вращении парамагнитной частицы с неспаренным электроном, находящимся не в s-состоянии энергия взаимодействия, описываемая формулой (1.63), усредняется и должна уменьшаться до нуля. Это усреднение протекает особенно эффективно, если парамагнитные частицы находятся в жидкой фазе. На основании этого можно было бы ожидать, что сигнал ЭПР парамагнитных частиц в растворе не будет иметь СТС, т. е. будет одиночной линией. Однако лаблюдается хорошо разрешенная сверхтонкая структура. Например, спектр концентрированного раствора стабильного радикала дифенилпикрилгидразила в бензоле (неспаренный электрон занимает атомную орбиталь 2р ) состоит из пяти линий (квинтет). Число линий СТС в данном случае действительно соответствует магнитному взаимодействию спина неспаренного электрона со спинами двух ядер N (/ = / + /з = 2 21 + 1 =5) при условии, что энергия взаимодействия / г-электрона с ядром азота не зависит от ориентации радикала во внешнем магнитном поле. Только в этом случае при любой частоте вращения парамагнитной частицы должно наблюдаться неизменное по величине расщепление линий ЭПР. [c.42]

    Возможно, наилучшее прямое экспериментальное доказательство распределения электронов между ионом металла и лигандом дают результаты метода электронного парамагнитного резонанса. Неспаренные электроны ведут себя как магниты и выстраиваются параллельно или антипара,плельно относительно направления приложенного магнитного поля. При этих двух расположениях электроны будут немного различаться по энергии и переходы из одного состояния в другое могут быть обнаружены по энергии перехода как энергии радиочастотного электромагнитного излучения. В спектре ЭПР изолированного иона металла одному переходу электрона соответствует единственный пик поглощения. Однако комплексы имеют более сложные спектры ЭПР (рис. 10.34). Сверхтонкое расщепление происходит в результате воздействия магнитных моментов ядер частиц лиганда на неспаренный электрон центрального атома. По крайней мере какой-то промежуток времени неспаренный электрон занимает орбиталь лиганда, и ее можно рассматривать как моле- кулярную, образованную из атомных орбиталей металла и лиганда [57]. [c.283]


Смотреть страницы где упоминается термин Атомные орбитали спектры: [c.149]    [c.170]    [c.68]    [c.132]    [c.132]    [c.24]    [c.634]    [c.10]    [c.523]    [c.634]    [c.274]    [c.435]    [c.283]    [c.398]    [c.142]   
Общая химия 1982 (1982) -- [ c.62 , c.63 ]

Общая химия 1986 (1986) -- [ c.60 , c.61 ]

Общая химия Издание 18 (1976) -- [ c.59 , c.60 ]

Общая химия Издание 22 (1982) -- [ c.62 , c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Орбиталь атомная

Спектры атомные



© 2025 chem21.info Реклама на сайте