Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные Роль в спектрах

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]


    Весьма интересна способность некоторых комплексов ализарин-комплексона с лантаноидами к присоединению фтора с образованием интенсивно окрашенного в синий цвет тройного комплекса Соотношение компонентов в комплексе L Ln + - Р равно по одним данным 1 1 1, по другим 3 3 1В последнем случае на основании данных ИК-спектров сделан вывод о полимерном характере комплекса, в котором фторид- и ацетат-ионы играют роль мостиковых групп [545]. [c.294]

    Эти два соединения, хлорофилл и гем, играют важнейшую роль в сложном механизме поглощения солнечной энергии и ее превращении для использования живыми организмами. Мы уже знаем, что характерным свойством комплексов переходных металлов является наличие нескольких близко расположенных -уровней, что позволяет им поглощать свет в видимой области спектра и придает окраску. Порфириновый цикл вокруг иона Mg в молекуле хлорофилла выполняет такую же роль. Хлорофилл в растениях поглощает фотоны видимого света и переходит в возбужденное электронное состояние (рис. 20-22). Эта энергия возбуждения может инициировать цепь химических реакций, приводящих в конце концов к образованию сахаров из диоксида углерода и воды  [c.255]

    Эмиссионная спектроскопия, нашедшая широкое применение в-атомной спектроскопии, для изучения молекул используется реже. Эмиссионные спектры возникают путем возбуждения электронов в атомах или молекулах при сообщении им избыточной энергии извне и последующего возвращения их в основное состояние с испусканием квантов энергии в виде излучения строго определенных частот. Для перевода вещества в возбужденное состояние нередко применяют пламя горелки, дуговой или искровой разряд. Однако нри этом многие химические связи в молекулах разрываются и наблюдаемый эмиссионный спектр представляет собой спектр продуктов диссоциации — радикалов, атомов и ионов. В то же время именно это делает метод эмиссионной спектроскопии одним из плодотворных экспериментальных приемов для изучения радикалов, играющих решающую роль в протекании многих цепных реакций. Эмиссионные спектры используются также для изучения электронных оболочек атомов, свойств среды, образованной совокупностью атомов, получения некоторых сведений о состоянии ядер атомов, а также для целей качественного и количественного атомного спектрального анализа. [c.157]


    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]

    Интенсивность пиков молекулярных ионов может быть увеличена по отношению к интенсивности пиков других ионов в спектре путем снижения энергии ионизирующих электронов и тщательного измерения отношения интенсивностей пиков с массами М (соответствующим осколочным ионам) и (М + 1). Снижение энергии электронов позволяет легко установить молекулярный ион в положении (М + 1). Такие измерения могут быть проведены очень быстро и не требуют специальных предосторожностей для получения абсолютных значений энергии электронов, поскольку играет роль только относительное изменение энергии. На рис. 147 (стр. 378) представлены результаты таких измерений, проведенных в лаборатории автора, при исследовании 2-метил-1,3-диоксолана с молекулярным весом 88. Метод снижения ионизирующего напряжения использовали в качестве метода определения количества компонентов, присутствующих в сложной смеси. Напряжение снижали до тех пор, пока молекулярные пики не становились наиболее интенсивными в спектре. Широкое применение этого метода рассматривается в следующих главах (гл. 9 и 10). [c.317]

    Многие из других низкомолекулярных ионов в спектре альдегидов соответствуют ионам, образующимся при распаде углеродной цепи. Иные пики, играющие важную роль для определения структуры, наблюдаются в части спектра с высокими значениями масс, что указывает на важность установления массы как положительных ионов, так и образующихся нейтральных частиц. [c.369]

    Однако для такой высокотемпературной плазмы характерны очень развитые спектры, с большим числом линий, принадлежащих атомам, а также одно- и двузарядным ионам. В связи с этим применение ИСП-разряда осложнено эффектами спектральных помех, что обусловливает более высокие требования к разрешающей силе спектральных приборов. Из-за меньщей яркости источника возрастает роль рассеянного света в приборе. [c.65]

    Для ускорения протекания реакции в пробирку следует добавить активированный уголь, играющий роль катализатора.) Изменяется ли окраска раствора, содержащего ионы Рис. 90. Спектры поглощения. [Со(ОН2)б] +, при стоянии на воз- Со(МНз) и Со(еп)(2) [c.157]

    Важную роль играет также выбор растворителя и электролита фона. Применение растворителей с высокой диэлектрической постоянной (б>20) и прежде всего воды приводит к высоким диэлектрическим потерям энергии сверхвысокочастотного поля в резонаторе спектрометра ЭПР и ухудшает условия получения хорошо разрешенного спектра. С другой стороны, в растворителях с низким значением е возможно образование ионных пар, искажающее спектры. Этот эффект ослабляется при использовании в качестве электролита фона тетраалкиламмониевых солей. Влияние на спектр ЭПР природы растворителя и соли фона имеет и положительное значение, так как открывает пути для изучения процессов сольватации ион-радикалов и образования ионных ассоциатов. [c.226]


    Теория кристаллического поля, развившаяся из простой электростатической модели, может быть применена к комплексам для интерпретации и предсказания наиболее выгодных координационных чисел, стереохимии, путей реакций замещения, спектров поглощения, магнитных и термодинамических свойств. На некоторых из этих вопросов следует остановиться более подробно. В частности, будут рассмотрены стереохимия, магнитные свойства, спектры поглощения и термодинамические свойства комплексных ионов. Это отчетливо покажет, что теория кристаллического поля — более удовлетворительный и более общий метод изучения комплексов, чем метод валентных связей. Однако, придавая особое значение орбиталям и электронам центрального атома, теория кристаллического поля неизбежно должна стать менее точной, когда усиливается роль делокализации электронов и орбиталей лиганда, т. е. при возрастании ковалентности связи. [c.264]

    Вообще вопрос о поглощении электромагнитных излучений комплексными соединениями представляет большую сложность, поскольку не всегда может быть достаточно четко определена роль, которую играют центральный ион и лиганд в возникновении того или иного вида спектра [13]— [16]. [c.13]

    В качестве индикатора может быть использован ион такого металла, который дает менее устойчивое комплексное соединение, чем определяемый элемент причем комплексное соединение элемента, играющего роль индикатора с титрантом, должно иметь поглощение в видимой области спектра. Так, определение тория комплексоном можно проводить в присутствии соли меди [2]. [c.61]

    Определить интенсивность осколочных ионов очень трудно из-за отсутствия соответствующей простой шкалы сравнения. Осколочные ионы с М /е = 41, 43, 55, 57 и т. д. почти всегда присутствуют в масс-спектре при условии, что в анализируемом соединении имеется соответствующее количество связанных друг с другом атомов углерода. С другой стороны, отщепление метильной группы, которое происходит лишь в особых условиях, будет иметь значение в том случае, если интенсивность соответствующего иона равна примерно 10% интенсивности основного пика. Ниже будет сделана попытка оценить роль соответствующего иона в процессе образования осколочных ионов. [c.48]

    Окраска является отличительным свойством координационных соединений переходных металлов. Октаэдрические комплексы кобальта могут иметь самую различную окраску в зависимости от того, какие группы координированы вокруг атома этого металла (табл. 20-2). Такие координирующиеся группы называются /шгандами. В растворах окраска обусловлена ассоциацией молекул растворителя, выступающих в роли лигандов, с металлом, а не свойствами самого катиона металла. В концентрированной серной кислоте (сильный обезвоживающий агент) ионы Си" бесцветны в воде они имеют аквамариновую окраску, а в жидком аммиаке — темную ультрамариновую. Комплексы металлов с высокими степенями окисления обладают яркой окраской, если они поглощают энергию в видимой части спектра СгО -ярко-желтой, а МПО4-ярко-пурпурной. [c.206]

    Из данных по изучению химических свойств фосфата циркония и его инфракрасных спектров следует, что в ионном обмене на фосфате циркония участвуют атомы водорода кислых фосфатных групп, выполняющие роль, аналогичную роли сульфогрупп в сильно- [c.137]

    Роль химических примесей ясно показана в экспериментах на галогенидах серебра с замещающими ионами меди. Квантовый выход образования серебра был близок к единице даже в центре кристалла, а число атомов серебра, образующихся при насыщающем освещении, равно числу исходно имевшихся ионов меди. Спектры ЭПР показывают образование ионов меди одновременно с образованием атомов серебра. Примесные ионы меди, по-видимому, действуют как ловушки для дырок в объеме кристалла. Эта интерпретация подтверждается данными импульсного фотолиза. Фотоиндуцированное почернение наблюдали как в чистых кристаллах галогенидов серебра, так и в кристаллах с примесью меди, причем с одинаковым нарастанием. Но почернение в чистых кристаллах исчезало за несколько миллисекунд, а в кристаллах галогенидов серебра с примесью оно было устойчивым. [c.249]

    В определении строения полисахаридов большую роль играет метод масс-спектрометрии. Он основан на способности молекул иод воздействием алектронного удара ионизироваться с потерей одно электрона и далее распадаться с разрывом ковалентных связей. Ионизированные молекулы и заряженные осколки в электрическом и магнитном нолях различаются ио величине отношения массы к заряду. Так как последний, как правило, равен единице, то величина отношения mjz соответствует массе иона. -Масс-спектр представляет собой набор ииков, соответствующих ионам с определенным отношением массы к заряду интенсивность ииков определяется стабильностью соответствующих ионов. [c.73]

    Наиболее вероятным объяснением возникших трудностей является предположение о резкой анизотропии не учитывавшихся при расчете кулоновских сил дальнодействия, что представляется правдоподобным для слоистой структуры Ь1281205. Кулоновские силы не только определяют разность продольной и поперечной частот, отвечаюш,их одной и той же механической моде кристалла, вследствие взаимодействия полярного колебания решетки с полем диэлектрической поляризации, вызванной деформацией, но и вносят некоторую добавку в квазиупругую постоянную чисто поперечного колебания [14, 15]. Добавка эта может быть различна и по величине, и по знаку. При расчетах спектров силикатов в [9—13] и известных в литературе расчетах спектров некоторых кристаллов со сложными ионами роль кулоновских вкладов в силовые постоянные обычно оставалась невыявленной, что можно объяснить приближенной изотропностью или относительно малой величиной этих вкладов. Большая анизотропия кулоновских вкладов в слоистой структуре Ь123120д делает более явными недостатки модели, учитывающей лишь силы близкодействия. [c.127]

    Адсорбционные явления как определяющие микропроцессы в пластах наблюдаются и в уже распространенном методе увеличения нефтеотдачи — полимерном воздействии на нефтяные залежи. Это метод предназначен преимущественно для залежей с высоковязкой нефтью ( iн>50 мПа-с),где при вытеснении нефти необработанной водой даже в макрооднородном пласте развивается, так называемая вязкостная неустойчивость. Однако полимерное воздействие применимо и в залежах с нефтями средней вязкости, а в этих условиях механизм нефтевытеснения во многом определяется степенью адсорбции полимерных растворов в неоднородной пористой среде. Механизм и степень адсорбции многих полимерных рабочих агентов (особенно на основе полиакриламида ПАА) в настоящее время достаточно полно изучены с получением широкого спектра изотерм адсорбции. Построенные на этой основе математические модели процесса, оценивающие динамику факторов сопротивления и остаточных факторов сопротивления, количественно используются в проектных работах и в анализах опытно-промыщленных испытаний метода. Однако этими изысканиями и разработками не ограничивается роль (и учет) микропроцессов в пластах при осуществлении работ по повыщению нефтегазоотдачи. Оказалось, что адсорбция ПАА существенно зависит от состава и свойств породы и от минерализации пластовых вод. Поэтому при усовершенствовании математической модели полимерного воздействия нами предлагается рассматривать полимерный раствор Как активную примесь с изменяющейся подвижностью вследствие адсорбции, степень которой зависит от минерализации пластовых вод (наличие в них подвижных ионов Ма, Са, Ре и др., а также изменяющейся величины pH). Сорбция полимерных агентов благоприятно влияет на соотношение подвижностей вытесняющей и вытесняемой фаз, снижая фазовую проницаемость, но приводит и к отставанию фронта рабочего агента от фронта продвижения воды. Получается сложная игра микропроцессов, при которой желательно получить оптимальное значение нефтевытесняющей способности рабочего агента в конкретных физико-геологических условиях пласта. [c.163]

    Сопряженные диины-2, 4. Влияние сопряжения на поведение молекул при электронном ударе можно проследить на масс-спектрах дииновых-2,4 углеводородов [143], а также ал-кенилвинилацетиленов [144]. Выше было показано, что максимальным в спектре гексадиина-2,4, как и в спектрах остальных изомеров, является пик молекулярного иона. Для 6-метиЛ и 6,6-диметилгептадиина-2,4 процессы разложения молекулярного иона начинают играть значительно большую роль устойчивость к электронному удару монотонно снижается от [c.72]

    Введение функциональных групп в молекулу увеличивает роль резонансно стабилизированных систем и влияние их на распределение интенсивностей в масс-спектре. Так, при распаде молекулы алкилфенолов по Д-связи по отношению к ядру, устойчивой является циклогексадиеновая резонансная структура осколочного иона [186]. В случае льзамещенных алкилфенолов такая структура образуется при разрыве с миграцией атома водорода. [c.111]

    При диссоциативной ионизации серусодержащих соединений важную роль в образовании интенсивных пиков в масс-спектре играют перегруппировки. Исследование тиоалканов [188] привело к выводу о легкости образования промежуточных трициклических и тетрациклических ионов. С помощью этого механизма (в частности доказанного для ряда тиоалканов) объясняется, например, образование перегрупииро-вочных ионов с массой 35 по схеме  [c.114]

    Вторая группа вкладов, ответственная за взаимодействие частиц ДФ, представляет тот же спектр вкладов, из которых составлена первая группа, с тем отличием, что при значительно превышающих размеры составляющих их молекул (атомов или ионов) Я они представляют собой дально-действующие аддитивные силы ММВ. По мере уменьшения К в них постепенно увеличивается доля близкодействующих неадпитивных сил ММВ. В пределе, когда тела сблизятся на расстояния перекрывания электронных облаков поверхностных атомов, существенную роль начинают играть близкодействующие силы ММВ, включая силы химической связи. [c.100]

    Интересным является вопрос о так называемой стереохимической активности неподеленных электронных пар, который помогает выяснять мессбауэровская спектроскопия. Если в случае легких элементов свободная пара всегда играет роль в определении стереохимической конфигурации, то у тяжелых элементов это не очевидно. В мессбауэровском спектре ионов ТеХб (X — С1, Вг, I) не наблюдается, например, квадрупольного расщепления, т. е. они имеют строение правильного октаэдра. Такой же вывод следует из данных рентгеноструктурного анализа и колебательной спектроскопии. Видимо, электронная пара занимает 55-орбиталь и поэтому не является стереохимически активной. С другой стороны, у иона 1Рб и изоэлектронной молекулы ХеРе неподелеиная пара стереохимически активна, так что они имеют структуру искаженного октаэдра, и наблюдается квадрупольное расщепление. [c.125]

    Понятие симметрии играет важную роль во всех е стественных науках. Свойствами симметрии обладают структуры мно1их молекул, ионов, образуемых ими реагирующих систем. Симметрия волновых функций точно соответствует свойствам симметрии ядерных конфигура1Ц1Й, и именно сферическая симметрия водородоподобного атома является причиной наличия одной л-, трех р-,, пяти семи /-орбиталей и т. д., вырождения уровней л-МО в линейных молекулах, структурных искажений, вызываемых эффектом Яна— Теллера первого порядка, и пр. Зная свойства симметрии волновых функций различных электронных состояний, можно, не прибегая к прямым расчетам, определить возможность переходов от одного состояния в другое и получить тем самым представление о характере спектров молекул. По этим свойствам можно судить также об условиях (пространственной ориентации, типе возбуждения), в которых возможны или невозможны реакции между отдельными молекулами. Во всех случаях получаемая информация имеет качественный характер, однако она имеет принципиальное значение для целей классификации и выработки основных принципов. [c.184]

    В связи с представлениями о роли нитрат-иона в реакции нитрования следует отметить также работу Гальбана и Эйзен-бранда [28], исследовавших спектры поглощения нитратов и растворов азотной кислоты различных концентраций в воде и других растворителях (серной, хлорной, фосфорной, уксусной кислотах). [c.148]

    ИМПУЛЬСНЫЙ ФОТОЛИЗ, метод исследования быстрых хим. р-ций и их короткоживущих продуктов (время жизни от долей до 10" с), основанный на возбуждении молекул мощным световым импульсом. Сочетает возможность мгновенного (за время светового импульса) получения активных частиц с регистрацией их во времени. Возбуждение осуществляется светом импульсной лампы за Ю - — 10 с или лазерами за 10" — 10 с. Наиб, распростр. методы регистрации — спектрофотометрич. (осцил-лографич.) и спектрографический с помощью спектров поглощения в видимой и УФ областях. Спектрофотометрич. регистрация совместно с примен. приемов увеличения отношения сигнал/шум позволяет исследовать короткоживу-щие частицы с конц. до 10 моль/л. Для регистрации примен. также методы люминесценции, ЭПР, масс-спектрометрии и кондуктометрии. С помощью И. ф. изучены св-ва большого числа нестабильных своб. радикалов, ионов, ион-радикалов, триплетных состояний, эксимеров и эксиплексов исследуются механизмы фотохим. и фотобиол. процессов. В квантовой электронике И. ф. примен. для изучения роли триплетных состояний в процессах генерации, а также для исследования механизма фотодеструкции и нахождения путей фотостабилизации молекул активных сред в жидкостных лазерах. [c.218]

    Оригинальная и наиболее существенная роль в окраске цветков принадлежит антоцианам (гликозидам антоци-анидинов). Ионная структура развитой ароматической я-системы делает их молекулы сильно поглощающими видимый свет в различной области спектра. Последнее свойство связано с лабильностью п-системы молекул в зависимости от pH среды. Например, цианидин образует красную окраску роз и синюю — василька (схема 8.2.4). [c.205]

    Ион железа с одинаковым успехом выполняет роль кислоты Льюиса и проявляет гес1ох-свойства, значительность последних обязана широкому спектру его валентных состояний. Обычно в комплексах и активных сайтах стабильны ионы Ре и Ре " , более высокие степени окисления железа являются оперативными , т.е. фигурируют как промежуточные в процессе круговорота некоторых энзимов (см. представленный на схеме 13.6 каталитический цикл гидроксилирования субстрата (В-Н) цитохромом Р-450). [c.358]

    Состав и соотношение форм И. (спектр И.) изменяется в зависимости от их локализации в органах и тканях организмов одного вида и даже в разных субклеточных органеллах одной и той же клетки. На спектр И. оказывает влияние разное физиол. состояние организма и патологич. процессы, происходящие в нем. Поскольку И. различаются по свои.м св-вам (оптимуму pH, активации ионами, по сродству к субстратам, ингибиторам, активаторам, кофакторам), то характер их распределения отражает регуляторные механизмы, контролирующие метаболизм. Так, напр., лактатдегидрогеназа представлена в организме человека и животных пятью формами, каждая из к-рых представляет собой тетрамер, состоящий из субъединиц двух типов (а и Р) в разных соотношениях. В сердце и печени представлена в осн. форма 04, а в мышцах-Р . Первая ингибируется избытком пировиноградной к-ты и поэтому преобладает в органах с аэробным типом метаболизма, вторая не ингибируется избытком этой к-ты и преобладает в мышцах с высоким урювнем гликолиза. О важной роли И. в тонкой регуляции метаболич. процессов свидетельствует также изменение их спектра под влиянием разл. воздействий и физиол. состояний (охлаждение, гипоксия, денервация и др.). [c.202]

    Масс-спектры К. с. характеризуются наличием пиков молекулярных (кваэимолекулярных) ионов и малым числом осколочных ионов. Важную роль играют разнообразные перегруппировочные процессы, напр, внутримол. диспропорционирование.. [c.514]

    Важную роль в установлении М. р. играет исследование природы продуктов и промежут. в-в методами УФ, ИК и гамма-резонансной спектроскопии, ЭПР, ЯМР, масс-спект-рометрии, хим. поляризации ядер, электрохим. методами и т.п. Разрабатываются способы получения и накопления высокоактивных промежут. продуктов ионов, радикалов, возбужденных частиц с целью непосредственного изучения их реакц. способности. Для получения констант скорости тех стадий сложной р-ции, в к-рых участвуют высокоактивные частицы, информативно моделирование этих стадий в специальных ( чистых ) условиях, напр, путем проведения р-ций при низких т-рах (до 100-70 К), в ионном источнике масс-спектрометра высокого давления, в ячейке спектрометра ион-циклотронного резонанса и т.п. При изучении гетерогенно-каталитич. р-ций важно независимое исследование адсорбции всех участвующих в р-ции в-в на пов-сти катализатора, изучение спектров адсорбир. частиц в оптич. и радиочастотном диапазонах, а также установление их природы физ. и физ.-хим. методами (рентгеновская и У Ф фотоэлектронная спектроскопия, оже-спектроскопия, спектроскопия энергетич. потерь электронов и др.). [c.75]

    Оптнч. сенсоры основаны на измерении поглощения или отражения первичного светового потока, люминесценции или теплового эффекта при поглощении света. Такие С. х. имеют чувствительный слой, роль к-рого может вьшолнять пов-сть волокна световода или иммобилизованная на световоде фаза, содержащая подходящий реагент. Волоконно-оптич. световоды на основе кварца, гсрманатных, фторид-ньгх, халькогенидных стекол, кристаллов галогенидов таллия, серебра или цезия и полимерных материалов позволяют работать в ИК. видимой и УФ диапазонах спектра. Созданы оптическис С. х. для определения рП р-ров, ионов К и Na, СО,, О,, глюкозы н д . в-в. [c.318]

    По сравнению с ионными и биполярными соединениями индуцированные растворителями смещения химических сдвигов в спектрах ЯМР неполярных веществ, иапример тетраметилсилана, обычно невелики (табл. 6.6). Детальное изучение спектров ЯМР незамещенных ароматических углеводородов с чередующимися и нечередующимися двойными и одинарными связями в алифатических и ароматических растворителях-НДВС показало, что диапазон изменения химических сдвигов (относительно химического сдвига бензола) составляет всего лишь от —1,4 до +1,0 МЛН (положительные величины указывают на сдвиг в слабое поле) (405]. Оказалось, что на спектры ЯМР С этих ароматических соединений влияет полярность и поляризуемость растворителей, а для ароматических растворителей обнаружен еще и специфический эффект, называемый индуцированным ароматическим растворителем сдвигом (ИАРС см. ниже). Между индуцированными растворителями смещениями химических сдвигов и вычисленным распределением зарядов в молекуле ароматического соединения не обнаружено простой зависимости. Возможно, при взаимодействии растворителей с ароматическими веществами большую роль играют полярные эффекты высших порядков [405]. [c.471]

    Дианион (171) представляет собой диатропную 18я-электронную систему, в Н-ЯМР спектре которой сигналы внутренних протонов появляются при б —8,17 млн". Таким образом, и дикатион и дианион по своим свойствам полностью противоположны паратроп-ному [16]аннулену. Дианион (171) имеет отличную от дикатиона (170) конфигурацию, а его спектр не зависит от температуры это показывает, что в (171) нет обмена положениями между внешними и внутренними протонами. Все вышесказанное еще раз подтверждает важную роль электронной структуры оба иона, относящиеся к типу 4/7 2-систем, существуют в единственной конфигурационной форме (хотя конфигурация у них разная), тогда как относящийся к 4п-подгруппе [16] аннулен (23) представляет собой смесь конфигурационных изомеров. [c.502]


Смотреть страницы где упоминается термин Ионные Роль в спектрах: [c.64]    [c.64]    [c.203]    [c.266]    [c.52]    [c.64]    [c.68]    [c.144]    [c.124]    [c.390]    [c.294]    [c.236]   
Теория резонанса (1948) -- [ c.22 , c.216 , c.226 , c.226 , c.229 ]




ПОИСК







© 2024 chem21.info Реклама на сайте