Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты, анализ триптофан

    Триптофан особенно неустойчив и легко разрушается кислотами, хотя значительно более стоек в щелочных условиях. В горячей кислоте его стойкость может понижаться в присутствии других аминокислот, причем триптофан в свою очередь может влиять на их выход [6]. Доступ кислорода также ведет к увеличению разложения триптофана и образованию гумина. Наконец, в присутствии углеводов в кислом растворе наблюдается полная деструкция этой аминокислоты [47, 48]. Следовательно, триптофан нельзя точно определить в полных гидролизатах белков и для него нужны специальные методы анализа (см. стр. 147). [c.128]


    Прежде всего об общих принципах эксперимента. Меченый предшественник должен более или менее свободно входить в систему и становиться метаболически эквивалентным эндогенному субстрату, в который требуется ввести метку. Эти требования в общем соблюдаются, например, для ацетат-иона, в меньшей степени—для малонат-иона и часто совершенно не соблюдаются для введенного мевалонат-иона. Конечно, во время эксперимента организм должен продуцировать требуемое соединение из эндогенного субстрата (а не, например, из некоторого накапливаемого позднее промежуточного вещества). Эксперимент должен также обеспечивать возможность отличать проверяемый прямой путь включения от любых других неожиданных и часто в высшей степени косвенных путей. Например, структуры многих поликетидов таковы, что меченый поликетид в результате простых реакций расщепления может стать источником специфически меченного аце-тил-КоА, который затем может включаться в совершенно иное соединение. Еще один пример такие совершенно различные по структуре аминокислоты, как глицин, серии и триптофан, могут являться эффективными предшественниками С-метильных групп количественное сравнение с меченым метионином показывает, что последний представляет собой гораздо лучший предшественник, но результаты с другими аминокислотами могут быть правильно интерпретированы только при наличии определенных данных о промежуточном метаболизме. Соблюдение соответствующих биологических принципов может также оказаться выгодным при выборе наиболее экономичной или наиболее чувствительной методики. Как будет показано ниже, различные применяющиеся в настоящее время изотопы следует вводить в различных количествах этот факт следует учитывать, например, при проведении предварительных опытов с целью оптимизации условий включения предшественника. Кинетика включения предшественника может быть чрезвычайно сложной. Эта тема достаточно хорошо осЕ-г-щена в обзорах [1,96,97] описано и применение математического анализа кинетических данных, который имеет, по-видимому, ограниченное применение, но тем не менее важен как инструмент фундаментального исследования [98,99]. [c.467]

    При анализе данных табл. 1.4 виден ряд закономерностей. На долю дикарбоновых аминокислот и их амидов в большинстве белков приходится до 25-27% всех аминокислот. Эти же аминокислоты вместе с лейцином и лизином составляют около 50% всех аминокислот. В то же время на долю таких аминокислот, как цистеин, метионин, триптофан, гистидин, приходится не более 1,5-3,5%. В протаминах и гистонах отмечено высокое содержание основных аминокислот аргинина и лизина, соответственно 26,4 и 85,2% (см. Химия простых белков ). [c.40]

    Для определения аминокислот существуют разнообразные химические реакции, которые специфичны для некоторых из них (табл. 6.2). Эти реакции используются довольно редко, так как аминокислотный анализатор позволяет легко проводить качественный и количественный анализ и инструментальное детектирование этих соединений. Этим методом плохо определяется триптофан (Try) из-за его повышенной чувствительности к кислотам, поэтому его лучше идентифицировать с помощью химических реакций (табл. 6.2). Химической основой работы аминокислотного анализатора является реакция с нингидрином, описанная в опыте 20. [c.273]


    Эта реакция широко применяется в анализе аминокислотного состава белков. Для этой цели белки подвергают расщеплению до аминокислот путем кипячения в течение 20 ч с 6 н. НС1. При такой обработке повреждаются триптофан и амиды [c.250]

    Анализ аминокислотного состава включает полный кислотный гидролиз исследуемого белка или пептида с помощью 5,7 н. соляной кислоты и количественное определение всех аминокислот в гидролизате. Гидролиз образца проводится в запаянных ампулах в вакууме при ПО "С в течение 24 ч. При этом полностью разрушается триптофан и частично серии, треонин, цистин и цистеин. а глутамин и аспарагин превращаются соответственно в глутаминовую и аспарагиновую кислоты. В то же время пептидные связи, образованные аминокислотными остатками с разветвленной боковой цепью (Val, Не. Leu), из-за стерических препятствий гидролизуются частично. Особенно стабильны связи Val—Val. Ile—Ile, Val—De и Ile—Val. [c.34]

    Электрохимические исследования аминокислот, нуклеиновых кислот и белков непосредственно связаны между собой, поскольку первые являются структурными элементами более сложных макромолекул. Электрохимические исследования двадцати основных 1-а-аминокислот [230—232] показали, что только шесть из них — цистеин, цистин, метионин, гистидин, тирозин и триптофан — окисляются на пирографитовом и стеклоуглеродном электродах. В области pH от 1 до 10 их окисление протекает необратимо при н.и.э.>1,0 В, причем с ростом pH потенциал полуволны или максимум тока смещается в отрицательную сторону. Процессы окисления сопровождаются пассивацией электрода продуктами реакции. По данным ЯМР- и ИК-спектроскопии, продукты реакции имеют сложную полимерную структуру, что не позволяет пока перейти к детальному анализу механизма. Тем не менее полученные результаты оказались полезными при интерпретации электрохимического поведения белков, адсорбированных на графитовых электродах [245, 246]. [c.163]

    Кислотный гидролиз, который происходит при нагревании белков с 25%-ной серной кислотой или 20%-ной соляной кислотой при 100—105° в течение 20—24 часов. Для этого часто используют также смесь концентрированной соляной и уксусной кислот (1 1). Обычно берут 10—20-кратное количество кислоты к весу белка, но чем шире это отношение, тем меньше потерь при гидролизе. После окончания гидролиза кислоту удаляют и образовавшуюся смесь аминокислот используют для анализов. Применение серной кислоты менее удобно, чем соляной, так как последнюю легче удалить из смеси. При кислотном гидролизе триптофан полностью разрушается, а глутамин и аспарагин дают соответствующие аминокислоты и аммиак. [c.203]

    В отличие от белков к-т-е- -группы фибриллярные белки группы коллагена растяжимы не более чем на 10%. Рентгенограммы белков этих двух групп также различны. Коллаген не встречается в растениях, но составляет около 7з всех белков организма животных, являясь составной частью хрящей, сухожилий, костей и кожи. Анализ аминокислотного состава коллагена показывает, что на 7з он состоит из глицина. Цистеин и триптофан в нем не встречаются, а количество серусодержащих и ароматических аминокислот очень невелико. Около 20% аминокислот в коллагене составляют пролин и оксипролин. Последняя аминокислота, так же как и оксилизин, встречается только в коллагене и родственных ему белках. Есть основания считать, что гидроксильные группы этих аминокислотных остатков появляются в белке уже после синтеза всей полипептидной цепочки. [c.249]

    Гидролиз пищевых продуктов. Чаще всего при определении аминокислотного состава пищевых продуктов используют кислотный гидролиз в 6 н. растворе НС1, проводимый в запаянных ампулах при температуре ПО—120°С в продолжение 22—24 ч [38, 48, 61]. Необходимо отметить, что гидролиз — наиболее несовершенная операция в аминокислотном анализе, так как в белках содержится несколько лабильных аминокислот (треонин, серин, цистин, метионин, гистидин, триптофан, тирозин), которые, по мнению многих авторов, заметно разрушаются даже при кратком кислотном гидролизе другие (валин, лейцин, изолейцин), наоборот, с трудом высвобождаются из полипептидных цепей при длительных сроках гидролиза (в течение 70—80 ч). Поэтому для определения истинных количеств аминокислот в белках при особо точных исследованиях гидролизуют несколько (3—4) проб белка при различных сроках (20—80 ч). Путем построения графиков зависимости количества аминокислот от длительности гидролиза находят истинное значение содержания лабильных аминокислот, экстраполируя кривую к начальному моменту гидролиза. [c.190]

    Аминокислоты, обладающие специфическими группировками, которые легко могут быть определены, значительно упрощают анализ белков. Из числа таких аминокислот наибольшее внимание привлекли тирозин и триптофан, и было лишь сравнительно мало попыток анализа [c.24]

    Сравнение частот включения этих двух аминокислот относительно фенилаланина с ожидаемыми частотами встречаемости триплетов У А, УАг и Аз относительно фенилаланинового кодона Уд в случайной последовательности УА показывает, что кодоны тирозина и изолейцина, вероятнее всего, отвечают эмпирической формуле УаА. В-третьих, аналогичный анализ результатов по включению аминокислот под влиянием поли-] Ц и поли-УГ позволил Ниренбергу заключить, что кодонами серина и пролина соответственно являются УаЦ и УЦ, (хотя в опытах с поли-Ц было показано, что пролин кодируется также Цд)" кодонами валина и цистеина — У2Г и что триптофан и глицин кодируются кодонами УГз. Особый интерес представляют данные] по включению лейцина, так как включение лейцина стимулируется как поли-УЦ, так и поли-УГ. Это означает, что лейцин кодируется по крайней мере двумя различными кодонами — УаЦ и У Г. [c.437]


    Гидролиз белков ЗМ /г-толуолсульфокислотой или АМ метан-сульфокислотой [7,8], содержащей 0,2% триптамина, в вакууме при 110°С, в течение 3 суток с хорощим выходом приводит к аминокислотам, включая триптофан, однако углеводы могут мешать. Триптофан можно определять также после щелочного гидролиза, но при этом разрушаются полностью аргинин, цист(е)ин, серин и треонин. Общее содержание амидов, обусловленное наличием аспарагина и глутамина, можно определить после гидролиза 10 М НС1 при 37°С в течение 10 суток и последующего анализа на аммиак с помощью микродиффузионной техники. Раздельное определение аспарагина и глутамина можно провести с помощью предварительной этерификации (метанол-уксусный ангидрид) свободных карбоксильных групп, последующего восстановления (борогидрид лития) образовавшихся сложноэфирных групп и определения аспарагиновой и глутаминовой кислоты после кислотного гидролиза соответственно в виде v-гидрокси-а-аминомасляной кислоты и б-гидрокси-а-аминовалериановой кислоты. Содержание аспарагина и глутамина получают путем вычитания этих величин из содержания аспарагиновой и глутаминовой кислот после полного гидролиза немодифицированного белка. Полный ферментативный гидролиз белков без деструкции аминокислот можно осуществить, используя смешанные конъюгаты Сефарозы с трипсином, химотрипсином, пролидазой и аминопептидазой М [9]  [c.260]

    Анализ. Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава. Для этого необходимо провести полный гидролиз пептидных связей и получить смесь, состоящую из отдельных аминокислот. Гидролиз проводят при помощи 6 М соляной кислоты при кипячении в течение 24 ч. Так как для гидролиза пептидных связей изолейцина и валина этого может быть недостаточно, проводят контрольный 48- и 72-часовой гидролиз. Некоторые аминокислоты, например триптофан, при кислотном гидролизе разрушаются, поэтому для их идентификации используют гидролиз при помощи метансульфоновой кислоты в присутствии триптамина. Для определения цистеина белок окисляют надмуравьиной кислотой, при этом цистеин превращается в цистеиновую кислоту, которую затем анализируют. Вьщеление и идентификацию аминокислот проводят при помощи аминокислотных анализаторов, принцип действия которых основан на хроматографическом разделении белкового гидролизата на сульфополистирольных катионитах, В основе количественного определения той или иной аминокислоты лежит цветная реакция с нингидрином, однако более перспективным следует считать метод, при котором аминокислоты модифицируют в производные, поглощающие свет в видимом диапазоне. Разделение смеси аминокислот проводят при помощи высокоэффективной жидкостной хроматографии, а само определение — спектрофотометрически. Следующим этапом является определение концевых аминных и карбоксильных [c.40]

    Росс и Бакмен [85] методом хроматографического анализа установили, что продуктами микробиологического распада эмульсионных красок, в которых в качестве стабилизатора применены казеин или а-протеин, являются различные аминокислоты, содержащие триптофан. Это указывает на разложение белков микрофлорой, преимущественно Proteus spe ies. Авторы предполагают, что резкий неприятный запах, выделяемый этими красками, появляется в результате дальнейшего превращения аминокислот, особенно триптофана, который распадается на скатол и индол. Те же авторы нашли в поврежденных красках, содержащих в качестве защитных коллоидов метилцеллюлозу и карбоксиметилцел-люлозу, сахара и производные сахаров (например, глюкозу и цело- [c.142]

    В двухстадийной схеме анализа для получения крупных фрагментов белка используют либо химические методы расщепления (табл. 10.2) по таким сравнительно редко встречающимся в полипептидной цепи аминокислотам, как триптофан, метионин, цистеин, либо ограниченный протеолиз нативного белка [36, 40, 51, 52]. Повторная фрагментация каждого из образовавшихся крупных пептидов приводит к образованию значительно меньшего числа компонентов, чем в случае целой [c.344]

    Предложены электроды для огфеделения суммы некоторых аминокислот (тирозин, фенилаланин, триптофан, метионин) в крови, поскольку их содержание является важным диагностическим показателем в клинических анализах. Такие датчики представляют собой катионоселективный электрод, чувствительный к образующимся при ферментативном окислении ионам аммония, на котором иммобилизован слой Ь-аминокислотной оксидазы из змеиного яда. Датчики другого типа регистрируют уменьшение активности ио-дид-ионов на поверхности электрода в результате реакций [c.216]

    Как ни странно, меченый триптофан не включался в кольца А, и В, хотя хорошо известна роль этой аминокислоты как источника хпнолиновой системы в других природных соединениях [34]. Эти данные еще раз подчеркивают необходимость экспериментальной проверки биогенетических схем, даже если структурный анализ указывает на возможность осуществления одного из самых типичных путей биосинтеза. В случае стрептонигрина можно было бы предложить, например, вполне разумную схему (схема 27 путь б),, в которой предшественниками являются аминокислоты триптофан (кольца Ли В), тирозин или дофамин (кольцо О и часть кольца С) и треонин (оставшийся кротонильный фрагмент кольца С и атом азота). [c.377]

    При гидролизе происходит разрушение некоторых аминокислот полностью распадается триптофан, на 50—60%—карбоксиметил-цистеин и на 5—10% — треонин и серии. Эти потери следует учитывать при количественном анализе, вводя соответсгвуюш,ие поправки. Чем быстрее производится удаление кислоты, тем меньше вероятность нежелательных побочных реакций. [c.167]

    Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т. е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с Ж-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом. После идентификации концевого Ж-амино-кислотного остатка метка вводится в следующий аминокислотный остаток, [c.41]

    В настояш ее время некоторыми авторами высказывается идея о том, что распределение полярных и неполярных аминокислот вдоль полипептидной цепи является одним из важных элементов кодирования пространственной структуры глобулярных белков. Еще Фишером [55] было показано, что соотношение суммарных объемов полярных и неполярных аминокислотных остатков может обусловливать форму белковой молекулы (сферическую или вытянутую), а также способность образовывать четвертичные структуры. Анализ, проведенный Перутцем, Кендрью и Уотсоном [66] на примере восемнадцати аминокислотных последовательностей в различных миоглобинах и гемоглобинах, показал, что из 150 остатков, входящих в эти молекулы, 33 находятся в местах, экранированных от контакта с водой, т. е. во внутреннем ядре белковой глобулы, причем 30 из 33 являются неполярными аминокислотами (глицин, аланин, валин, лейцин, изолейцин, фенилаланин, иро-лин, цистеин, метионин, тирозоин и триптофан). Это наводит [c.16]

    Аминокислоты белковых гидролизатов разделяют на колонке 0,9x150 см в две стадии. Вначале 0,2 н. буферным раствором с pH 3,25 элюируют кислые и часть нейтральных аминокислот, а после выхода глицина (250 мл 8 ч 20 мин) насос переключают на подачу второго 0,2 н. буферного раствора с pH 4,25, которым элюируют остальные нейтральные и ароматические аминокислоты (тирозин и фенилаланин). В соответствии с константами диссоциации тирозин и фенилаланин должны элюироваться в меньших объемах их задержка объясняется адсорбцией на матрице ионита. Основные аминокислоты элюируются с большой задержкой, ускорить их выход можно лишь существенным увеличением концентрации буфера. Однако это в свою очередь вызывает дрейф нулевой линии, изменение объема смолы и ряд других отрицательных последствий. Поэтому элюирование заканчивают, а оставшиеся аминокислоты вымывают разбавленным раствором гидроокиси натрия. Вторую половину образца хроматографируют на короткой колонке (15 см) в 0,38 н. буфере с pH 5,28. При этом вначале получают суммарный пик кислых и нейтральных аминокислот, а затем в области между триптофаном и аргинином элюируют основные аминокислоты. При скорости подачи 30 мл/ч и 50 °С общее время анализа составляет 21 ч 30 мин (16 ч 30 мин и 5 ч). Хроматограмма стандартной смеси аминокислот приведена на рис. 32.12. [c.343]

    В гидролизатах коллагена и эластина содержатся десмозин и изодесмозин их разделяли в модифицированных условиях по одноколоночной [59, 60], а также по двухколоночной схемам анализа [61, 62]. Множество работ посвящено хроматографии серусодержащих аминокислот. Определены объемы выхода производных цистеина [63] и цистина, полученных после модификации белков и последующего гидролиза [64]. Найдены условия разделения производных лизина, полученных при модификации нативного белка, а также разработаны условия ускоренного анализа этих соединений [65, 66]. Метилгистидин и некоторые редкие аминокислоты разделяли на 15-сантиметровой колонке [67]. При снижении скорости потока в реакторе вдвое было достигнуто 10—20-кратное увеличение чувствительности при определении N-метиламинокислот, которые разделяли в специально разработанных условиях [68]. Триптофан и его производные разделяли на амберлите G-50 [69]. [c.349]

    Таким образом, для чисто химических или физико-химических исследований основным требованием является точность для широкого обзора в области пищевых белков самое первое, что нужно, это — получить возможно больше материала по присутствию и содержанию незаменимых аминокпслот. В нашей практике часто встречалось, что пищевой белок является хорошим источником больщинства незаменимых аминокислот, которые легко определить (именно цистин, метионин, аргинин, гистидин, лизин, тирозин и триптофан), и все же неполноценен в отношении других аминокислот, для выявления которых нет простых и точных способов определения. Если в таких случаях руководствоваться только анализами первой группы аЛтинокислот, то можно было бы впасть в серьезную ошибку при биологической оценке данного белка. Поэтому только полный анализ аминокислот, имеющих значение для питания, может дать правильную и полноценную картину исследуемых продуктов, даже если определение отдельных аминокислот будет произведено не абсолютными, а скорее сравнительными методами. [c.9]

    Нингидриновый метод применим не ко всем аминокислотам и не используется больше, по-видимому, с 1960 года. В результате этого метода глицин образует полимеризующийся формальдегид, тогда как гистидин, аргинин, триптофан, цистеин, аспарагиновая и глутаминовая кислоты, очевидно, не пригодны для анализа этим методом [7]. В качестве жидкой фазы использовали и силиконы [7, 164, 158], и полиэфиры [4, 149]. Предпринимались попытки [121] декарбоксилирования в присутствии N-бромсукцинимида (БСИ), однако образующиеся нитрилы и альдегиды, содержащие на один углеродный атом меньше, имели различные количественные соотношения в зависимости от характера аминокислоты. [c.89]

    Каждый из этих ферментов атакует вполне определенные пептидные связи. Трипсин катализирует гидролиз пептидных связей, карбонильная группа которых принадлежит одной из основных аминокислот, обычно аргинину или лизину. Пепсин и химотрипсин предпочтительно катализируют гидролиз тех пептидных связей, в образовании которых участвуют ароматические аминокислоты, в частности триптофан, тирозин и фенилаланин. Среди протеолитических ферментов наиболее высокой специфичностью обладает трипсин поэтому именно он наиболее подходит для такого рода анализа. Ясно, однако, что при помощи только одного, пусть даже абсолютно специфичного, фермента невозможно определить полную последовательность аминокислот в полипептиде. Если, например, триптическое расщепление полипептида дало пять фрагментов (пептидов), в сумме соответствующих всей цепи, и если даже для каждого из них удалось установить аминокислотную последовательность, то это еще не все требуется узнать, в каком порядке эти пептиды располагались в нативном полипептиде. Чтобы узнать это, необходимо получить другие пептиды, которые перекрывались бы с первыми. Главное преимущество ферментативного гидролиза — специфичность реакции расщепления в отношении природы расщепляемых пептидных связей накладывает в то же время строгое ограничение на применимость этого метода. В идеале желательно было бы, например, иметь возможность расщеплять иногда те пептидные связи, которые в норме трипсином не атакуются, или, наоборот, предохранять от расщепления связи заведомо чувствительные. Недавно были предложены некоторые модификации методики, которые позволяют в какой-то мере решить эту задачу. Так, например, реакция е-аминогруппы лизина с этилтрифтортиоацетатом в слабо щелочном растворе дает блокированный по аминогруппе остаток, пептидная связь которого не атакуется трипсином [c.90]

    У большинства белков в 0,1 н. растворе NaOH поглощение ослабляется с увеличением длины волны, но еще сохраняется при 330—450 ммк, где тирозин и триптофан не поглощают. В качестве контроля для измерения характеристического поглощения при 294 и 280 ммк можно измерить экстинкцию при 320 и 360 ммк и экстраполировать полученные данные к 294 и 280 ммк. У аминокислот, связанных в белке, где максимум поглощения перемещается по сравнению со спектром свободных аминокислот на 1—3 ммк в длинноволновую область, более совершенными стандартами могут служить чистые пептиды, содержащие тирозин и триптофан. Очень серьезным источником ошибок является легкая мутность раствора если белок в условиях анализа склонен к денатурации, то для получения совершенно прозрачного раствора рекомендуется предварительно обработать белок протеолитическим ферментом. [c.269]

    Поглощение ультрафиолетового излучения. Большинство белков поглощает ультрафиолетовое излучение с длиной волны около 280 тр. Было показано1 [91—94], что это поглощение обусловлено тирозином, триптофаном и (в меньшей степени) фенилаланином. Таким образом, величина поглощения зависит от содержания этих аминокислот в белке. Измерение оптической плотности белкового раствора при 280 пу служит удобным и точным методом определения концентрации белка [95], если известен коэффициент экстинкции и в растворе нет других веществ, поглощающих свет с этой длиной волны. Рассматриваемый метод можно также применять для приближенного измерения общего содержания белков в смеси в тех случаях, когда допустимо использование среднего коэффициента экстинкции. Метод имеет то преимущество, что на поглощение света не влияют растворенные соли и многие другие вещества и что, следовательно, определение можно производить на образцах белковых фракций без всякой специальной их подготовки, Анализ производится быстро, причем требуются всего лишь доли миллиграмма белка. [c.20]

    У человека и животных при недостатке в пище витамина РР наблюдается тяжелое заболевание — пеллагра (от итал. pelle agra — шершавая кожа), сопровождающееся поражением кожи, нервной системы, расстройством пищеварения (поносы). Эта болезнь распространена среди бедных слоев населения в южных районах США, Италии, Испании, Южной Америки, питающихся преимущественно маисом (мука из кукурузы). Характерным признаком пеллагры является воспаление кожи, которое развивается симметрично на правой и левой кисти, на правой и левой щеке и других открытых местах, не защищенных от действия солнечных лучей. Эта болезнь излечивается введением в организм никотиновой кислоты. Химический анализ показал что в кукурузе мало аминокислоты триптофана. Экспериментально показано, что если свиней кормить одной кукурузой, то у них возникает заболевание, подобное пеллагре. Состояние авитаминоза у животных можно излечить путем добавления в пищу триптофана. В организме человека, животных и растений триптофан превращается в никотиновую кислоту, последняя может превратиться Б амид никотиновой кислоты  [c.174]

    Определение химической структуры белка следует начинать с количественного анализа аминокислотного состава его полипептидных цепей. Для этого чистый и, если это возможно, кристаллический белок подпер-гают обычно кислотному гидролизу, чтобы гидролизовать все имеющиеся в белке пептидные связи, которые соединяют аминокислоты, входящие в состав этого белка. Затем определяют относительные количества высвобождающихся при таком гидролизе двадцати стандартных аминокислот. Определение количества аминокислот проводят с помощью метода хроматографии на ионообменных смолах, разработанного в начале 50-х годов У. Штейном и С. Муром (фиг. 39, 40). Результаты такого анализа аминокислотного состава двух ферментов Е. oli (Р-галактозидазы и триптофан-синтазы) приведены в табл. 2. (Триптофан-синтаза Е. соН, как скоро будет показано, состоит из двух различных полипептидных цепей, названных А-белком и В-белком. Данные, приведенные в табл. 2, касаются только А-белка.) [c.83]

    К сожалению, метод с использованием динитрофторбензола применим ТОЛЬКО для определения нескольких первых от Н-конца аминокпслот. Для более отдаленных от конца аминокислот (начиная с шестой или седьмой аминокислоты от Н-конца) результаты анализа становятся настолько неоднозначнымн, что уже нельзя сделать надежного заключения о действительной структуре полипептида. Поэтому описанный метод можно использовать для определения последовательности аминокислот лишь в коротких полипептидах, состоящих из четырех или пяти аминокислотных остатков. Следовательно, для непосредственного анализа А- и В-це-пей инсулина длиной в 21 и 30 аминокислот этот метод неприменим, не говоря уже о последовательностях таких белков, как Р-галактозидаза и триптофан-синтаза, состоящих из сотен аминокислотных остатков. [c.89]

    Таким образом Сэнгер показал, что инсулин состоит из двух полипептидных цепей, каждая из которых обладает вполне определенной последовательностью аминокислотных остатков. Методы, разработанные Сэпгером, были затем использованы для определения первичной структуры более длинных полипептидных цепей, и в частности для анализа ферментных белков. С тех пор было введено много технических усовершенствований, а со временем для определения аминокислотных последовательностей стали использовать и автоматическое оборудование. Тем не менее анализ полной аминокислотной последовательности ферментного белка, содержащего сотни аминокислот, все еще остается страшно трудным делом, требующим три или четыре человеко-года тяжелой работы. А-белок триптофан-синтазы В. соН, первичная структура которого показана на фиг. 43, является одной из самых длинных полипептидных цепей с известной аминокислотной последовательностью. [c.90]

    Другое важное наблюдение было сделано при структурном анализе-А-белка триптофан-синтазы у обратных мутантов Тгр+, полученных из Тгр -мутанта trpA23. У части таких обратных мутантов Тгр в 210-м. положении вместо вредного аргинина мутанта irpA23 был обнаружен нормальный глицин. Это хорошо согласуется с рассмотренной в гл. XIII возможностью того, что в результате обратной мутации восстанавливается исходная последовательность нуклеотидов в мутантном гене, а следовательно, и нормальная аминокислотная последовательность в соответствующем белке. Однако у некоторых других обратных мутантов в А-белке в 210-м положении оказался не нормальный глицин, а серин. Это наблюдение является прямым доказательством существования невидимых, мутаций , в случае которых, как это было предположено в гл. VI, мутационная замена одного аминокислотного остатка на другой остается незамеченной. Действительно, как видно из приведенного примера, некоторые замены аминокислот в первичной структуре полипептида (такие,, как замена глицина на аргинин в 210-м положении) приводят к полной потере каталитической функции А-белка триптофан-синтазы, тогда как другие замены в том же положении (такие, как замена глицина на серин) не мешают каталитической функции возникшего мутантного фермента [c.366]

    Таблица генетического кода в ее окончательной форме позволяет проводить теоретический анализ данных об аминокислотных замещениях в мутантных белках. Эти данные могут быть использованы для проверки важнейшего постулата о том, что мутации, приводящие к замене одной аминокислоты, возникают, как правило, в результате замещений одиночных оснований в генетических полинуклеотидах. Например, с этой точки зрения можно рассмотреть результаты Яновского, полученные при доказательстве коллинеарности гена А триптофан-синтазы Е. oli и А-белка этого фермента. Если сравнить данные, представленные на фиг. 181 и в табл. 27, становится очевидным, что каждую обнаруженную замену аминокислоты можно объяснить простым замещением одного азотистого основания на другое. Например, у мутанта trpA23, нормальный глицин (кодон ГГ точка означает, что глицин может кодироваться триплетом с любым из четырех нуклеотидов в третьем положении), стоящий на 210-м месте в белке дикого типа, замещен аргинином (кодон АГг). Очевидно, что эта мутация была вызвана замещением нормального гуанина в первом положении кодона на аденин. [c.442]

    Для гидролиза относительно чистых белков с низким содержанием углеводов успешно использовали различные разбавления образцов вещества. Они варьируют от приблизительно 10 мл 5,5 н. соляной кислоты на 1 г белка, как описано Тристрамом [41] в стандартной методике, использованной в лаборатории Чибнелла, до 500 мл 6 н. соляной кислоты на 1 г белка [35]. Принцип использования высоких разбавлени образца в гидролизующей кислоте с целью уменьшения деструкции аминокислот в присутствии большого избытка углеводов был впервые исследован Дастином и сотр. [68]. Они показали, что при нагревании любой из 15 аминокислот в присутствии большого избытка углеводов (крахмала или глюкозы) в значительном объеме 6 и. соляной кислоты (100—200 мл г углевода) выход аминокислоты уменьшается не более чем на 3%. Триптофан, цистин и метионин менее устойчивы в этих условиях. Гидролиз при высоком разбав.пении был успешно применен для анализа аминокислот в пищевых продуктах, содержащих мало белка и много углеводов [69]. В таких условиях 20— 40% метионина превращается в сульфоксид, но сульфона образуется менее 2%. В присутствии больших количеств углеводов на ранних стадиях элюирования кислых и нейтральных аминокислот с ионообменных смол часто обнаруживается пик, дающий с нингидрином розовое окрашивание. Этот пик следует за цистеиновой кислотой, но предшествует метионин-сульфоксиду и, по-видимому, соответствует продукту расщепления сахаров. [c.133]

    Скорость деструкции триптофана меньше в условиях щелочного гидролиза. Снайс и Чемберс [104] нашли подходящие условия щелочного гидролиза, ири которых триптофан не разрушается в отсутствие других соединений даже при нагревании до температур порядка 185°. Однако уже умеренные количества серина или цистеина вызывают значительную деструкцию триптофана, хотя другие аминокислоты оказывают частичный защитный эффект. Глюкоза и фруктоза в количествах, в четыре раза (но весу) превосходящих количество триптофана, вызывают незначительное его разрушение однако ясно, что щелочной гидролиз не может ирименяться для точного анализа триптофана, входящего в состав белков. [c.147]


Смотреть страницы где упоминается термин Аминокислоты, анализ триптофан: [c.302]    [c.256]    [c.396]    [c.129]    [c.98]    [c.137]    [c.359]    [c.309]    [c.264]    [c.196]    [c.532]    [c.365]    [c.365]    [c.353]    [c.82]   
Методы химии белков (1965) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Триптофан



© 2025 chem21.info Реклама на сайте