Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод определения структуры покрытий

    В современной промышленности получили распространение полимерные покрытия из фторопласта ЗМ, полиэтилена, полипропилена, наносимые методом горячего напыления. Процесс образования пленки полимерного материала на горячей поверхности. металлического изделия во многом определяется теплофизическими свойства.ми порошкообразных полимерных материалов. В литературе отсутствуют данные по теплофизическим свойствам засыпок фторопласта ЗМ, полиэтилена НД, полипропилена. Для определения температуропроводности и теплопроводности засыпок порошкообразных полимеров был использован зондовый метод с цилиндрическим зондом постоянной мощности [5]. Были выбраны зондовые методы, так как эти методы относительно просты и с достаточной точностью (7%) позволяют из одного эксперимента определять как теплопроводность, так и температуропроводность засыпок. Кроме того, при проведении эксперимента цилиндрический зонд мало нарушает первоначальную структуру исследуемой системы. [c.69]


    В приведенных результатах наблюдаются известные противоречия в отношении зависимости р от степени покрытия поверхности, концентрации раствора и других факторов. Число экспериментальных данных такого рода пока еще недостаточно для того, чтобы установить общие закономерности. Вместе с тем, сам метод определения р, по-видимому, является весьма многообещающим, поскольку дает определенную возможность судить о конформации адсорбированных макромолекул. Правда, такое суждение носит качественный характер, так как теоретически не установлена связь между р и каким-либо параметром, характеризующим конформацию адсорбированной макромолекулы. Предположения о сжатом слое или о слое растянутых молекул, делаемые на основании значений р, носят относительный характер. С другой стороны, сопоставление экспериментально определенных величин р с предсказываемыми теоретическими могут дать ценные сведения о структуре слоя. [c.85]

    Этим методом можно изготавливать покрытия из всех полимерных материалов, которые после подогрева до требуемой температуры не меняют структуры, химического строения и свойств. Подобные покрытия могут наноситься не только на металлы, но и на стекло, фарфор, керамику, пластмассы и даже на определенные сорта дерева. [c.175]

    Измерение коэффициента линейного расширения (а) имеет важное значение как метод изучения структуры и свойств полимерных покрытий. В литературе есть небольшое количество работ, посвященных разработке приборов для определения коэффициента линейного расширения полимерных пленок [14, 77, 78]. Это объясняется трудностью измерения длины пленок, заключающейся в их высокой гибкости и склонности к самопроизвольному изменению формы или прилипанию к подложке при нагревании. Поэтому конструкция прибора должна предусматривать устройство, предотвращающее возможность изгиба и прилипания пленки. По этой же причине измерять длину пленок можно только бесконтактными методами. [c.55]

    Свойства покрытий зависят не только от вида металла, но и от способа нанесения. Так, при испарении металлов в вакууме, катодном распылении и классическом способе восстановления металла из раствора серебряных солей покрытия имеют мелкокристаллическую структуру и относительно небольшую толщину. Методы определения свойств таких покрытий, естественно, отличаются от методов, используемых для испытания относительно толстых металлизационных покрытий, которые складываются из затвердевших капелек металла (чешуек). [c.145]


    Несмотря на широкое применение покрытий в различных отраслях промышленности, физико-химические основы их получения с заданными свойствами начали разрабатываться сравнительно недавно. Причиной этого являлось отсутствие методов и приборов для исследования процесса формирования полимерных покрытий, данных о характере происходящих при этом структурных превращений и их роли в определении свойств покрытий, сложность химического состава и строения молекул пленкообразующего, не всегда правильное отождествление структуры и свойств покрытий, пленок и блочных материалов. [c.6]

    Приведенные данные свидетельствуют о том, что изучение только кинетики испарения жидкой фазы и изменения электросопротивления не позволяют разобраться в механизме пленкообразования из латексных систем. Из данных, полученных этими методами, следует, что скорость сушки пленок существенно возрастает с увеличением полярности полимера, с уменьшением длины и разветвленности боковых цепей и с введением полярных групп определенной природы. Однако эти методы позволяют исследовать только начальную стадию пленкообразования и не дают возможности проследить за протеканием структурных превращений на последующих стадиях формирования пленок, ответственных за структуру и свойства покрытий. С учетом этого для исследования процесса формирования были разработаны методы, которые могут быть применены для изучения структурных превращений на различных этапах пленкообразования из дисперсий полимеров. В [30] для решения этой задачи применены поляризационно-оптический метод исследования внутренних напряжений и импульсный метод определения теплофизических параметров. [c.206]

    При определении свойств покрытий часто оценивают и их структуру. Для этого пользуются методами электронной и оптической микроскопии и рентгеноструктурного анализа (для кристаллических полимеров). [c.67]

    При некоторых технологических условиях получения пиролитических покрытий и геометрии изделий уровень остаточных напряжений может быть настолько велик, что приводит к самопроизвольному разрушению последних. Действие напряжений проявляется не только в виде образования трещин и сколов, но и в нарушении структуры между слоями, вызывая различного вида расслоения. Определению остаточных напряжений в изделиях посвящены работы [1, 2], которые различаются в основном методикой измерения остаточных упругих деформаций, проявляющихся при нарушении целостности тела. Необходимо отметить, что рассматриваемые методы позволяют измерять преимущественно напряжения первого рода, т. е. макронапряжения. [c.183]

    Методы рентгено- и фотоэлектронной спектроскопии в применении к явлениям адсорбции позволяют изучать и решать ряд проблем. С одной стороны, это идентификация продуктов на адсорбенте, исследование электронной структуры адсорбатов в зависимости от строения адсорбента и нахождение энергетических характеристик взаимодействия адсорбат — адсорбент. С другой стороны, это определение мест локализации адсорбированных молекул, поверхностной концентрации, степени покрытия поверхности, изучения кинетики адсорбции или каталитической реакции, выяснение механизмов адсорбции и каталитического действия металлов и сплавов и т. д. [c.162]

    Метод микрошлифа заключается в измерении толщины покрытия на поперечном срезе образца с помощью микроскопа. Это один из самых точных методов, но из-за своей трудоемкости не может быть рекомендован для текущего цехового контроля его следует рассматривать как арбитражный. Кроме того, он может быть использован при изготовлении эталонов, для проверки равномерности, осаждения покрытия на определенном участке детали, а также для изучения структуры гальванического осадка. [c.237]

    В литературе описано большое число самых разнообразных способов определения напряжений в материалах покрытия. Из них наибольшее применение получили оптические методы исследования, и прежде всего методы, основанные на применении поляризованного света. Используя их, имеется возможность не только количественно оценивать те или иные напряжения в материале покрытия, но и изучать изменения структуры путем изме- [c.78]

    До настоящего времени скорость формирования структуры в жидких битумах характеризовалась их фракционным составом, а качество битума в сформировавшемся покрытии — свойствами остатка после фракционной разгонки. Такой метод контроля весьма далек от условий практического применения битума в дорожном строительстве. Он не дает четкого разграничения битумов различных классов — быстрогустеющих БГ, густеющих со средней скоростью СГ и медленногустеющих МГ. Кроме того, при определении фракционного состава жидких битумов класса БГ и СГ было установлено, что к концу испытания из них выкипает почти весь введенный разжижитель, а остаток значительно мягче исходного вязкого битума. Он характеризуется значительно большей (в 2—2.5 раза) глубиной проникания иглы и более низкой (на 8—10° С) температурой размягчения. [c.157]


    Для определения температуры разрушения битумов от термических и усадочных напряжений разработан метод, основанный на определении температуры -появления трещины в пленке материала, нанесенной на стеклянную подложку, под воздействием термических напряжений при охлаждении. Этот метод позволяет также определять температуру хрупкости при совместном действии термических напряжений при охлаждении и усадочных напряжений, возникающих в битумном покрытии вследствие формирования равновесных структур или протекания химических реакций. [c.38]

    Последние данные [20] показывают, что активность некоторых нанесенных никелевых катализаторов уменьшается только вдвое в присутствии 10 ч. H2S на 1 млн. В присутствии водяного пара активность резко падает приблизительно на три порядка, но восстанавливается при удалении водяного пара из потока реакционной среды. Объяснения этих явлений еще нет, оно может потребовать использования метода рентгеновской спектроскопии тонких структур края поглощения, чтобы определить состав объемных и поверхностных фаз, существующих во время реакции (см. разд. 11.3). Определение чувствительности к отравлению серой в работе [20] не было доведено до такой степени, чтобы объяснить высокую наблюдаемую скорость реакции, когда некоторая часть поверхности была покрыта серой в присутствии сероводорода. Если происходит ингибирование образования поверхностного сульфида, то его идентификация может оказаться полезной для понимания чувствительности к отравлению серой. [c.241]

    Очевидно, что в случае монокристаллов, если рассматривать всю поверхность образца, довольно трудно быть уверенным, что образец имеет только один или преимущественно один тип граней. Это приближенно выполняется для очень тонких пластин нли фольги, если обе их стороны имеют один тип граней, а площадь краев относительно мала. Если такой тип образцов не-приемлем, то можно целиком вырезать кристалл определенной симметрии (нанример, куб или прямоугольную призму с шестью идентичными гранями для металлов кубической структуры). Однако этот метод весьма сложен и трудоемок и для металлов г. п. у. структуры ограничен определенным типом граней, например (111) с /=2, 4... Альтернативным методом является покрытие нежелательной части поверхности образца каталити- [c.122]

    На основе изучения методом дифракции электронов структур, образующихся на чистых поверхностях кристаллов после воздействия двух различных газов, можно надеяться получить некоторые фундаментальные данные, касающиеся механизма взаимодействия. Хотя проведено лишь очень небольшое число опытов, полученные результаты подтверждают ценность этого способа. Водород не поддается непосредственному определению из-за его малой рассеивающей способности, но его присутствие можно обнаружить по действию, которое он оказывает на другие структуры. Так, было показано, что при воздействии водорода и кислорода на грани (100) поверхности никеля результаты зависят от величины экспозиции. Воздействие водорода на покрытую кислородом поверхность не вызывало никакого эффекта. Однако, когда поверхность, покрытая водородом, подвергалась действию кислорода, образовывалась новая решетка гидрида никеля. В первом случае связи кислорода с никелем препятствовали последующему изменению структуры под влиянием водорода. [c.344]

    Рассмотрим немногочисленные пока примеры приложения метода, относящиеся к области физической химии. В работе [165] описано приготовление и исследование тонких срезов лакокрасочных покрытий, позволившее определить распределение частиц красителя в лаковой пленке. Качество такого покрытия зависит от степени равномерности распределения частиц в покрытии, что можно непосредственно оценить из электронных микрофотографий. Метод срезов был с успехом применен для исследования структуры углеводородных гелей [166, 167]. Предварительно образец, например гель стеарата кальция, замораживали при помощи сухого льда и с замороженного блока получали срезы толщиной от 0,5 до 1 [х. Было показано, что гель имеет сетчатую структуру и установлено изменение этой структуры в зависимости от условий получения и обработки геля. При исследовании некоторых катализаторов были оценены размеры частиц, образующих скелет таких объектов, а также определен характер пористости катализаторов [156, 168, 169]. В последней работе было проведено сравнение эффективности методов реплик и тонких срезов и установлено, что метод срезов дает лучшие результаты при изучении сравнительно крупных пор с размерами от 0,05 до 1 Строение весьма пористых целлюлозных фильтров было изучено путем заполнения их свободного пространства осадками солей и последующего получения тонких срезов. При этом оказалось возможным зафиксировать структуру фильтров, набухших в различных жидкостях [170]. Метод тонких срезов пригоден для изучения строения синтетических волокон [171], минералов [172, 173]. Ряд работ был посвящен исследованию распределения наполнителей (прежде всего саж) в тонких срезах резин. [c.119]

    Снижение пористости металлических покрытий — важный резерв повышения защитных свойств. Для каждого способа нанесения существуют определенные технологические приемы, обеспечивающие снижение кол 1чества пор. Тип пор зависит от метода формирования покрытий и, следовательно, от структуры осажденного слоя. Микропоры характерны для структуры покрытий, полученных электролитическим методом, и степень пористости определяется режимом электролиза, влияющим на скорость роста кристаллов, предварительной обработкой поверхности, включением различных чужеродных частиц. Наличие механических загрязнений, облегчающих разряд водородд и затрудняющих разряд осаждаемого иона, способствует возникновению макропор в покрытии. Возникновение пор канального типа связано в основном с внутренними напряжениями, величина которых превосходит временное сопротивление разрушению покрытия и приводит к растрескиванию и образованию сетки трещин. [c.67]

    Кроме создания на поверхности металла окисных пленок определенной структуры для повышения прочности связи используют другие методы, например фосфатирование [86—89]. Фосфатные покрытия получают, обрабатывая поверхность металлов растворами однозамещенных солей ортофосфорной кислоты. Образуются пленки фосфатов металлов, имеющие кристаллическую структуру и отличающиеся большой пористостью. Например, прочность крепления резины к металлу в результате фосфатирования возрастает в 1,5—2 раза [90—91]. [c.377]

    В последнее десятилетие для определения структуры и состава поверхностей, как чистых, так и покрытых адсорбционным слоем, все больше и больше применяются оптические, дифракционные и спектроскопические методы. Этому в значительной мере способствует массовое производство ультравакуумного оборудования, необходимого для получения чистых поверхностей, и совершенных измерительных систем. Разработано так много новых методов, что, по-видимому, полезно хо- [c.223]

    Интенсификация процессов производства приводит к все более широкому применению эмалированного оборудования в агрессивных средах при повышенных температурах и давлениях. Это, в свою очередь, требует разработки простых надежных методов и приборов для определения химической устойчивости эмалевых покрытий в условиях, приближающихся к условиям эксплуатации аппаратов. Автоклавные методы определения химической устойчивости, в которых в качестве образцов используются штабики эмали, не могут дать объективную характеристику химической устойчивости эмалевого покрытия, так как вследствие различных причин возникающих напряжений, отличия в структуре,— покрытие, сформированное на металле, обладает химической устойчивостью, значительно отличающейся от устойчивости стекол [1]. Поэтому в настоящее время все большее распространение получают методы определения химической устойчивости при иовышенных температурах и давлениях [2], в которых используются эмалированные образцы, подобные образцам для стандартных методов определения химической устойчивости при температуре кипения реагента или ниже [3—5]. [c.83]

    В монографии рассмотрены методы определения внутренних напряжений при формировании и старении полимерных покрытий, проведены анализ и обобщение результатов исследований по разработке физико-химических основ повышения долговечности полимерных покрытий из пленкообразующих различных классов путем снижения в них внутренних напряжений. При изучении особенностей формирования и старения покрытий нз мономерных и олигомерных систем, растворов, расплавов и дисперсий полимеров было установлено, что величина, кинетика нарастания и ре.ц ксации внутренних напряжений существенно зависят от степени незавершенности релаксационных процессов, обусловленной неоднородностью структуры покрытий, различной скоростью формирования отдельных слоев, прочностью адгезионного взаимодействия на границе полимер — подложка и полимер — наполнитель. [c.5]

    ИК-спектроскопия, наряду с другими методами оптической и радиоспектроскопии, получает в настоящее время все более широкое распространение в исследованиях поверхности катализаторов, хемосорбции и гетерогенных каталитических реакций. Основным достоинством этого метода, которое впервые было продемонстрировано в работах А. Н. Те-ренина с сотрудниками [1], является возможность непосредственно на поверхности катализатора детально исследовать структуру хемосорбированных соединений. В тех случаях, когда на поверхности одновременно образуется несколько различных форм соединений, ИК-спектроскопия позволяет оценивать количество и изучать поведение отдельно каждой из этих форм. Успехи ИК-снектроскопии, как метода исследования структуры и взаимодействия молекул, определяются высокой чувствительностью внутримолекулярных колебаний к изменениям электронной оболочки молекулы и возможностью связать эти изменения с отдельными структурными элементами молекулы. Несомненно, однако, что применение ИК-спектроскопии к изучению адсорбированного состояния молекул сопряжено с определенными трудностями, которые в некоторой степени ограничивают возможности метода. Эти ограничения связаны, прежде всего, с необходимостью получения спектра адсорбированных молекул на фоне сильного поглощения и рассеяния света самим адсорбентом. Следствием этого является относительно низкая концентрационная чувствительность ИК-спектроскопии, не позвЬляющая, как правило, изучать хемосорбцию нри очень низких заполнениях поверхности. Отметим, однако, что покрытие поверхности, необходимое для получения спектра адсорбированных молекул, сильно зависит от исследуемой системы адсорбент — адсорбат. В благоприятных случаях ИК-спектр может быть получен при весьма низких покрытиях, составляющих 0,1—0,01% [2, 3]. В этой связи хотелось бы указать, в частности, на опубликованные недавно работы по изучению методом ИК-спектров адсорбции молекулярного азота на никеле и некоторых других металлах [4], на которых сам факт адсорбции азота при комнатной температуре не был ранее однозначно установлен другими методами. [c.32]

    Дизайн гцгфофобных и гцгфофильиых поверхностей. Гидрофобные и гидрофильные поверхности с высокой однородностью и хорошо определенной структурой представляют давний и фундаментальный интерес для изучения адсорбции, адгезии, смачивания, поверхностных сил, устойчивости коллоидных систем и др. С практической точки зрения гидрофильные поверхности важны для получения покрытий с низкой неспецифической адсорбцией белков и адгезией клеток для разработки бионезагрязняемых материалов. Гидрофобные поверхности традиционно применяются в качестве адсорбентов для хроматографии, для очистки воды и воздуха от органических примесей, в качестве защитных и водоотталкивающих покрытий и др. Представляется, что самым эффективным методом конструирования с молекулярной точностью различных гидрофильных и гидрофобных поверхностей является метод ковалентного закрепления органических молекул на носителе. Далее будут систематизированы накопленные в литературе результаты по получению монослоев с предельно гидрофильными и предельно гидрофобными свойствами и рассмотрены свойства смачивания таких поверхностей. Материал данного раздела является обобщением и развитием идей, изложенных в работах [c.262]

    Для образования прочного, хорошо сцепленного с подложкой покрытия необходимы два условия а) малое (< 15 %) различие размеров атомов наносимого слоя и подложки, иначе возникают слишком большие искажения кристаллической решетки, приводящие к разрыву атомных связей б) достаточная растворимость наносимого элемента в покрытии металла во всем интервале температур, а также соответствие структур покрытия и подложки. Несмотря на достаточное число сообщений [78, 138] по определению защитных свойств покрытий в водородсодержащих средах, задача подбора металла покрытия остается все также актуальной, хотя в настоящее время трудно назвать металл, который еще не использовался для этой цели. Однако среди исследователей нет однозначного мнения по поводу эффективности Тех или иных покрытий в сероводородсодержащих средах. Одной из причин этого является отсутствйё единой методики оценки защитных свойств покрытий при СР сталей. Нами совместно с ЦКБН и ВМНИИК разработан метод определения защитной способности металлических покрытий [100] и проведены исследования защитных свойств различных покрытий. [c.339]

    На рис. 5 представлены кривые изменения температуры растрескивания ( итумов при старении за счет протекания термоокислительных процессов и формирования равновесных структур. На основе исследований битумов в опытных участках дорожных покрытий значение тешературы растрескивания битумов, определенное по методу БашНИИНП при скорости охлаждения 0,5°С/мин, равное - 18°С, может быть взято предельной температурой растрескивания битумов, после достижения которой в условиях Башкирии наступает отказ покрытия, то есть расстояние между поперечными трещинами достигает значения 1,0-1,5 м. [c.217]

    Следует подчеркнуть, что в данном случае понятие поверхность, или эффективная поверхность, весьма условно. Так, ее величина зависит от структуры смачиваемой фазы и природы ее поверхности, а также от природы смачиваюш,ей среды. При смачивании водой определяемая величина поверхности зависит от количества атомов с большой электроотрицательностью на единице этой поверхности. Чтобы определить истинное значение удельной поверхности, необходимо предположить, что вода, присоединяясь, образует мономолекулярный слой, и знать плотность заполнения поверхности молекулами воды. Некоторые сведения об этом можно получить, определяя плотность связанной воды, например, измерениями диэлектрической постоянной или по методу Брунауэра, Эммета и Теллера для определения эффективной поверхности по объему пара или газа, который соответствует покрытию поверхности 1 г адсорбента мономолекулярным слоем. [c.113]

    Для определения пористости оксидного покрытия на кремнии обычно пользуются методом хлорного травления, в основу которого положено взаимодействие кремния с сухим хлором при высоких температурах. Оксидная пленка в этих условиях стабильна. Поэтому воздействие хлора на кремний возможно только в местах присутствия сквозных пор в оксиде. Микроскопическое исследование после хлорного травления позволяет установить не только общее количество пор, их концентрацию, но и распределение дефектов по поверхности, а также проследить взаимосвязь процесса порообразования со структурой подложки. Чувствительность метода хлорного травления зависит от температуры, времени травления и размеров пор. Последние должны обеспечивать возможность диффузии газообразного галогена к незащиш,енной поверхности кремния. Данным методом нельзя установить наличие несквозных или субмикроскопических пор. Режим травления (температура и время) может быть выбран ио данным табл. 4. [c.122]

    Флокуляция максимальна при одинаковом числе покрытых и непокрытых адсорбированными молекулами флокулянта частиц в системе, что объяснено на основании современных представлений о структуре адсорбционного слоя макромолекул и представлений о мостикообразовании [40, 41]. Адсорбированный на твердой поверхности полимер образует вблизи раздела фаз плотный слой, непосредственно примыкающий к поверхности, и слой обращенных в раствор хвостов и петель, распределение плотности которых убывает по экспоненциальному закону. При контакте частиц, содержащих достаточно толстые полимерные оболочки с длинными хвостами и петлями, с равным им числом свободных от молекул полимера частиц, создаются оптимальные условия для образования связи через адсорбированное высокомолекулярное вещество между поверхностью непокрытых и покрытых частиц, что и приводит к флокуляции. Поэтому эффективность флокуляции существенно зависит от способа смешивания раствора флокулянта с частицами золя. В этом отношении целесообразно использовать метод двойной добавки [42]. Суть метода сводится к тому, что добавлением исходного (незащищенного) золя объемом к определенному объему 1172 этого же коллоидного раствора, ко содержащего ад- [c.31]

    Изготовление слоев оксидов редкоземельных элементов, тория, урана, протактиния, нептуния и транснептуниевых элементов электроосаждением из неводных сред имеет неоспоримые преимуш,ест-ва по сравнению с водными растворами. Образуюш,иеся на катоде при электролизе в водной среде гидроксиды лантаноидов и актиноидов аморфны. При дальнейшей термической обработке они образуют оксидные слои с большим количеством структурных дефектов. При электролизе из органических растворов на катоде образуются кристаллические структуры, которые при прокаливании легко переходят, теряя органическую составляюш,ую, в кристаллические структуры оксидов РЗЭ и актиноидов. Кроме того, метод электроосаждення из неводных растворов характеризует большая скорость проведения процесса, полнота выделения металла, прочность сцепления о подложкой слоев толщиной 1—5 мг/см , равномерность распределения покрытия на больших площадях. Наилуч-шие результаты получены из спиртовых растворов нитратов и ацетатов РЗЭ и актиноидов. Растворимость солей данных металлов в органических растворителях низка, поэтому в основном применяют насыщенные растворы. Из-за низкой проводимости растворов и окисной пленки на электроде используются высокие напряжения (порядка сотен вольт), плотности тока низкие. Большое значение при подборе оптимальных условий осаждения имеют площадь электродов, расстояние между ними, объем электролита, предварительная обработка электродов. Катодный процесс сопровождается газовыделением, вызывающим образование неравномерной пленки. Для уменьшения газовыделения добавляют специальные добавки, в частности этиловый спирт [221]. Катодный продукт наряду с металлом и кислородом содержит обычно азот, водород и углерод. Результаты количественного анализа показывают загрязнение катодного осадка растворителем или продуктами его разложения, но не образование соединений определенной стехиометрии [1077]. При термической обработке катодного осадка происходит уменьшение объема и перестройка кристаллической решетки, в результате чего слои растрескиваются и осыпаются, и лишь в случае тонких слоев оказывается достаточно поверхностных молекулярных сил сцепления для сохранения прочной связи с подложкой. Для получения покрытий толщиной порядка 1—5 мг/см необходимо многослойное нанесение продукта [1060]. [c.156]

    В итоге мол<но сказать, что адгезионные и лр угне физи-ко-механическне свойства металлизированных пластмасс определяются структурой и свойствами промежуточного слоя , который является наиболее ответственным элементом композиционного материала — металлизированной лластмассы. От его надежности зависит надежность всего металлизированного изделия, состоящего из трех основных частей пластмассовой основы, выполняющей роль несущей конструкции, металлического покрытия, служащего защитной оболочкой, и промежуточного слоя, связывающего все в единое изделие. Но оценить надежность довольно сложная задача, поэтому на практике ограничиваются лишь определением наиболее важного и представительного параметра, а именно прочности связи. Для этого существует довольно много способов. Применяют и методы термоударов (термошоков), когда готовое изделие попеременно нагревают и охлаждают, после чего осматривают — не появились ли вздутия, трещины, отслаивания покрытия. Используют и более прямые разрушающие методы отслаивания и отрыва металлического покрытия от пластмассы (рис. 12). Чаще всего пользуются наиболее простыми, в смысле применяемой аппаратуры, методами отслаивания. [c.41]

    Для изучения поверхностей электродов в последние годы использовались три основных оптических метода эллипсометрия, спектроскопия нарушенного полного внутреннего отражения на поверхностях полупрозрачных пленочных электродов или на поверхностях проводящих стекол или окислов и спектроскопия зеркального отражения. Другие оптические методы основаны на абсорбции в пористых структурах из двуокиси кремния или глинозема с металлическим покрытием (ср. с поверхностью раздела газ - твердое тело [ 38]) с использованием подходящих растворителей, прозрачных для ИК-излучения в определенной области длин волн, а также на оптических исследованиях растворов, находящихся в равновесии с поверхностью, в качестве основы для определения in situ количества вещества, адсорбирующегося на большой поверхности электрода при соответствующем контроле по потенциалу или по току [39, 40]. [c.399]


Смотреть страницы где упоминается термин Метод определения структуры покрытий: [c.273]    [c.239]    [c.239]    [c.304]    [c.520]    [c.85]    [c.251]    [c.113]    [c.48]    [c.31]    [c.31]    [c.242]    [c.139]    [c.67]    [c.48]   
Химия и технология лакокрасочных покрытий Изд 2 (1989) -- [ c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Метод структур

Методы покрытий



© 2025 chem21.info Реклама на сайте