Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические функции атомов и молекул

    Особенность процесса образования химических связей между атомами различных элементов состоит в его избирательности. Так, например, атом элемента А может образовывать устойчивую молекулу с атомами элемента Б, но с атомами элемента В он или вообще не вступает в соединение, или образует очень неустойчивые соединения. Следует заметить, что уже алхимические теории привели к понятию химического сродства между веществами. Это понятие мы используем и теперь, желая определить возможность реакции, ее направление и полноту протекания в данных физических условиях, но уже определяем его количественно, исследуя изменение термодинамических функций. [c.68]


    Подобным образом были проведены расчеты поверхностного натяжения жидкостей. Применение современных ЭВМ позволяет по данным о е(г) проводить абсолютные расчеты свойств жидкостей. При этом в основном используют два метода. По первому методу молекулярной динамики решаются уравнения Ньютона для коллектива частиц, связанных энергией взаимодействия и обладающих некоторой заданной энергией. Такие расчеты удается делать для больших коллективов частиц (порядка тысяч). По второму методу — методу Монте — Карло — рассчитывают общие суммы состояния системы при заданной энергии взаимодействия и выборе возможных конфигураций расположения молекул друг относительно друга. С помощью ЭВМ были рассчитаны Я(г) термодинамические функции, вязкость, диффузионные характеристики и др. Кроме того, удалось определить характеристики траекторий определенных частиц. Оказалось, что частицы осуществляют весьма малые как бы дрожательные движения, в которых участвуют соседи. Поэтому понятия блужданий в жидкостях приобретают другой смысл, так как в них сразу участвует большое число частиц. Атом смещается тогда, когда его соседи в результате подобного коллективного движения освободят ему место. Теория диффузии в жидкостях, основан- [c.214]

    Зная потенциальные функции молекул, можно, по крайней мере в принципе, рассчитать все термодинамические функции веществ, состоящих из свободных молекул (а учитывая, что атом—атом-потенциалы применимы и для межмолекулярных взаимодействий, можно рассчитать термодинамические свойства жидкости и кристалла). Можно рассчитать и геометрию молекулы, минимизируя потенциальную функцию. Наконец,, делаются уже попытки расчетов частот колебательных спектров молекул. В первом приближении термодинамические и термохимические свойства (например, теплоты образования, гидрирования, изомеризации, барьеры внутреннего вращения), зависят от абсолютных значений энергии, конформации — от первых производных по независимым координатам ядер и частоты колебательных спектров — от вторых производных. [c.25]

    Определение параметров атом — атом-потенциалов по всей совокупности физико-химических данных с использованием четкого математического критерия становится по изложенным выше причинам задачей чрезвычайной важности. Универсальные потенциалы должны использоваться для вычисления таких разных свойств, как параметры элементарной ячейки кристалла, теплота сублимации, термодинамические функции кристалла, термохимические свойства газов, конформации молекул, частоты и формы полос колебательных спектров [c.29]


    В первой части настоящего обзора последовательно рассмотрены статистические данные о топологии органических кристаллических структур и их интерпретация на основе представлений о симметрии потенциальных функций, аппарат ван-дер-ваальсо-вых атомных радиусов и теория плотной упаковки молекул, описание межмолекулярных взаимодействий в атом-атомном приближении. Это дает возможность осветить три важных аспекта (три варианта) статической модели органического кристалла. Во второй части рассмотрены данные о динамике органических кристаллических структур (фононные спектры и тензоры среднеквадратичных смещений атомов и молекул), а также пути прямого расчета термодинамических функций органического кристаллического вещества. [c.136]

    Значения термодинамических функций перечисляются на 1 г-атом, соответственно на 1 грамм-молекулу (1 моль) или на грамм-формульный вес (см. III.31 и III.32), как единицы массы на грамм-атомный, соответственно грамм-молекулярный (молярный, мольный) объем как единицы объема. К ним отнесены и величины термодинамических функций в справочниках и учебной литературе. [c.180]

    Темплатные синтезы всегда представляют собой превращения, в которых по сути атом металла (непосредственно в виде определенного, в том числе и нулевого заряда, иона или в виде комплекса, содержащего выгодные для реакции свободные или занятые лигандами позиции), обладающий необходимой стереохимией и электронным состоянием (строением), играет роль агента, направляющего реакцию по заданному или преимущественно по заданному руслу [79, с 147]. Ориентируя и активируя за счет комплексообразования молекулы конденсируемых веществ, ион металла выполняет роль своеобразной матрицы, определяющей строение образующегося соединения. Можно выделить две разновидности темплатного эффекта. В том случае, когда ион металла ускоряет протекание тех или иных стадий реакции, способствуя образованию конечного продукта, принято говорить о кинетическом темплатном эффекте. Если роль иона металла заключается в смещении равновесия за счет связывания образующегося продукта, это классифицируется как термодинамический темплатный эффект Конечный результат в обоих случаях одинаков- добавка темплатного агента позволяет получить соединение, которое без такой добавки не образуется или образуется с более низким выходом Следовательно, роль иона металла состоит не только и не столько в прямом подавлении побочных процессов, сколько в направлении реакции по выгодному для него пути В случае термодинамического темплатного эффекта синтезируемое соединение представляет собой весьма прочный комплекс При кинетическом темплатном эффекте может наблюдаться выделение свободного органического макроциклического соединения. Иными словами, ион металла, выполнив функции активирования и ориентации конденсирующихся групп А и В (уравнение (2.1)), может выйти из макроциклического окружения и снова координировать исходные вещества (кинетический темплатный эффект) или остаться внутри полости макроцикла (термодинамический темплатный эффект) [c.28]

    В монографии описаны способы получения практически важных адсорбентов с близкими к однородным поверхностями, их адсорбционные свойства и применение в хроматографии. Рассмотрены общие уравнения термодинамики адсорбции и уравнения, основанные на различных моделях адсорбционного слоя. Приведены способы расчета термодинамических характеристик адсорбции из опытных данных но газовой хроматографии, изотермам п теплотам адсорбции. Изложена молекулярно-статистическая теория адсорбции и теория межмолекулярных взаимодействий при адсорбции. Рассмотрены результаты расчетов адсорбционных равновесий для простых и сложных молекул на основе атом-атомных потенциальных функций межмолекулярного взаимодействия. [c.2]

    При оценках и уточнении параметров атом-атомных потенциальных функций для взаимодействия атомов С и Н молекул алкапов с атомами С решетки графита и при расчетах термодинамических характеристик адсорбции алканов различиями в атом-атомных функциях, вызываемыми различиями природы и числа валентно с ними связанных атомов и различиями природы и расположения валентно с ними не связанных атомов, пренебрегали [9—И, 14,17]. В этом [c.308]

    Таким образом, проведенные расчеты термодинамических характеристик адсорбции алканов и цикланов [9, 10, 14, 17] показали, что атом-атомное приближение (У1П,2) для потенциальной функции Ф межмолекулярного взаимодействия молекул насыщенных углеводородов с поверхностью графитированных термических саж правильно передает зависимость потенциала межмолекулярного взаимодействия при адсорбции Ф от химического состава и геометрического строения молекул этих углеводородов а также зависимость Ф от ориентации молекулы над поверхностью. Термодинамические характеристики адсорбции насыщенных углеводородов при нулевом (малом) заполнении поверхности можно рассчитать в хорошем согласии с опытом молекулярно-статистическим методом, исходя из химического и геометрического строения молекулы углеводорода и поверхности твердого тела. Б случае адсорбции на базисной грани графита (на графитированных термических сажах) для этого надо использовать полуэмпирические атом-атомные потенциальные функции межмолекулярного взаимодействия (Х,5) и (Х,б). [c.331]


    Во-нервых, можно сравнить экспериментальные значения термодинамических характеристик адсорбции углеводорода с сопряженными связями на графитированных термических сажах со значениями, рассчитанными без учета влияния сопряжения на межмолекулярное взаимодействие. Так, влияние сопряжения двух двойных связей в молекуле бутадиена-1,3 на ее взаимодействие с графитом можно оценить, сравнивая полученные из опыта адсорбционные свойства бутадиена с адсорбционными свойствами этого углеводорода, рассчитанными на основании атом-атомных потенциальных функций, найденных для алканов [уравнение (Х,5)1 и алкенов с несопряженными связями [уравнение (Х,15)]. [c.339]

    При использовании атом-атомных потенциальных функций (Х,6) и (Х,17) были рассчитаны термодинамические характеристики адсорбции на базисной грани графита бензола, нафталина, антрацена, фенантрена и дифенила. Расчеты для дифенила проводились с учетом заторможенного внутреннего вращения его молекул при использовании полученной в работе [99] потенциальной функции W. На рис. Х,14 и в табл. Х,16 результаты расчета сопоставлены с соответствующими опытными данными [12, 16, 30, 49, 61, 63, 79]. [c.341]

    В случае адсорбции органических молекул потенциальные функции взаимодействия атомов молекулы с атомами адсорбента можно определить при использовании экспериментальных значений константы Генри К для адсорбции немногих простейших представителей рассматриваемого класса соединений на данном адсорбенте. Полученные так атом-атомные потенциальные функции далее могут быть использованы для определения потенциальной функции Ф и на ее основе расчета термодинамических характеристик адсорбции при нулевом заполнении поверхности для других соединений рассматриваемого класса на том же адсорбенте с погрешностью, близкой к погрешности соответствующих экспериментальных значений. Полученное хорошее согласие между значениями К, рассчитанными при использовании атом-атомного приближения, и экспериментальными значениями К для адсорбции на ГТС всех рассмотренных соединений, молекулярная структура которых хорошо известна, позволило поставить и решить обратную задачу молекулярной теории адсорбции — на основании термодинамических характеристик адсорбции определить или уточнить структурные параметры молекулы. [c.86]

    Задачи молекулярно-статистической теории адсорбции применительно к газовой хроматографии. Из предыдущих разделов этой главы видно, что проделанная за последние годы работа по приготовлению новых кристаллических непористых адсорбентов с близкой к однородной поверхностью, пористых кристаллов и чистых молекулярноситовых углей, макропористых полимерных неорганических, органических и смешанных (неорганических с органическим модифицирующим слоем) адсорбентов с различными функциональными группами позволила значительно расширить диапазон селективности адсорбентов и емкости адсорбционных колонн. Параллельно разрабатывалась также и лежащая в основе селективности разделения молекулярная теория адсорбции на близких к однородным адсорбентах, в основном в направлении создания метода количественных молекулярно-статистических расчетов и предсказания термодинамических характеристик удерживания многих молекул при использовании атом-атомного приближения для потенциальных функций межмолекулярного взаимодействия молекул с адсорбентом. [c.80]

    После нахождения потенциальной функции фс(алкан)... с гр) мы можем использовать этот метод для исследования влияния на межмолекулярное взаимодействие электронной конфигурации атомов углерода в молекулах углеводородов (характера гибридизации, сопряжения я-связей) [1, 51а]. Расчеты для алкенов с несопряженными и сопряженными я-связями и для ароматических углеводородов и сопоставление полученных данных с соответствующими термодинамическими характеристиками их адсорбции на ГТС при использовании приближения (3.29) и потенциала (3.37) для атомов углерода молекулы, находящихся в состоянии 5р -гибридизации, и одинакового потенциала (3.38) для всех атомов Н молекулы позволили найти потенциал фс алкен, аром). . . С(гр> Аналогичные расчеты для алкинов позволили найти потенциал фс(алкин... с(гр). Были получены следующие выражения для этих атом-атомных потенциалов (в кДж/моль) [1, 51, 51а]  [c.85]

    Следует отметить, что необходимо дальнейшее исследование влияния электронной конфигурации молекул углеводородов с сопряженными связями (в частности, ароматических углеводородов с конденсированными ядрами) на термодинамические характеристики их удерживания на ГТС. Описанное выше атом-атомное приближение с использованием одинаковой потенциальной функции фс(аром)... с (гя> [c.86]

    В работе [174] термодинамические свойства воды вычислялись с помощью метода Монте-Карло на основе атом-атом потенциалов Китайгородского. Для водородной связи применялся потенциал Морзе, энергия водородной связи принималась равной 5,5 ккал/моль. Расчеты термодинамических функций, проведенные для температур 300, 320 и 350 ° К, дали )азумное согласие вычисленных и измеренных значений внутренней энергии, теплоемкости и свободной энергии. Метод дает возможность найти расположение и ориентацию молекул НгО В/ЖИдкости. [c.207]

    К (газ). Эванс и др. [15131 при помощи наиболее точных данных [1463, 3056, 2064, 2490, 1562] по давлению насыщенных паров калия, опубликованных до 1955 г., вычислили значение теплоты сублимации одноатомного калия АЯхо = 21,71 0,08 ккал г-атом. В расчетах было учтено образование молекул Ка, причем для энергии диссоциации этой молекулы принималось значение 11,85 0,1 ккал/моль. Проведенные за последнее время измерения теплоемкости калия при низких температурах (см. предыдущий параграф) позволили получить более точные значения термодинамических функций твердого и жидкого калия по сравнению с принятьши авторами [1513]. Введение соответствующих поправок приводит к значению [c.911]

    На рис. V, 4 показана зависимость теплоемкости (Ср) для частиц различного рода. Атомы инертных газов и ионы, отвечающие им по структуре, в пределах температур до 6000° К за немногими исключениями сохраняют постоянное значение Ср = =4,97 кал град г-атом) [или кал (град г-ион)]. Частицы с другим строением электронных оболочек обладают обычно более низкими уровнями возбуждения. Их теплоемкость отклоняется от значения 4 97 кал град моль) уже при более низких температурах. На рйс. VI, 4, приведены некоторые характерные примеры таких частиц. Так, у атомов элементов подгруппы лития обнаруживаются в рассматриваемом пределе температур значительные отклонения Ср от указанного предельного значения, причем для Сз эти отклонения становятся заметными начиная с 1500° К, для КЬ и К —с 1700° К, для N3 —с 2100° К и для —с 1800° К. Это, естественно, приводит к усложнению зависимости от температуры и других термодинамических функций этих элементов. Поэтому процессы ионизации атомов Ы—Сз и процессы диссоциации на атомы двухатомных молекул этих элементов существенно отклоняются от однотипности уже при умеренно высоких температурах. Вещества неоднотипные (например, Ыа, Мо, Ре, РЬ, 51) имеют [c.176]

    Определение параметров атом-атом потенциалов по всей совокупности физико-химических данных с использованием четкого математического критерия становится по изложенным причинам весьма важной задачей. Универсальные потенциалы должны использоваться для вычисления таких разных свойств, как параметры элементарной ячейки кристалла, теплота сублимации, термодинамические функции кристалла, термохимические свойства газов, конформации молекул, частоты колебательных спектров изолированных молекул и кристаллов, второй вириальный коэффициент и свойства переноса многоатомных газов, данные по рассеянию молекулярных пучков. Но каковы должны быть оптимальные потенциалы Какую погрешность в определении перечисленных свойств дадут оптимальные трехпараметровые потенциалы Имеет ли смысл делать различие между алифатическим и ароматическим атомами углерода Будут ли хоть в какой-нибудь степени полезны существенно разные потенциалы для описания межмолекулярных и внутримолекулярных взаимодействий К сожалению, ни на один из этих вопросов нельзя пока дать ясного ответа. [c.102]

    Иная процедура расчета конформаций парациклофанов была применена Бойдом [227, 228]. Взяв в качестве эталона молекулу 2,2-парацнклофана, Бойд рассчитал по его спектру необходимые константы потенциальной функции, в том числе и параметры атом-атом потенциалов. Используя полученные таким образом силовые константы, он вычислил равновесные структуры, термодинамические функции и частоты колебательных спектров родственных парациклофанов. Полученные им результаты находятся в хорошем согласии с имеющимися опытными данными [229, 230]. [c.205]

    Рассмотрим возможность молекулярно-статистического расчета термодинамических характеристик адсорбции в атом-ионном приближении для потенциальной функции межмолекулярного взаимодействия молекула — ионный адсорбент. Заряды на образующих молекулы атомах, как и истинные заряды ионов адсорбента, часто неизвестны с нужной для расчета константы Генри точностью. Поэтому следует найти атом-ионные потенциалы межмолекулярного взаимодействия и уточнить их параметры, используя экспериментальные значения константы Генри для адсорбции опорных молекул данного класса адсорбатов. Далее, как и в рассмотренном в лекции 9 случае адсорбции на ГТС, надо проверить возможность переноса полученных атом-ионных потенциалов на другие молекулы данного класса. Использование атом-ионного приближения при адсорбции на ионных адсорбентах неполярных молекул требует учета дополнительного вклада в атом-ион-ный потенциал, вносимого поляризацией неполярной молекулы электростатическим полем ионного адсорбента (индукционное притяжение, см. табл. 1.1). Кроме того, при адсорбции ионными адсорбентами полярных молекул в рамках классического электростати- ческого притяжения надо учесть взаимодействие жестких электри- ческих дипольных и квадрупольных моментов молекулы с электростатическим полем ионного адсорбента (ориентационное притяжение, см. табл. 1.1). Затруднения, связанные с локализацией этих моментов в молекуле, значительно усложняют расчеты константы Генри для адсорбции полярных молекул на ионном адсорбенте. [c.205]

    Значение величины Т в квазистационарном приближении зависит от характеристик процесса газификации на поверхности. Вполне вероятно, что процесс на поверхности является процессом, протекающим с конечной скоростью тогда для определения Г г необходимо проведение анализа, аналогичного анализу, выполненному в 5 Дополнения Б, который показывает, что величина Г в атом случае явно зависит от т. Однако, за исключением некоторых систем с поверхностными химическими реакциями, скорости, с которыми молекулы горючего приходят на поверхность жидкости и покидают ее, обычно достаточно велики для поддержания на поверхности равновесных условий при тех низких значениях т, которые обычно наблюдаются при горении капель. Поэтому температура ТI определяется из термодинамического условия равновесия фаз, заключающегося в том, что парциальное давление горючего на поверхности капли должно быть равно равновесному давлению паров горЪчего ). Применение этих условий равновесия дает возможность установить связь между распределениями концентраций горючего и окислителя (например, из решения уравнения для функции Рр = ар — ао). Однако если теплота реакции не слишком мала или горючее не слишком нелетучее, то тепловой поток к поверхности капли может оказаться достаточно большим, чтобы обеспечить равновесную температуру на поверхности капли, лишь незначительно отличающуюся от температуры кипения жидкого горючего (см., например, работу ]). Поэтому условие = = Ть (Ть — точка кипения горючего) дает хорошее приближение. Более полный анализ условий на поверхности выполнен в пунктах б и в 2 главы 9. [c.85]

    В соответствии с термодинамической гипотезой Анфинсена и теорией структурной организации белка (см. гл. 2), будем считать, что механизм свертывания этих сложных олигопептидов является не статистическим, а статистико-детерминистическим, причем стерически возможными или предпочтительными становятся взаимодействия только между определенными парами остатков ys. Расчет всех молекул строился таким образом, что его результаты должны были опровергнуть или доказать справедливость представления о том, что определяет конформацию молекулы не образование дисульфидных мостиков, а, напротив, детерминированные состояния различных участков цепи, взаимодействия между которыми диктуют избирательную сближенность цистеиновых пар. При априорном многостадийном конформационном анализе пептидов из 18, 21, 22 и 36 аминокислотных остатков случайная сближенность цистеинов практически исключена. Поэтому автоматический приход на завершающей стадии расчета каждого пептида к самым низкоэнергетическим конформациям линейной последовательности молекулы с близкими контактами между соответствующими остатками ys будет одновременно свидетельствовать о наличии согласованности всех видов межостаточных взаимодействий в глобальной структуре (одно из основных положений конформационной теории белка), справедливости термодинамической гипотезы образования дисульфидных связей, адекватности использованных в расчете потенциальных функций реальным атом-атомным взаимодействиям и, наконец, [c.292]

    Получение из эксперимептальпых данных по адсорбционному равновесию термодинамических характеристик адсорбции для ряда молекул близкого и разного состава и строения необходимо как для практических применений, так и для развития молекулярной теории адсорбции и межмолекулярных взаимодействий вообще. Во-первых, термодинамические характеристики являются опорными для определения соответствующих величин для экспериментально не изученных веществ, что, в частности, помогает идентифицировать неизвестные вещества в адсорбционной хроматографии. Во-вторых, эти данные нужны для определения атом-атомных потенциальных функций межмолекулярного взаимодействия и теоретического расчета термодинамических характеристик адсорбции на основании структуры молекулы адсорбата и строения адсорбента (см. гл. X). Наконец, в-третьих, эти данные нужны для решения обратных задач, т. е. при известных атом-атомных потенциальных функциях межмолекулярного взаимодействия экспериментальные термодинамические характеристики адсорбции позволяют сделать заключение о структуре молекулы адсорбата (подробнее об этом см., например, разд. 4 гл. X). В этой главе рассмотрены полученные из экспериментальных данных термодинамические характеристики адсорбции на графитированной термической саже при малом (нулевом) заполнении поверхности. Основная литература по экспериментальному исследованию адсорбции на графитированных термических сажах была указана в разд. 1 гл. П. Поэтому здесь даются ссылки лишь на те работы, в которых были получены, наиболее точные данные, использованные для определения термодинамических характеристик адсорбции при нулевом заполнении поверхности. [c.180]

    Термодинамической характеристикой межмолекулярного взаимодействия адсорбат — адсорбент, непосредственно измеряемой хроматографическим методом, является константа Генри. Эту константу (макроскопическую характеристику) со структурой адсорбирующейся молекулы (микроскопической характеристикой) связывает молекулярно-статистическая теория адсорбции. При малом (нулевом) заполнении однородной поверхности (ГТС), изучать которое и позволяет газовая хроматография, эта теория приводит к довольно простым выражениям, связывающим константу Генри с потенциальной энергией межмолекулярного взаимодействия адсорбат—адсорбент, сильно зависящей от структуры молекул адсорбата и адсорбента. В расчетах термодинамических характеристик адсорбции используют полуэмпири-ческие атом-атомные потенциальные функции межмолекулярного взаимодействия адсорбат — адсорбент. [c.181]

    Несмотря на сделанные при разработке моделей цеолитов и адсорбируемых молекул, а также в расчетах довольно грубые допущения, примененный молекулярно-статистический метод в полуэмпирическом атом-ионном приближении и в приближении точечных мультипольных моментов для потенциальной функции межмолекулярного взаимодействия молекула — цеолит позволяет описывать термодинамические характеристики адсорбции при нулевом заполнении и решать некоторые хроматоскопические задачи. ь [c.209]

    Для дальнейшего развития хроматоскопического метода определения параметров структуры молекул на основе экспериментальных значений константы Генри для адсорбции как на ГТС, так и на цеолитах и других однородных адсорбентах необходимо прежде всего значительно повысить точность экспериментальных определений этих констант, а также других термодинамических характеристик адсорбции при нулевом заполнении — теплот адсорбции и теплоемкостей адсорбционных систем. Это позволит уточнить параметры полуэмпирических атом-атомных потенциальных функций, необходимых для моле-кулярно-статнстических расчетов констант Генри, а также расширить возможности хроматоскопического метода и повысить точность и однозначность определенных с его помощью молекулярных параметров. Необходимо определение атом-атомных потенциальных функций для адсорбции на ГТС не только для углеводородов, но и для их производных, содержащих галогены, кислород, азот, серу и другие элементы в разных валентных состояниях. [c.210]

    Повышение эффективности хроматографического разделения в значительной мере связано с оптимизированным по различным параметрам колонны приближением к термодинамической селективности. Поэтому весьма важна оптимизация выбора неподвижной фазы (адсорбента, растворителя) и элюента на основе качественной и по возможности количественной связи определяющих селективность констант термодинамического равновесия с характеристиками меукмолекулярного взаимодействия газовых и жидких растворов с адсорбентами. В простейших случаях неспецифического взаимодействия для этого используются молекулярно-статистические выражения удерживаемых объемов (констант адсорбционного равновесия) газов и паров через атом-атомные потенциальные функции взаимодействия атомов молекулы с атомами твердого тела в соответствующих валентных состояниях этих атомов. В статье приводятся результаты молекулярно-статистических расчетов удерживаемых объемов для ряда углеводородов на графитированной термической саже и в цеолитах. Дается оценка энергии специфического молекулярного взаимодействия при адсорбции, в частности энергии водородной связи, и рассматривается качественная связь селективности разделения с соотношением вкладов специфических и неснецифических взаимодействий в общую энергию адсорбции и с температурой. С этой точки зрения рассматриваются возможности использования в хроматографии атомных, молекулярных и ионных кристаллов, гидроксилированных и дегидроксилированных поверхностей окислов, модифицирующих монослоев и полимеров. Рассматриваются также некоторые возможности адсорбционной жидкостной молекулярной хроматографии с использованием соответствующего подбора геометрии и химии поверхности адсорбента, молекулярного поля (состава) элюента и температуры колонны. Приводятся примеры перехода от адсорбционных к ситовым гель-фильтрационным разделениям полимеров па микропористых кремнеземах. [c.33]

    Отдельные классы сложных молекул, в частности, углеводороды, состоят только из немногих видов атомов. Молекулы одного класса различаются числом этих атомов, их химическим (валентным) состоянием и их пространственным расположением. Используя экспериментальные адсорбционные данные для сравнительно немногих систем можно определить потенциаль5 межмолекулярного взаимодействия для всех интересующих нас пар атомов. Полученные так атом-атомные потенциалы далее могут быть использованы для определения потенциальных функций взаимодействия других систем, состоящих из тех же атомов. Поэтому таким путем можно рассчитать термодинамические характеристики адсорбции для таких систем, для которых нет экспериментальных данных, или такие характеристики, измерения которых представляют большие трудности. Возможность перенесения атом-атомных потенциальных функций для сложных органических молекул, по-видимому, является основным преимуществом атом-атомного приближения по сравнению с другими способами определения Ф, при использовании которых необходимо определять Ф для каждой системы отдельно. [c.86]

    В разд. 4 этой главы было показано, что термодинамические характеристики адсорбции на ГТС при Г—>-0 являются аддитивными функциями по атомам также и для галоген- и кислородсодержащих производных углеводородов. Таким образом получены опорные экспериментальные данные для нахождения соответствующих атом-атомных потенциальных функций фна1...с и фо...с. В последнем случае должны быть найдены различные параметры атом-атомной функции для атомов кислорода в молекуле, находящихся в разных электронных конфигурациях (в разных кислородсодержащих функциональных группах). Аналогичная работа ведется для различных производных углеводородов, содержащих азот. [c.86]

    Приведенные в этом разделе результаты сопоставления теоретических расчетов с экспериментальными данными показывают, что в настоящее время термодинамические характеристики удерживания углеводородов кристаллическими адсорбентами могут быть рассчитаны количественно. Полученные полуэмпирические выражения для атом-атомных потенциальных функций межмолекулярного взаимодействия атома водорода и атома углерода (в основных его электронных конфигурациях) с атомом углерода графита позволяют провести молекулярно-статистический расчет удерживаемого объема на ГТС любого углеводорода с известной геометрией молекулы или решить обратную задачу — установить геометрию молекулы, определив экспериментально удерживаемый объем на ГТС (хроматоскопия). [c.94]


Смотреть страницы где упоминается термин Термодинамические функции атомов и молекул: [c.103]    [c.39]    [c.12]    [c.328]    [c.100]   
Смотреть главы в:

Термодинамические расчеты нефтехимических процессов -> Термодинамические функции атомов и молекул




ПОИСК





Смотрите так же термины и статьи:

Функция термодинамическая



© 2025 chem21.info Реклама на сайте