Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размеры и форма макромолекул в растворах

    Физико-химические свойства растворов высокомолекулярных соединений определяются размерами и формой макромолекул в растворе, интенсивностью взаимодействия макромолекул между собой и сродством данного соединения к растворителю. По этому признаку растворители могут быть разделены на так. называемые хорошие (высокое сродство) и плохие (низкое сродство). В хороших растворителях полимеры способны образовывать истинные растворы. В таких растворителях высокомолекулярные соединения находятся не в виде мицелл или пачек, а в виде отдельных макромолекул. Истинные растворы ВМС подчиняются правилу фаз Гиббса. В частности, это означает, что при ограниченной растворимости концентрация насыщенного раствора зависит только от температуры и не зависит от пути образования раствора (при нагревании или при охлаждении). [c.436]


    Задание. Сделать вывод о форме макромолекул полистирола в растворе рассчитать невозмущенные размеры и сегмент для всех фракций полистирола (см. работу III. 1) объяснить, существует ли зависимость между размером сегмента и молекулярной массой полимера. [c.105]

    Важной характеристикой гидродинамического поведения растворов является их вязкость. В частности, характеристическая вязкость раствора линейного полимера связана с размерами, формой его макромолекул в растворе и степенью полимеризации (см. III.4), [c.119]

    Свойства высокомолекулярных соединений изменяются в широких пределах и зависят от состава и строения элементарных звеньев, размеров и формы макромолекул, интенсивности межмолекулярных связей, условий получения, температуры испытания и от других факторов. В зависимости от назначения синтетические высокомолекулярные соединения можно получать с высокоэластическими свойствами или в твердом стеклообразном состоянии. Некоторые высокомолекулярные соединения растворимы в различных растворителях и дают ценнейшие для промышленности растворы в [c.437]

    РАЗМЕРЫ И ФОРМА МАКРОМОЛЕКУЛ В РАСТВОРАХ [c.188]

    Свойства растворов полимеров зависят не только от молекулярной массы, но и от формы макромолекул. В растворе цепные макромолекулы принимают конформации статистического клубка, свободно перемещающегося в растворителе. Размер клубков, т.е. степень свернутости, зависит от природы полимера, определяющей гибкость его макромолекул, на которую в свою очередь влияет длина макромолекул и, следовательно, молекулярная масса. Предельные формы клубков - рыхлые клубки, свободно протекаемые растворителем, и плотные клубки, непроницаемые для растворителя. В растворах полиэлектролитов на гибкость цепей действует [c.165]

    В исследованиях полимеров нашли применение некоторые методы определения молекулярной массы низкомолекулярных соединений в растворах, а также методы определения размеров коллоидных частиц. Кроме того, для определения молекулярной массы (или СП) полимеров разработаны специальные методы, основанные на особенностях полимеров. При определении молекулярной массы в растворах иногда дополнительно можно получить информацию о форме макромолекул и неоднородности полимера по молекулярной массе. [c.173]

    Основная задача статистической физики полимеров — расчет средних величин, характеризующих размеры п форму макромолекул в растворе нлн другой полимерной системе. В разд. 1.2 мы уже привели отдельные формулы, связывающие среднеквадратичное расстояние между концами макромо- [c.153]


    Теория размеров, формы, электрических и оптических свойств макромолекул в растворе должна исходить из физического [c.69]

    Принцип действия полимерных присадок сводится к следующему. На вязкость раствора (базовое масло с полимерной присадкой) влияют размер и форма макромолекулы полимера, взаимодействие ее с маслом и взаимодействие макромолекул друг с другом. [c.87]

    Метод измерения интенсивности рассеяния света в применении к растворам белков и полимеров стал одним из точных количественных методов, позволяющих определить такие важные характеристики, как молекулярный вес, размер и форму макромолекул, а также термодинамические параметры межмолекулярного взаимодействия в растворах [139—142]. [c.80]

    Зависимость р от природы растворителя наряду с прочими факторами связана с одним из существеннейших отличий адсорбции полимеров от адсорбции низкомолекулярных веществ. Если в последнем случае мы имеем дело с адсорбируемыми частицами постоянной формы и состава, то при адсорбции полимерных молекул из растворов с изменением концентрации раствора происходят непрерывные изменения размера и формы макромолекул, а также степени их агрегации и характера надмолекулярных структур. Фактически при каждой концентрации мы имеем другую структуру сорбируемых частиц. [c.149]

    На стабильности растворов могут существенно сказаться и условия растворения полимера — наличие нагрева и перемешивания. В процессе растворения при нагревании полимеров, содержащих ограниченно растворимые фракции (с максимальной молекулярной массой, разветвленными макромолекулами и гель-фракцией сшитого полимера), последние могут перейти в раствор, который при охлаждении оказывается на границе совместимости и в котором ограниченно растворимые фракции присутствуют в виде дисперсной фазы. Наличие дисперсной фазы создает зависимость свойств системы от режима перемешивания, поскольку механическое воздействие может оказывать влияние на размеры, форму и структуру нерастворенных агрегатов и надмолекулярных образований. [c.86]

    Измерение вязкости разбавленных растворов представляет собой один из простейших методов изучения размеров и формы макромолекул. [c.40]

    Результаты в том приближении, какое изложено в данной работе, т. е. с точностью до членов первого порядка по объемной концентрации частиц ф, используются для оценки формы и размеров жестких макромолекул. Для этого обычно применяют приборы, в которых реализуется простое сдвиговое движение достаточно разбавленного раствора макромолекулярного вещества в подходящей вязкой жидкости. При этом разбавленные растворы макро-молекулярных веществ обнаруживают оптическую анизотропию, зависимость вязкости от градиента скорости и другие эффекты, которые типичны для суспензии жестких частиц и были описаны в третьей главе при рассмотрении простого сдвигового движения. Эти эффекты позволяют выполнить оценку формы и размеров макромолекул. Типичная экспериментальная техника и методы оценки описаны, например, в монографии [69]. [c.118]

    Известно, что сфера радиуса ( 4я) /=(тИ [1 1] /з) вращается и движется в растворе так же, как и соответствующая ей макромолекула с молекулярной массой М и характеристической вязкостью [т)]. По аналогии с этим Бенуа с группой соавторов [53] выдвинули предположение, что такая же (или близкая по содержанию) ситуация имеет место и в порах сорбента. Это значит, что вероятность попадания в поры макромолекул и эквивалентных им гидродинамических сфер определяется одной и той же совокупностью вращательных и поступательных степеней свободы и что в качестве размера, характеризующего макромолекулы (независимо от их формы и внутренней структуры), в гель-проникающей хроматографии можно использовать произведение М [i]], т. е. [c.111]

    Заполняют капиллярные трубки погружением в жидкую реакционную смесь, приготовленную для получения ПААГ. Под действием капиллярных сил жидкость заполняет трубки. При достижении специальной отметки капилляр сверху плотно закрывают и переносят в емкость с раствором смеси белков, подвергаемых электрофоретическому анализу. После погружения нижнего. конца капилляра в раствор и открытия верхнего конца происходит полное заполнение капилляра. Заполненные таким образом капиллярные трубки помещают в аппарат для микроэлектрофореза. При создании электрического поля в аппарате происходит разделение белков в соответствии с величиной заряда, размером и формой макромолекул. [c.66]

    Большое место в книге занимает рассмотрение теории растворов полимеров. Это объясняется, конечно, не только тем, что автор сам работает в этой области физической химии, но и огромным значением, которое имеют растворы в процессе синтеза и переработки полимеров, а также эксплуатации изделий из них. В растворах определяют молекулярную массу полимеров и размеров макромолекул. Полимеризацию и поликонденсацию часто проводят в растворах, многие волокна и пленки формуют из растворов при этом их свойства определяются природой растворителя. Знание термодинамики й реологических свойств растворов необходимо для понимания всех последующих глав книги. [c.10]


    На рис. 6 видно, что эти величины пропорциональны в довольно широком диапазоне pH по обе стороны изоэлектрической точки. Отклонения при крайних значениях pH легко объясняются изменением размеров и формы макромолекулы, а также изменением ионного состава раствора. Большие отклонения наблюдаются в растворах с большей ионной силой, и в тех случаях, когда буфер содержит многовалентные ионы. [c.61]

    Основные суждения о кинетической гибкости молекул полимеров, а также об их размерах и форме в растворе можно получить, изучая зависимость электрооптических характеристик макромолекул от молекулярной массы М. Исследование ЭДЛ в ряду молекулярных масс [50—57] обнаружило сильную зависимость области дисперсии (а следовательно, и времен релаксации) эффекта Керра от М (см. рис. 3). Эту зависимость можно понять, лишь допустив, что основную роль в ЭДЛ раствора играет механизм поляризации, связанный с вращением макромолекулы как целого. Характер зависимости г от Л1 можно представить в виде х=ЬМ", где Ь — постоянная, а л с возрастанием М изменяется от 2,7 (что соответствует конформации жесткой палочки) до 1,5 (не-протекаемый гауссов клубок) (рис. 4) [10]. [c.39]

    Оптические свойства коллоидов тесно связаны с размерами, формой и внутренней структурой коллоидных частиц и поэтому имеют важное значение при изучении коллоидных систем. Характерными для коллоидных систем свойствами являются дифракционное рассеяние света на коллоидных частицах (уравнение П1.1), которое используется, в частности, при нефелометрических измерениях, и флуктуационное светорассеяние на сгущениях концентрации молекул в растворах полимеров (уравнение III.5), применяемое, в частности, для определений молекулярного веса и асимметрии формы макромолекул в растворах. [c.65]

    Исследования разбавленных растворов полимеров важны не только для определения размеров и формы макромолекул, они имеют и самостоятельный интерес, например для гашения турбулентности жидкостей. Так, добавляя в жидкость миллионные доли некоторых полимеров очень высокого молекулярного веса , можно снизить ее гидродинамическое сопротивление на 60—70%. [c.83]

    В предыдущем разделе предметом обсуждения были лишь такие системы, в которых растворенные частицы могли рассматриваться как изолированные диполи, обладающие малыми размерами по сравнению с длиной волны падающего света. Это имеет место для виниловых полимеров со степенью полимеризации меньше 500. Однако чаще размер молекул полимеров сравним с длиной волны в этом случае рассеяние света зависит от форм макромолекул в растворе. На рис. 48 изображена большая молекула полимера на пути светового луча. Рассеянный свет, попадающий на плоскость АВ (нулевой угол), совпадает по фазе с падающим лучом независимо от того, какая часть молекулы полимера является источником вторичного излучения. Однако по мере увеличения б возрастает различие между фазами света, пришедшего от различных частей молекулы в результате интенсивность рассеянного излучения уменьшается вследствие интерференции. Теперь рассеяние уже не симметрично относительно угла 90° (как показано на рис. 47) и / (9) зависит от угла, под которым производится измерение. [c.183]

    Как показывает опыт, свойства высокомолекулярных соединений, а также их растворов определяются не только химическим составом, но н размерами и формой макромолекулы. От величины и формы молекул соединений зависят прочность, гибкость, эластичность, устойчивость к многократным деформациям и ряд других важнейших технических свойств изделий, получаемых из них, при сраннительно невысокой плотности. [c.327]

    Для растворенной макромолекулы характерно состояние непрерывного хаотического движения. Молекула участвует в поступательном и вращательном броуновском движении, ее звенья непрерывно смещаются и вращаются одно относительно другого. Цепь макромолекулы представляет собой непрерывно деформирующийся хаотический клубок (рис. 23.1). К размерам и формам макромолекул очень чувствительны гидродинамические характеристики раствора, в частности вязкость. На рис. 23.1 изображены отдельные макромолекулы в потоке жидкости, лами-нарно текущей в капилляре. Слои жидкости движутся с разной скоростью — у стенок капилляра скорость равна нулю, в центре капилляра скорость максимальна. На участок частицы или макромолекулы, расположенной ближе к центру, воздействует более быстрый поток жидкости, приводящий частицу во вращательное движение. В результате частица движется не только поступательно, но и вращается, замедляя скорость самого потока, или как бы повышая вязкость системы. Измеряя вязкость раствора при различных концентрациях ВМВ с помощью вискозиметра, находят характеристическую вязкость  [c.217]

    Растворы защищенных колловдов. Защищенные коллоиды являются комбинированными препаратами, состоящими из малоустойчивого (собственно коллоидного) компонентов, например серебра в коллоидном раздроблении, и сильно лиофильного высокомолекулярного вещества, обусловливающего растворимость и устойчивость всей системы в целом. Связь между лио- фобным и лиофильным компонентами препарата достигается обычно за счет адсорбции одного вещества другим. При глобулярной форме макромолекул высокомолекулярного соединения лиофобная частица часто покрывается (сплошь или локально) оболочкой из лиофильных макромолекул и таким образом лио-филизируется сама. При фибриллярной (нитевидной) форме макромолекул высокомолекулярного соединения последние адсорбируют одну или несколько лиофобных частиц. Иногда в построении частицы защищенного коллоида принимает участие несколько нитевидных макромолекул высокомолекулярного соединения, связанных несколькими лиофобными частицами в агрегаты, имеющие форму растрепанных пучков или клубков большого размера. [c.187]

    Теория малоутловой дифракции исходит из представлений, близких к применяемым в теории рассеяния света растворами макромолекул (с. 82). Теория позволяет связать наблюдаемую под теми или иными углами интенсивность рассеяния, т. е. его индикатрису с расстояниями между рассеивающими частицами. Для определения формы макромолекулы приходится задаться некоторыми о ней предположениями — представить макромолекулу в виде шара, эллипсоида или вытянутого цилиндра. Для таких, а также для других простых тел вычисляется индикатриса рассеяния как функция геометрических параметров макромолекулы. Так, для шара определяется электронный радиус инерции (электронный, так как рентгеновские лучи рассеиваются электронами). Для миоглобина этот радиус оказался равным 1,6 нм, что хорошо согласуется с размерами, определенными методом рентгеноструктурного анализа кристаллического миоглобина. Если рассеивающая система вытянута, то определяется электронный радиус инерции ее поперечного сечения. По индикатрисам рассеяния определены размеры, форма и молекулярные массы ряда биополимеров. Так, лизоцим представляется эквивалентным эллипсоидом вращения с размерами 2,8 X 2,8 X 5,0 нм . Более детальная информация о форме однородных частиц получается из анализа кривых рассеяния под большими углами (от [c.136]

    В обзоре Блатта перечислены следующие основные требования, которые предъявляются к мембранам они должны обладать определенными размерами пор, пропускать раствор с достаточно высокой скоростью и иметь минимальную адсорбирующую способность. В настоящее время ряд фирм выпускает мембраны для фильтрации, в большей или меньшей степени удовлетворяющие этим требованиям (табл. 4). Наибольшее распространение получили анизотропные мембраны, состоящие из плотной, очень тонкой пленки-мембраны с избирательной проницаемостью, которая прикреплена к пористой подложке. В табл. 4 указана величина молекулярного веса веществ, задерживаемых мембраной, но в действительности мембраны задерживают не 100% соответствующих макромолекул, а несколько меньше. Отсюда следует, что для более полной задержки следует брать мембрану с меньшими, чем указано в таблице, величинами пор. Например, для альбумина (мол. вес 67 ООО) лучше использовать РМ-30, чем ХМ-50. Следует также помнить, что способность проходить через мембрану зависит не только от молекулярного веса, но и от формы молекулы и ее гибкости. Кроме приведенных вдабл. 4, следует упомянуть и о выпускаемых фирмой Sartorius (ФРГ) изотропных ультрафильтрах, изготовленных из регенерированной целлюлозы (серия SM 115, величина пор у разных фильтров серии 150—5 нм), ацетата целлюлозы (серия SM 117, величина пор 35—5 нм) и нитрата целлюлозы (серия SM 121, величина пор 15—5 нм). [c.27]

    Для растворов полимеров вязкость является функцией молекулярных масс, формы, размеров, гибкости макромолекул. Чтобы определить структурные характеристики полиме1>ов, приведенную вязкость экстраполируют к нулевой концентрации. В этом случае вводится понятие характеристической вязкости [т]]  [c.102]

    Интерес к разбавленным растворам высокомолекулярных соединений обусловлен прежде всего тем, что растворение полимеров в достаточно большом количестве растворителя яв.1яется единственным способом диспергирования их до молекулярного уровня. Только в разбавленных растворах, когда расстояние между макромолекулами сравнительно велико, появляется возможность определения так называемых макромолекулярных характеристик полимера (размеры и форма макромолекулы, способность ее изменить свою форму и 7 д ). [c.520]

    Таким образом, мы приходим к заключению, что характер адсорбции полимера из растворов умеренно высокой концентрации наряду с прочими факторами существенно зависит как от формы макромолекул в растворах, так и от степени структурированности раствора. Увеличение степени межмолекулярного взаимодействия в растворе должно до определенных пределов приводить к увеличению адсорбции за счет увеличения размеров агрегатов молекул, переходящих на поверхность, а дальнейший рост структурированности раствора може воспрепятствовать такому переходу и привести к уменьшению сорбции. [c.146]

    Вследствие сложной зависимости структуры от концентрации, температуры и природы растворителя адсорбция полимеров из растворов может не подчиняться тем теоретическим уравнениям, которые выведены без учета данного обстоятельства.Такие отличия адсорбции полимеров из растворов от адсорбции низкомолекулярных веществ особенно наглядно проявляются в отсутствие строгой закономерности изменения р с природой растворителя, характеризуемой значением [т]]. Это вполне понятно, поскольку величина [т]] характеризует размер и форму макромолекул только в разбавленных растворах. В концентрированных растворах более развернутая форма цепи, характерная для лучших растворителей, способствует возникновению надмолекулярных структур, но образование их будет происходить при более высоких концентрациях, чем Б плохих растьорителях, из-за более слабого взаимодействия цепей друг с другом. Наоборот, очень свернутая форма цепи в растворе в плохом растворителе также не способствует образованию агрегатов, [c.149]

    Адсорбция полимеров на твердых поверхностях из растворов является весьма специфичной и существенно отличается от адсорбции низкомолекулярных веществ. В детальных исследованиях этого процесса, проведенных в наших работах [12—15], было установлено, что эти специфические особенности связаны с тем, что при адсорбции па поверхность адсорбента переходят не изолированные полимерные молекулы (за исключением случая предельно разбавленных растворов), а агрегаты макромолекул или другие надмолекулярные образования, возникающие в растворах уже при относительно невысоких концентрациях. При этом состав т 1ких агрегатов и форма макромолекул в них зависят от концентрации раствора, а это означает, что с изменением концентрации раствора происходят непрерывные изменения как размера, так и формы адсорбируемых частиц. [c.311]

    Полимерные молекулы в растворе- образуют ассоциаты, форма которых оказывает значительное влияние на вязкость их растворов. Кроме того, на вязкость влияет также гибкость макромолекул присадок в растворе, определяемая в том числе и химическим строшием полимера. Так, например, полиметакрилат характеризуется ростом размеров клубка макромолекул с повышением температуры, в то время как для олефиновых полимеров и некоторых сополимеров наблюдается обратное явление. Это приводит к тому, что при прочих равных условиях загущающая способность последних понижается. [c.13]

    Влияние взаимодействий электростатического характера между заряженными молекулами на процесс центрифугирования можно почти полностью устранить путем добавления инертного электролита. Если такой электролит в раствор не добавлен, то следует вести расчеты с помощью модифицированного уравнения Сведберга, при выводе которого исходят из условия электронейтральности раствора. На макромолекулы действует большая центробежная сила, чем на молекулы меньших размеров. Однако движение заряженных макромолекул замедляется вследствие их взаимодействия с медленно седиментирующими ионами. Следовательно, по сравнению с незаряженными молекулами, имеющими те же размеры, форму и удельный парциальный объем, заряженные молекулы должны встречать большее сопротивление при своем движении. При диффузии наблюдается противоположный эффект, поскольку ионы диффундируют быстрее и увлекают за собой медленно движущиеся заряженные макромолекулы, которые по этой причине диффундируют быстрее, чем незаряженные. Обычно такого рода электролитические эффекты стараются устранить, добавляя инертный электролит, даже если это может привести к избирательным взаимодействиям между некоторыми компонентами раствора, о которых говорилось выше. [c.191]

    Известно, что в разбавленных растворах макромолекулы, если они не структурированы, принимают форму статистического клубка и занимают несообщающиеся элементы объема ( координациопные сферы ), причем концентрация полимера внутри координационной сферы выше средней концентрации полимера в растворе. В концентрированных растворах молекулы перепутаны, образуют постоянные контакты и координационная сфера произвольно выбранной макромолекулы содержит звенья соседних молекул. Концентрация полимера в такой сфере в среднем равна концентрации раствора. Поэтому изучение разбавленных растворов дает информацию о свойствах индивидуальных макромолекул (их размерах, форме, жесткости и т. д.), а исследования концентрированных растворов позволяют судить о структуре раствора в целом. По сути дела, здесь был сформулирован один из возможных критериев, позволяющих отличать концентрированные растворы от разбавленных он связан с дискретностью частиц (молекул) или образованием однородной структуры с обезличиванием в ней индивидуальных макромолекул. [c.87]

    Электрофоретические свойства очень чувствительны к изменениям размеров, формы, числа заряженных групп макромолекулы, которые часто нельзя обнаружить другими методами. Изменения, вызванные старением при хранении растворов, различными химическими воздействиями, небольшие видовые различия и т. д., могут быть легко замечены при фронтальном электрофорезе. Примером является найденное Полингом с сотрудниками различие в полон ении изоэлектрической точки нормального гемоглобина человека и гемоглобина больных серповидно-клеточной анемией (Ар1=0,22). Как показал позднее Ингрэм, это различие вызвано заменой всего одной кислой аминокислоты в белковой макромолекуле на нейтральную (глутаминовой кислоты на валин). [c.63]

    При нсследованпи высокодисперсных систем можно непосредственно определять размер, форму и характер агрегации частиц и устанавливать генетич. соотношения между частицами. Таким способом оинсаны многие коллоидные р-ры, аэрозоли и порошкообразные системы. Изучен механизм образования, старения и коагуляции ряда коллоидов (Ап, 810,, У Оз и др.). Доказана глобулярная структура многих гелей и алю-мосиликатных катализаторов, состоящих из непористых шаров1вдных частнц размером порядка сотых долей микрона. Установлено дискретное распределение каталитич. добавок на поверхностях инертных носителей, резкое изменение структуры массивных контактов (Р1, Р(1) при проведении на нпх каталитич. реакций. Получены ценные сведения о форме и размерах отдельных макромолекул в растворе и о характере пх агрегации в твердом состоянии. Для макромолекул, плотно свернутых в глобулы, с помощью электронного микроскопа можно определять мол. вес гЮ . Посредством параллельного применения электронного микроскопа и электронографии впервые обнаружена складчатая конформация молекул в полиэтилене и других кристаллич. полимерах. Э. м. успешно применяется для изучения морфологии блочных полимеров. [c.478]

    Скорость элюирования зависит от способа использования ионита и от размера его зерен. Ее выражают либо как линейную (мл-см 2.ч1-=см/ч или мл см 2.мин- = см/мин), либо как объемную (мл-см -мин ). Линейная скорость относится к площади поперечного сечения колонки, а объемная — к объему слоя ионита. Полную скорость потока определяют числом миллилитров раствора, выходящего из колонки за единицу времени. Скорость элюирования зависит от вязкости раствора, которой определяется диффузия в зерна ионита и которая уменьшается с повышением температуры раствора. Чем мельче частицы ионита и чем выше температура, тем более высокие скорости потока допустимы в колонке. Однако по мере уменьшения размеров частиц увеличивается гидродинамическое сопротивление колонки, а повысить температуру не всегда возможно. Поэтому при работе с тонкоизмельченными ионообменными смолами всегда необходимо повышенное давление. Сопротивление колонки зависит от формы частиц ионита сферические частицы оказывают наименьшее сопротивление потоку подвижной фазы. При использовании мягких ионитов на основе полидекстрана или целлюлозы высокие давления недопустимы. В табл. 5.12 показаны скорости потока подвижной фазы в колонках, заполненных различными ионитами. Для ионообменных производных целлюлозы допустимы скорости потока от 4 до 30 мл-см 2-ч , а иногда и до 50 мл-см- -ч . Чем больше по размеру хроматографируемые макромолекулы, тем меньше должна быть скорость потока. Перепад давлений на колонках, заполненных се-фадексом А-50 и G-50, не должен превышать 2 см водяного столба на 1 см длины колонки. [c.280]

    Седиментационный метод с применением ультрацентри-фуги описан ранее (стр. 28—29) при рассмотрении методов определения размера коллоидных частиц. Определение молекулярного веса этим методом сводится а) либо к исследованию распределения концентрации раствора после установления седиментационного равновесия, для чего скорость вращения центрифуги устанавливают такую, чтобы развиваемая ею центробежная сила превышала силу тяжести примерно в 10 —10 раз б) либо к исследованию скорости седиментации, для чего центробежная сила должна превышать силу тяжести в 10 —10 раз. Изменение концентрации в установившемся равновесии определяют фотографически или по изменению показателя преломления. Расчет М производят по особым уравнениям, на которых мы не останавливаемся. Заметим лишь, что этот метод является наиболее всесторонним, так как, помимо УИ, дает возможность определять также и степень полидисперсности исследуемого вещества и судить о форме макромолекул. Метод нашел широкое применение при исследовании белков, полистирола, целлюлозы и других веществ. [c.163]


Смотреть страницы где упоминается термин Размеры и форма макромолекул в растворах: [c.61]    [c.11]    [c.495]    [c.211]   
Смотреть главы в:

Коллоидная химия -> Размеры и форма макромолекул в растворах

Коллоидная химия -> Размеры и форма макромолекул в растворах

Коллоидная химия Издание 3 -> Размеры и форма макромолекул в растворах




ПОИСК





Смотрите так же термины и статьи:

Макромолекула в растворе

Макромолекулы, форма

ОДО-Формы в растворе

Размеры и форма макромолекул



© 2024 chem21.info Реклама на сайте