Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение физических свойств ионитов

    Таким образом, в металлах имеются положительно заряженные ионы, электроны и небольшое количество нейтральных атомов. Этот особый тип химической связи и обусловливает наличие определенных физических свойств. Высокая электропроводность металлов объясняется наличием свободных электронов. В электрическом поле беспорядочное движение электронов становится направленным они перемещаются от отрицательного полюса к положительному. [c.390]


    Вторым важным и очевидным требованием для первой группы методов является отсутствие других компонентов, которые дают в этих же условиях продукт реакции, обладающий аналогичными физическими свойствами. Так, наиример, в присутствии ионов железа наряду с гидроокисью алюминия будет осаждаться также гидроокись железа. По весу полученного после прокаливания вещества нельзя непосредственно вычислить содержание алюминия. Наоборот, присутствие веществ, хотя и реагирующих сданным реактивом, но не дающих аналогичных по физическим свойствам продуктов, не мешает выполнению определения (отличие от второй группы методов, см. стр. 24). Так, например, в растворе соли алюминия может присутствовать соляная кислота хотя она реагирует с гидроокисью аммония, но получающийся продукт реакции растворим и поэтому (при введении достаточного избытка реактива) не мешает определению. [c.23]

    Теория Нернста приводит к ошибочному выводу о независимости стандартного электродного потенциала от природы растворителя, поскольку величина Р не является функцией свойств растворителя. Нельзя также считать правильным первое положение теории, поскольку скачок потенциала на границе металл — раствор не совпадает с электродным потенциалом, а представляет его часть. В электродный потенциал входят некоторые величины, характеризующие специфическую адсорбцию ионов на поверхности металла, а также работу выхода иона из данного металла. Недостатком теории Нернста является и то, что понятие об электролитической упругости растворения металла не имеет определенного физического смысла. Все это привело к необходимости пересмотра теории возникновения электродного потенциала. [c.164]

    Методы определения химических и физических свойств ионообменных сорбентов. Подготовка ионитов к работе. Иониты синтезируются в аппаратуре, недостаточно защищенной от коррозионного воздействия реакционной среды. Поэтому в гранулы ионообменных смол попадают ионы металлов, в основном железа. Кроме того, смолы могут содержать некоторое количество исходных мономеров и других органических загрязняющих веществ. Прежде чем применять иониты для анализа или определять их химические и физические свойства, необходимо их подготовить к работе. Наиболее удобны иониты со средним диаметром зерен 0,25—0,50 мм. [c.164]

    При электро-гравиметрическом анализе в осадок выделяют металл из раствора его соли. Чаще же искомое вещество выделяют из раствора в виде какого-либо соединения определенного химического состава, которое образуется в результате ионной реакции. Например, серную кислоту определяют, осаждая из ее раствора сульфат бария добавлением раствора хлорида или нитрата бария. Соединение определенного состава образуется при взаимодействии в растворе ионов, содержащих искомое вещество, с ионами реактива-осадителя. Получаемый осадок должен иметь постоянный химический состав и обладать физическими свойствами, позволяющими производить его дальнейшую обработку с целью практически полного выделения из раствора промывание, сушку и прокаливание для получения из осажденной формы анализируемого вещества его весовой формы. [c.291]


    Общими физическими свойствами, характеризующими металлы, обладают в свободном состоянии 82 элемента из 105. Естественно предположить, что атомы этих элементов должны быть сходными и по строению. Атомы элементов главных подгрупп I—III групп периодической системы на внешнем энергетическом уровне имеют мало электронов (от одного до трех) и, стремясь принять более устойчивое состояние (структуру атомов благородных газов), сравнительно легко отдают эти электроны, превращаясь в положительно заряженные ионы. Эта особенность обусловливает своеобразное строение кристаллической решетки металлов, которая состоит из положительных ионов и атомов, находящихся в узлах решетки. Между узлами находятся электроны, не принадлежащие каким-либо определенным атомам. Малые размеры электронов позволяют им более или менее свободно перемещаться по всему кристаллу металла, переходя от одного атома или иона к другому атому или иону. При достаточном сближении электронов с ионами образуются нейтральные атомы, которые снова распадаются на ионы и электроны. Следовательно, в кристалле металла существует своеобразное равновесие  [c.390]

    Для кристаллического состояния характерно строго определенное расположение частиц (атомов, ионов, молекул) во всем объеме кристалла, т. е. в расположении частиц существует дальний порядок. Это обусловливает анизотропию кристаллического вещества, или различие физических свойств (теплопроводность, прочность, коэффициент преломления света и др.) кристалла в разных направлениях. [c.79]

    При оценке характеристики вод и определения их свойств проводят анализы на общую минерализацию воды и ее жесткость, содержание шести основных компонентов для отнесения исследуемой воды к определенному типу, концентрацию водородных ионов, газосодержание, бактериологическое и микробиологическое содержание, а также по определению некоторых физических свойств — температуры, плотности, запаха, вкуса, цвета, прозрачности, коэффициента поверхностного натяжения. Коррозионное воздействие воды на конструкционные материалы зависит от общей минерализации. По концентрации солей пластовые воды нефтяных месторождений подразделяются на пресные (0,001—0,1%) и минерализованные — солоноватые (0,1—1%), соленые (1—5%), рассольные (5—35%)- [c.125]

    Физическая адсорбция из раствора оиределяется здесь довольно произвольно и не затрагивает адсорбцию ионов, которая рассматривается в следующем разделе. По-видимому, в данном случае не существует какого-либо общего правила, основанного на структуре или физических свойствах органических молекул, для предсказания их относительного сродства к силанольной поверхности определенных бинарных или более сложных смесей. Поскольку величина рКа силанольной поверхности сходна с величиной рКа для воды, а энергия межфазной границы раздела оказывается очень небольшой, то, вероятно, взаимодействия органических молекул с водой будут соответствовать межмолеку-лярным взаимодействиям с силанольной иоверхностью. [c.905]

    Вещество - устойчивая система частиц (атомов, ионов или молекул), обладающая определенными физическими и химическими свойствами. [c.4]

    В настоящее время используют два метода для того, чтобы разделить ионные и ковалентные соединения. Первый основан на анализе спектральных данных, полученных с помощью дифракции рентгеновских лучей, электронов и нейтронов, спектров поглощения, мессбауэровской спектроскопии, путем измерения физических свойств (электропроводность, диэлектрическая проницаемость) и химических свойств (термодинамические данные по энергиям связей, растворимость в полярных растворителях и др.). В некоторых случаях остаются сомнения, но достоверность результатов, полученных этим методом, высокая. В другом способе, предложенном Полингом, ионными кристаллами называют кристаллы, у которых ионность связей, определенная на основе электроотрицательностей составляющих их элементов, превышает 50%-Если воспользоваться эмпирическим уравнением Хенни и для соединения МтХ взять электроотрицательности Хм и хх, то для ионных кристаллов должно выполняться условие  [c.185]

    Продукт, получаемый в результате кристаллизации, представляет собой сыпучую массу кристаллов различного размера. Внешняя геометрическая форма кристаллов специфична для каждого вещества. Характерной особенностью кристаллического строения вещества является строго определенное, периодически повторяющееся в трех измерениях расположение ионов, атомов или молекул, образующих кристаллическую решетку. Следствием внутренней упорядоченности структуры кристаллов является анизотропность различных физических свойств механических, оптических, электрических, магнитных и других. [c.353]

    Из-за сложности физических свойств цеолитов им трудно дать точное определение. Так, автор этой главы [6] предлагает называть цеолитами алюмосиликаты с каркасной структурой, в которой имеются полости, занятые большими ионами и молекулами воды, причем и те и другие характеризуются значительной подвижностью, что обеспечивает возможность ионного обмена и обратимой дегидратации . Каркасная структура построена из соединенных вершинами тетраэдров, в. которых малые атомы (называемые Т-атомами) лежат в центрах тетраэдров и атомы кислорода —в их вершинах. Положения Т в природных цеолитах заняты преимущественно атомами А1 и 81, но в синтетических цеолитах их можно заменить на близкие по природе атомы Оа, Ое и Р. Роль больших ионов в полостях природных цеолитов выполняют одно- и двузарядные катионы Ка, Са,. К, Mg и Ва, содержание которых зависит от геохимического состава [c.11]


    Для исследования этих простых, но принципиально важных ионных реакций необходимы источники как электронов, так и водородных атомов в полярных средах, особенно в воде, и способы определения и измерения концентраций сольватированных электронов и атомов водорода физическими или химическими методами. В последующих главах мы опишем способы получения сольватированных электронов и атомов водорода, методы идентификации и физические свойства электрона в различных агрегатных состояниях, реагенты на электрон и атом водорода, относительные скорости реакций этих двух частиц и, наконец, различные другие связанные с этим вопросы. [c.459]

    Ошибки определения распространенности изотопов связаны с методами получения положительных ионов и их регистрации. На первый взгляд можно ожидать, что определение относительного содержания изотопов одного элемента может быть без затруднений проведено с любой желаемой точностью, так как они обладают почти идентичными химическими и физическими свойствами и отличаются по массе лишь на несколько единиц. [c.72]

    Приступая к разделению белков, необходимо тщательно подобрать pH, ионную силу, температуру, электролит и носитель, поскольку от перечисленных условий зависят физико-химические и биологические свойства каждого отдельного белка. Формирование высших структур (т. е. вторичной, третачной и четвертичной), а также надмолекулярных агрегатов обусловлено ионными и гидрофобными взаимодействиями и образованием водородных связей. Эти же взаимодействия определяют и процесс разделения. Очевидно, условия хроматографии должны быть такими, чтобы выделенный продукт сохранил определенные представляющие интерес свойства, каковые, как правило, связаны ссохра-нением его нативного состояния и биологической активности. В то же время для определения физических свойств субъединиц белка часто его необходимо денатурировать и с этой целью подвергнуть жесткой обработке (например, мочевиной или гидрохлоридом гуанидина) с последующей химической модификацией (например, расщепить дисульфидные связи и блокировать сульф-гидрильные группы). Таким образом, конкретная задача определяет выбор метода разделения белков. Следует также отметить, что в процессе разделения нативных белков участвуют функциональные группы, расположенные на поверхности. Однако если белки полностью или частично денатурированы, появляются новые группы, ранее скрытые внутри макромолекулы, которые могут изменить не только силу, но и природу взаимодействия белка с сорбентом. В результате при хроматографиче- [c.104]

    Навески анионитов по 1 г абсолютно сухого вещества, взвешенного с точностью до 0,01 г, помещали в пробирки из стекла пирекс заливали 20 мл дистиллированной воды, запаивали и вьщержи-вали при заданной температуре в автоклаве. По окончании термообработки пробирки вскрывали, смолу отфильтровывали от раствора и отмывали водой от воднорастворимых веществ водные вытяжки соединяли с промывными водами и анализировали на содержание гидроксильных ионов и на окисляемость. Определение обменной емкости анионитов производили в статических условиях. Одновременно проводили определение физических свойств (плотность, удельный оъем, набухаемость) 4]. [c.158]

    Процесс адсорбции хорошо описывается уравнением Гиббса. Адсорбция и ориентация частиц на поверхности раздела фаз приводят к минимуму свободной энергии системы. Адсорбционные и сольватные слои оказывают стабилизирующее действие. Адсорбционное равновесие точно описывается в термодинамических понятиях. Однако мембранное равновесие в явном виде не входит в полученные уравнения. Поэтому лучше применять более наглядные термодинамические соображения, исходя из определенной модели, имеющей физический смысл. При этом можно исходить из системы, состоящей из каркаса — сетки с фиксированными на нем функциональными группами, подвижныхми противоионами и коионами и молекулами растворителя. Этим путем часто идут при электрохимических рассмотрениях. Понятие иона отсутствует у Гиббса, физические свойства ионов, их объемы, [c.63]

    Хемосорбция газа приводит к появлению в ИК-спектре полос поглощения, частоты которых отличаются от частот колебания газа. Любую из этих хемосорбированных частиц можно было бы рассматривать как промежуточный ион , так как их частоты колебания расположены между частотами нейтральной молекулы и положительных и отрицательных ионов адсорбата. Однако промежуточными ионами считаются лйшь такие формы, которые описываются уравнением, связывающим определенное физическое свойство, например частоту колебания, с числом валентных электронов. Эти уравнения, 1 оторые обычно выводят, исходя из частот колебаний, всегда включают значение частот нейтральной молекулы и ионов, которые также можно рассматривать как промежуточные ионы. Следовательно, кроме обычно присущих им физических свойств, соответствующих дробному числу валентных электронов, одной из специфических характеристик промежуточных иопов является уравнение, по которому они идентифицируются. [c.403]

    В заключение можно сказать, что ионный механизм каталитического крекинга обоснован непосредственно большой работой Уитмора по изучению реакций олефинов с участием иона карбония. Многие дополнительные исследования для доказательства ионного механизма были проделаны английскими химиками, детально изучившими ионные механизмы многих органических реакций. Можно упомянуть работу Шмерлинга и Бартлетта по алкилированию олефинов изопарафинами, недавно опубликованную работу Броуна по алкилированию методом Фриделя-Крафтса ароматических углеводородов алкил- и арилгалоидами и цитированную уже работу Бика и сотрудников. Физические данные были получены посредством спектроскопического изучения растворов углеводородов в кислотах, которые, как считается, генерируют ионы карбония, и посредством определения потенциалов, появления углеводородных ионов, особенно алкил-ионов в масс-спектрометре. Отсюда можно было перейти к термодинамическим данным, что дает возможность предсказывать некоторые важные свойства ионов карбония. [c.138]

    Электрохимия — раздел физической химии, в котором изучаются физико-химические свойства ионных систем (растворов, расплавов или твердых электролитов), а также явления, возникающие на границе двух фаз с участием заряженных частиц (ионов и электронов). В двухфазной электрохимической системе одна из фаз — чаще всего металл или полупроводник, другая — раствор или расплав электролита. В этом случае электрохимию определяют как науку, изучающую взаимодействие зарядов металла или полупроводника с ионами и молекулами раствора или расплава. Если система неравновесна, такое взаимодействие сопровождается возникновением в цепи, содержащей фазы, электрического тока. Учитывая это, дают еще более узкое определение электрохимии как науки, изучающей физико-химические процессы, сопровождающиеся появлением электрического тока или происходящие под действием на химические соединения электрического тока. [c.139]

    По внешнему виду и физическим свойствам соли аммония похожи на соответствующие соли щелочных металлов, особенно на соли калия, так как радиусы ионов аммония и калня близки. Вместе с тем соли аммония обладают рядом свойств, которые обусловлены тем, что катион аммония ЫН+ в от.ти-чие от катионов щелочных металлов имеет сложную структуру и при определенных условиях способен разрушаться. Например, при нагренанин хлористого аммония происходит его возгонка, по не вследствие летучести молекул КН С , а в результате обратимого разложения солн  [c.205]

    В настоящее время принято различать химические связи пяти видов ионную, ковалентную, металлическую, водородную и ван-дер-ваальсовы взаимодействия. Такая классификация связана с введением определенных упрощений, идеализаций- и обусловлена отсутствием единой теории, способной одновременно описать все молекулы. Отнесение химической связи в конкретной молекуле к тому или иному виду не всегда является простой задачей. Иногда для этой цели приходится принимать во внимание целую совокупность химических и физических свойств. Сейчас пока отметим, что связи первых трех видов по своей прочности во много раз превосходят связи двух последних видов. [c.172]

    Иончувствительные мембраны (ИЧМ) представляют собой основу многих электрохимических методов анализа. По агрегатному состоянию различают твердые, жидкие и пластифицированные мембраны. Электрический потенциал, возникающий на границе мембрана-водный раствор, определяется активностью, а при определенных условиях концентрацией заряженных частиц водного раствора. Пластифицированные ИЧМ - область исследований кафедры аналитической химии - должны обладать следующими физическими, механическими и химическими свойствами ионной проводимостью, прочностью, достаточной электропроводностью. ИЧМ можно отнести к классу наполненных полимеров. На сегодня состав мембранных композиций ИЧМ стандартен. В качестве матрицы таких полимеров до сих пор чаще всего используют поливинилхлорид (ПВХ) в настоящее время проводятся активные исследования других полимеров с точкой стеклования ниже комнатной прежде всего полимеров акрилового ряда. [c.72]

    Обсуждение структуры и физических свойств бинарных фторидов выходит за рамки данной главы, однако для выбора фторирующего агента при синтезах известных или новых соединений решающее значение имеют определенные физические характеристики. В связи с этим в табл. 1 приведены температуры плавления и кипения и критические давления для некоторых наиболее важных фторидов. При этом следует отметить следующее при рассмотрении сверху вниз элементов любой группы периодической системы летучесть соединений МР уменьшается (часто довольно резко) при переходе от третьего к четвертому ряду. Однако эти резкие изменения не означают перехода от ковалентного к ионному типу связи. Скорее всего большинство из них отражает изменение в координационном числе, т. е. переход от молекулярной решетки к полимерной. Так, 31Р4 и ОеР4 образуют молекулярные решетки и испаряются при низких температурах, в то время как ЗпР4, [c.307]

    Изучено влияние кислот на определение натрия в пламени про--пан—бутан—воздух [486]. В присутствии кислот изменяются такие физические свойства раствора, как вязкость и поверхностное натяжение, что вызывает изменение скорости распыления и расхода раствора. По степени влияния кислоты расположены в ряд СНдСООН <С С Н3РО4 < НС1 < Н3РО3 < H2SO4. Б то же время при определении натрия в удобрениях не отмечено влияния фосфат- и сульфат-ионов на поглощение натрия [1223]. Изучено влияние сульфат- и хлорид-ионов на абсорбцию натрия, а также на электросопротивление пламени [1031]. [c.123]

    Причин отклонения от закона Ламберта-Бугера-Беера много. С изменением концентрации вещества в растворе меняется сила взаимо-д ствия частиц (агрегация и дезагрегация, процессы полимеризации). При определенных физических (изменение температуры, облучение светом и т.д.) и химических (изменение pH, ионной силы раствора и т.п.) воздействиях на исследуемое вещество спектр его может значительно изменяться. Вещества, обладающие кислотно-основными свойствами, меняк)т величину pH раствора, при этом возможно или образование комплексов, отличающихся друг от друга спектрами поглощения, цли изменение степени диссоциации данного вещества, а ионы и нейтральные молекулы часто имеют различные спектры поглощения. Спектр поглощающего вещества может изменяться из-за накопления в растворе некоторых не поглощающих, но химически активных веществ. Отклонения от закона могут быть также обуслов- [c.188]

    Имеется ряд методов менее распространенных, но пригодных для определения фракционного состава специфических по физическим свойствам порошков. Так, для тонких порош ков, поддающихся электризации, применяют электростатический метод [27]. Сущность его заключается в том, что при прохождении порошка между коронирующим и осадительными электродами его частицы заряжаются ионами газа, притягиваются к осадительному электроду, снабженному козырьками. Отдавая заряд осадительному электроду, частицы порошка скатываются в козырек под воздействием силы тяжести. Над каждым козырьком собираются частицы, [c.36]

    Обмен катионов в цеолите может резко изменить его стабильность, адсорбционные характеристики, в том числе селективность, а также каталитическую активность и другие важные физические свойства. Поскольку многие из этпх свойств зависят от степени обмена на определенный катион, подробные данные о ионообменных равновесиях представляют сугцественный интерес. К настоящему времени выполнено значительное число исследований про-Г цессов ионного обмена на ряде наиболее ваншых природных и синтетических цеолитов. [c.545]

    Относительно рехроматографии вряд ли можно дать какие-либо определенные рекомендации. Ее условия определяются конкретным составом, а также химическими и физическими свойствами анализируемого материала. Однако, по-видимому, наиболее целесообразно вести рехроматографию на смоле в NHi -форме в буферных растворах, содержащих ион аммония, так как в этих случаях полученные фракции содержат летучие соли и одновременно с концентрированием происходит обессоливание. Если, например, фракции элюируют аммонийацетатным буферным раствором, их сначала высушивают под вакуумом при 50° С, а затем растворяют в нескольких каплях дистиллированной воды и лиофилизируют. [c.199]

    С другой стороны, тетрафторид (кипящий при 143° С) полностью охарактеризован в отношении эмпирического состава. Образец сжигался в бомбе Парра, и ион фтора определялся по видоизмененному авторами способу связывания в виде хлорфтористого свинца. Чистый образец После гидролиза спиртовьш раствором щелочи легко дат вал ионы фтора и хлора, как и можно было ожидать. Авторы полагают, что это первый случай, когда продукт присоединения фтора к ароматическому ядру с постоянными физическими свойствами был полностью охарактеризован точным анализом и определением молекулярных весов  [c.88]

    В основе большинства реакций в качественном и количественном анализе лежит образование различных комплексных соединений, химические и физические свойства которых и используют для целей анализа. Сюда относятся реакции образования нерастворимых или интенсивно окрашенных комплексов взаимодействия, сопровождающиеся изменением окислительного потенциала или растворимости под. действием комплексообразующих реактивов маскировка мешающих ионов при качественной реакции или количественном определении титрование с комплексообразующими реактивами (комплексонометрия) экстракция различных веществ в форме комплексов и др. Без преувеличения можно сказать, что анализ растворов, к которому обычно сводится большая часть аналитических задач, неразрывно связан с комплексными соединениями и их свойствами. Поэтому, прежде чем детально описывать конкретные случаи использойания этих соединений в различных областях анализа, рассмотрим некоторые вопросы их строения, свойства, а также основные характеристики. [c.64]

    Протяженность регулярно построенных изотактических или синГ-диотактических участков цепи, очевидно, должна влиять на способность к кристаллизации и другие важные физические свойства полимера. Полимеры, в которых та или-иная закономерность чередования боковых привесков сохраняется на протяжении всей цепи, предложено называть оитактическими [18] или стереорегуляр-ными. Однако подобно тому, как конформация цепи, согласно сказанному выше, зависит от локальной тепловой подвижности звеньев и может быть определена поэтому лишь с помощью теории вероятности, так и конфигурация, зависящая от констант скорости реакции полимеризации, должна определяться методами теории вероятностей. Очевидно, по этой причине трудно синтезировать идеальный оитактический полимер. Как будет показано ниже, полимеры с преобладающим содержанием изотактических или же синдиотактиче-ских последовательностей могут быть получены путем ионной полимеризации, координационной полимеризации и другими методами, однако даже в полученных этими способами полимерах обычно содержится определенное количество атактических звеньев. Такие полимеры называются стереоснецифическими. [c.90]

    Недостаток принятой в этой книге классификации методов по исследуемым свойствам связан с тем, что определенные методы математической обработки экспериментальных данных одни и те же для различных физических свойств. Например, способы обработки экспериментальных данных, приведенные в гл. V при описании потенциометрических методов исследования обратимых ступенчатых равновесий, могут быть применены также в случаях, когда концентрация свободного центрального иона или лиганда определена полярографически или спектрофотометрически. При методе непрерывных изменений, описанном на стр. 266, в качестве физического свойства могут быть использованы как оптическая плотность, так и показатель преломления или понижение температуры замерзания. Всю совокупность ме- [c.22]

    Таким образом, можно заключить, что температурные изменения 2Д У °гидр вполне определенно и однозначно связаны с одной из важнейших сторон процесса гидратации ионов — со структурными изменениями растворителя под влиянием ионов.При переносе ионов из обычной воды в тяжелую следует ожидать усиления взаимодействия ионов с молекулами воды за счет снижения энергии нулевых колебаний последних при замещении атомов протия на атомы дейтерия и, как следствие этого, увеличения отрицательного вклада в 2ДУ°ридр- Этот эффект должен проявиться в наибольшей степени в случае ионов, которым свойствен наряду с электростатическим донорно-акцепторный тип взаимодействия с ближайшими молекулами воды (Ь1, Ве " , Р"). Электростатическая составляющая 2ДУ°гидр при переходе от Н2О к ВгО будет меняться крайне незначительно, поскольку физические свойства этих изотопных разновидностей воды, определяющие указанный вид взаимодействия, практически одинаковы. По этой же причине мало изменится и отрицательный упорядочивающий вклад в области дальней гидратации. [c.139]


Смотреть страницы где упоминается термин Определение физических свойств ионитов: [c.426]    [c.267]    [c.244]    [c.129]    [c.86]    [c.337]    [c.337]    [c.238]    [c.254]   
Смотреть главы в:

Руководство по ионообменной, распределительной и осадочной хроматографии -> Определение физических свойств ионитов




ПОИСК





Смотрите так же термины и статьи:

Определение иония

Физические свойства ионных



© 2024 chem21.info Реклама на сайте