Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зависимость общей скорости полимеризации от концентрации мономера

    Вследствие многообразия каталитических систем, под влиянием которых может быть осуществлена катионная полимеризация, и большого числа факторов, взаимосвязанно влияющих на скорость различных реакций, протекающих в реакционной массе, закономерности, касающиеся степени полимеризации, не носят общего характера. В зависимости от соотношения компонентов каталитического комплекса, концентрации мономера, природы растворителя, температуры процесса характер взаимодействия карбкатиона с противоионом может меняться в очень широких пределах, что приводит к невозможности каких-либо обобщений. [c.182]


    Шапиро, Мага и сотр. [1583] рассмотрели факторы, благоприятствующие каждой из двух конкурирующих при виниловой полимеризации реакций рекомбинации первичных радикалов (1) и инициирования (2). При обсуждении кинетических уравнений показано, что во всех случаях, когда реакцией (1) нельзя пренебречь, ме соблюдается зависимость общей скорости полимеризации (и) от корня квадратного из скорости инициирования (Уа) и экспонент может изменяться от 0,5 до нуля при увеличении доли реакции (1). При исследовании полимеризации стирола, инициированной у-излучением, установлено, что при высоких интенсивностях скорость полимеризации растет медленнее, чем это соответствует ее пропорциональности концентрации мономера [c.272]

    Зависимость общей скорости полимеризации от концентрации мономера [c.16]

    В результате изучения полимеризации мономеров разного строения в эмульсиях, стабилизированных различными эмульгаторами, Медведев [10] приходит к выводу о существовании трех типов зависимости скорости полимеризации от концентрации эмульгатора (рис. 1.9). Прямая 1 характеризует процессы, протекающие в эмульсиях с использованием маслорастворимых инициаторов, поступающих в частицы вместе с мономером. В этом случае общая скорость полимеризации W пропорциональна концентрации эмульгатора [3]в первой степени  [c.26]

    В ряде работ по полимеризации на поверхности из паровой фазы [1, 49] отмечались высокие кинетические порядки общей скорости полимеризации по концентрации адсорбированного мономера п . В интервале концентраций от 0,1 до нескольких монослоев эффективные значения в некоторых системах достигают 4-5. В качестве примера на рис. 1.4 приведены соответствующие зависимости для радиационной полимеризации ММА на аэросиле и MgO [1]. В ранних работах эти результаты связывали с образованием ассоциатов мономеров при адсорбции на поверхности и их преимущественным участием в полимеризации. Никаких экспериментальных доказательств этого получено, однако, не было. По-видимому, в системах рассматриваемого типа как само по себе образование ассоциатов мономера, так и ускорение полимеризации под влиянием такого процесса маловероятны. На отсутствие сколько-нибудь значительных количеств ассоциатов в упомянутых (и аналогичных им) системах указывают, например, ИК-спектры адсорбированных мономеров. Однако, если бы в каких-то незначительных количествах ассоциаты молекул мономера и образовывались, то перемещаться по поверхности как целое они должны значительно медленнее, чем отдельные молекулы мономера, и соответственно вероятность их участия в полимеризации должна быть значительно меньше. Предполагать сколько-нибудь значительное увеличение истинной реакционной способности мономеров в таких ассоциатах, связанное, например, с эффектами комплексообразования, в рассматриваемых системах также нет оснований. Вряд ли можно допустить и существование в этих системах длинных упорядоченных заготовок из молекул мономеров, в которых цепь могла бы вырастать без их существенного перемещения. [c.16]


    Это выражение, описывающее в кинетических параметрах суспензионную полимеризацию, имеет следующие характерные особенности. Скорость конверсии почти сразу достигает высокого значения, которое затем с ростом конверсии может измениться вследствие конкурирующих влияний изменения при этом констант скоростей (обусловленного гель-эффектом) и израсходования мономера. Скорость конверсии Яр/с уменьшается с ростом начальной концентрации мономера (обратно пропорционально корню квадратному из его концентрации). Соотношение мономер полимер в частицах определяется скорее конверсией, чем общей концентрацией мономера и поэтому кривые зависимости Нр сУ от конверсии должны почти совмещаться, вне зависимости от гель-эффекта [98] (рис. IV. 17). Приведенная форма уравнения описывает дисперсионную полимеризацию акрилонитрила при определенных условиях и, по-видимому, приложима к другим очень полярным мономерам, таким, как акриловая кислота и акриламид. [c.207]

    В идеальном случае кинетическое изучение гомогенной полимеризации включает три стадии определение общих кинетических закономерностей (например, определение порядка реакции относительно концентраций мономера и инициатора, зависимости мол. веса от условий опыта) и выбор реакционной схемы, согласующейся с экспериментальными результатами определение абсолютных значений констант скоростей индивидуальных реакций и, наконец, выяснение механизма индивидуальных реакций (например, происходит ли обрыв в результате рекомбинации или диспропорционирования радикалов, образуются при термическом инициировании моно-или бирадикалы). Изучение общих кинетических закономерностей проведено для многих мономеров, определению индивидуальных констант в последнее время было посвящено большое число работ, в то же время по механизму реакций в ряде случаев еще не получено исчерпывающих результатов. [c.75]

    Добавки, которые в общем не влияют на скорость полимеризации, но вызывают снижение ОР образующегося полимера, значительно большее, чем это наблюдается при простом разбавлении, называются передатчиками цепи. Поскольку характер влияния добавок на скорость полимеризации и ОР образующегося полимера является функцией как реакционной способности молекулы добавки относительно мономера или полимерного радикала, так и стабильности продукта, строгая дифференциация различных типов поведения этих веществ может представлять некоторые трудности. Действительно, одно и тоже вещество, в зависимости от различных условий (температуры, концентрации и т. д.), может реагировать с различными мономерами неодинаково. Однако для данного вещества преобладает обычно один тип поведения и для удобства классификации в настоящей главе отдельные влияния добавок на полимеризацию рассмотрены в следующем порядке инициирование, передача цепи, ингибирование и замедление. [c.232]

    И метилметакрилата в растворе бензола. Для первых двух мономеров результаты согласуются с предположением о наличии реакции передачи цепи через растворитель, но в случае метилметакрилата требуемое значение ( г)мин. слишком велико, оно примерно в 100 раз выше, чем можно было бы ожидать [152]. Ясно, что в этом случае нужно искать другое объяснение наблюдаемой зависимости скорости полимеризации от концентрации мономера. В общем, предположение [c.292]

    Теперь можно сразу написать уравнение, выражающее скорость изменения концентрации С, соответствующей общей скорости реакции (III), так как при каждом акте присоединения мономера исчезает карбоксильная группа вне зависимости от того,, чему равна степень полимеризации реагирующих веществ. Обычно считается, что k не зависит от величины реагирующих молекул и представляет собой константу скорости реакции между рассматриваемыми отдельно карбоксильной и гидроксильной группами, поэтому [c.665]

    В отдельных случаях порядок реакции по эмульгатору значительно превышает 0,6. Это может быть связано как с другими механизмами нуклеации частиц, так и с возможностью участия эмульгатора в реакции инициирования. Например, при эмульсионной полимеризации стирола в присутствии катионных ПАВ, участие которых в инициировании процесса установлено, порядок по эмульгатору близок к 1 [185]. Завышенные порядки по эмульгатору часто наблюдаются при использовании неионогенных ПАВ [241, 242]. Некоторые авторы [241] связывают это явление с образованием ПМЧ по микроэмульсионному механизму, хотя его можно интерпретировать и с позиций мицеллярной теории нуклеации частиц [199, 243]. Вследствие относительно высокой растворимости неионогенных ПАВ в мономерах в образовании ПМЧ участвует только некоторая доля эмульгатора (растворенная в водной фазе). С ростом общей концентрации ПАВ эта доля увеличивается, что и приводит к более сильной зависимости числа образующихся ПМЧ и скорости эмульсионной полимеризации от концентрации эмульгатора [199] по сравнению с соответствующими закономерностями для ионогенных ПАВ. [c.133]


    Таким образом, создается высокая концентрация активных центров. Стадия роста относительно медленная, что приводит к зависимости скорости в процессе реакции от концентрации стирола в первой степени и объясняет результаты опыта с двойным добавлением мономера. Между этим объяснением и объяснением, предложенным для случая катализа хлорным оловом, а также ди- и трихлоруксусными кислотами [67, 68], имеется много общего в интерпретации изменения кинетического порядка по мере протекания реакции. Оба они вносят кардинальные изменения в представления о механизме катионной полимеризации, подчеркивая необходимость изучения реакции целиком, а не только одних ее начальных скоростей и отмечая различие между катионной и радикальной полимеризацией, где инициирование — медленный, а рост цепи быстрый процесс. Эти новые представления рассмотрены более подробно в конце раздела [c.226]

    Остановимся теперь на экспериментальных фактах, позволяю-щих судить о механизме процесса при радиационном инициировании. Заключения о радикальной природе процессов, протекающих иод влиянием того или иного вида ионизирующего излучения, основаны на следующих данных. Хорошо известно замедляющее действие, которое оказывают на радиационную полимеризацию различные вещества, являющиеся типичными ингибиторами радикальной полимеризации. Так, хинон ингибирует полимеризацию стирола, вызывая индукционный период, продолжительность которого пропорциональна концентрации ингибитора. Индукционный период наблюдается также при радиацион-но1 1 полимеризации в присутствии других ингибиторов, в частности кислорода последнее показано на различных мономерах — винилацетате, винилхлориде и др. [6, 7]. Далее, константы сополимеризации для ряда мономерных пар (стирол—метилметакрилат, стирол—винилиденхлорид, метилметакрилат—2-винилнири-дин и др.), установленные в условиях радиационного инициирования, часто отвечают величинам, известным для радикальной сополимеризации [7]. Наконец, радикальный механизм для многих случаев радиационной полимеризации вытекает из кинетических данных, а именно, из зависимости общей скорости процесса от интенсивности излучения I, или, как говорят, от мощности дозы, которую измеряют в радах или рентгенах в единицу времени. При полимеризации различных мономеров часто наблюдается типичная зависимость г = которая хорошо соблюдается для относительно невысоких значений 1. Энергия активации радиационного инициирования равна нулю поэтому общая энергия активации при радиационной радикальной полимеризации [c.447]

    Однако гель-эффект в процессе полимеризации винилхлорида можно объяснить без привлечения реакции передачи цепи к мертвому полимеру, которая обычно приводит к образованию разветвленной структуры. Для этого используются наблюдения Брайтенбаха и Шиндлера, что поливинилхлорид набухает в собственном мономере и полимеризация в основном протекает в набухшем геле. В таком случае образуется двухфазная система, состоящая из свободного мономера в равновесии с набухшим гелем полимера. Скорость полимеризации в набухшем геле выше, чем в свободном мономере, вследствие уменьшения скорости обрыва цепи (эффект Норриша—Смита) [75] поскольку относительное количество набухшего полимера увеличивается по мере расхода мономера, увеличивается и общая скорость полимеризации когда свободного мономера в системе не остается, концентрация мономера в геле начинает падать поэтому скорость процесса полимеризации проходит через максимум, как это и наблюдали Дженкель, Экманс и Румбах. Выражая скорость полимеризации как сумму частных скоростей полимеризации в мономере и в геле, можно показать, что вплоть до максимума скорости доля заполимеризовавшегося мономера связана со временем полимеризации следующей зависимостью  [c.69]

    Медведев с сотрудниками обратили внимание на изменение скорости полимеризации и числа полимер-мономерных частиц в зависимости от конверсии мономеров и отметили, что теория Смита — Эварта не учитывает влияния адсорбционных слоев эмульгатора на скорость протекания элементарных реакций полимеризации. Количество частиц с конверсией мономеров резко уменьшается, средний диаметр их пропорционален степени конверсии, в то время как общая поверхность частиц остается постоянной. По теории Медведева скорость полимеризации обусловлена большой скоростью образования свободных радикалов инициатора и снижением энергии активации распада инициатора полимеризации в слоях эмульгатора на поверхности раздела фаз. При изучении кинетики полимеризации показано, что скорость полимеризации линейно зависит от суммарной поверхности всех полимер-мономерных частиц. Это позволяет считать, что полимеризация протекает в адсорбционных слоях эмульгатора, в которых концентрация мономера и инициатора является наибольшей. Адсорбционные слои эмульгатора определяют не только устойчивость системы, но и скорость образования радикалов и место протекания полимеризации, [c.149]

    В том случае, когда Igti изображается в зависимости от обратной величины начальной концентрации способного к полимеризации кремнезема (>0,0150 масс.% SiOj), то получаются прямые линии, как это показано на рис. 3.49. Из рис. 3.48 видно, что форма кривых непосредственно подтверждает функциональную зависимость скорости реакции от концентрации мономера, помноженной на концентрацию полимера . По-видимому, эти кривые симметричны относительно точки, при которой исчезала половина общего содержания мономера. [c.359]

    Из рис. 4.1 следует, что общие закономерности (в частности, характер зависимостей числа образующихся частиц и скорости полимеризации от 1Молекуля1рной массы и концентрации мыла) аналогичны закономерностям, наблюдаемым лри эмулысионной полимеризации стирола. Однако, как это видно нз рис. 4.2, абсолютное число частиц, образующихся при полимеризации, значительно возрастает при переходе от стирола к бутадиену несмотря на это, суммарная окорость полимеризации бутадиена существенно ниже, чем скорость полимеризации стирола в тех же условиях. Этот факт объясняется, очевидно, не только разными значениями констант скоростей роста полистирольных и полибутадиеновых цепей (соответственно 0,221 и 0,100 м (моль-с) при 60°С [9], но и другими, пока не выявленными причинами. Следует также отметить, что при одинаковых рецептах полимеризации иинетичеокие кривые имеют для стирола приблизительно линейную, а для бутадиена 5-образную форму в области низких конверсий мономеров [1, с. 187]. [c.162]

    Уравнения (У-15) и (У-19) не исчерпывают всех возможных случаев зависимости скорости полимеризации от концентрации мономера и возбудителя в катионных системах. Как будет показано далее, природа реагируюш их веществ и растворителя способна влиять на порядок реакции инициирования и приводить к соответствующим изменениям в уравнениях общей скорости процесса. Кроме того, сама правомерность применения принципа квазистационарпости к процессам катионной полимеризации да-Л6К0 нб ВС6ГДЙ. очевидна. [c.300]

    Уравнение (3.28) описывает наиболее общий случай радикальной полимерпзации. Оно показывает, что скорость полимеризации зависит от корня квадратного из концентрации инициатора. Эта зависимость подтверн дена па большом числе систем мономер — инициатор в широкодг интервале [М] и [I]. На рис. 3.1 приведена типичная кривая, иллюстрирующая такую зависимость [6—8]. В определенных условиях наблюдаются отклонения от этой зависимости. При очень высоких концентрациях инициатора может зависеть от [I] в степени меньше Это, однако, нельзя считать отклонением от уравненпя (3.28), так как данный эффект может быть обусловлен уменьшением / с увеличением концентрации инициатора. Кроме того, реакция обрыва может свестись к реакции между радикалом растущей полимерной цепи и первичным радикалом [9] [c.166]

    Кинетика радикальной полимеризации несколько отличается от кинетики классической цепной реакции ввиду зависимости ее одновременно от многочисленных факторов. Рассмотрим начальную стадию цепной полимеризации с некоторыми допущениями, а именно реакционная способность радикала не зависит от его размера общая скорость исчезновения мономера равна скорости его вхождения в полимерные цепи только в результате актов роста концентрация промежуточных продуктов радикального характера остается постоянной, т. е. рассматриваем полимеризующуюся систему в квазистационарном состоянии . [c.19]

    По мере того как новые молекулы мономера проникают внутрь мицелл, они, реагируя, увеличивают растущую полимерную цепь и последняя быстро достигает такой длины, что перестает помещаться внутри мицеллы. Это понятно, если учесть, что мицелла поверхностноактивного вещества может содержать в среднем около 100 молекул, тогда как типичная макромолекула состоит из нескольких сотен или даже тысяч мономерных звеньев. Когда растущая цепь становится слишком большой для ее мицеллярной оболочки, она выходит из нее, но адсорбированные молекулы поверхностноактивного вещества остаются на ее поверхности. Вышедшая за пределы оболочки мицеллы полимерная частица может продолжать реагировать с молекулами мономера, диффундирующими из капелек мономерной эмульсии. Таким образом, полимерная частица, образовавшаяся внутри мицеллы, продолжает расти и действует как ядро, к которому продолжают присоединяться молекулы мономера даже после ее выхода за пределы мицеллярной оболочки. Поэтому начальная концентрация поверхностноактивного вещества должна сильно влиять как на число, так и на размер частиц в конечном латексе, так как от этого зависит число мицелл, присутствующих в растворе к началу реакции полимеризации. Характер этой зависимости был выяснен для многих случаев эмульсионной полимеризации [4], что позволило установить отдельные детали в общей картине этого процесса. Так, предполагалось, что на определенной стадии полимеризации концентрация мицелл поверхностноактивного вещества в растворе станет исчезающе малой, поскольку поверхностноактивное вещество, первоначально существовавшее в виде мицелл, окажется к этому моменту полностью адсорбированным на поверхности молекул полимера. Этот вывод был подтвержден количественно [5]. Далее, величина частиц должна зависеть от концентрации и свойств мицеллообразующего поверхностноактивного вещества, а также от присутствия в растворе неорганических электролитов. Результаты исследований оказались в полном согласии с этими соображениями [6]. Изучение зависимости скорости эмульсионной полимеризации от концентрации поверхностноактивного вещества показало, что она увеличивается с повышен11ем концентрадии до определенного предела, выше которого скорость становится постоянной или даже несколько уменьшается [71. Многочисленные исследования реакций имеризации на различных объектах подтвердили выводы, вытекающие из проставлений Хар- кинса. Так, было установлено, что роль эмульгатора особенно важна в таких системах, где мономер плохо растворим, и, наоборот, меньше проявляется в тех случаях, когда свободные радикалы могут взаимодействовать с молекулами мономера в водной или масляной фазе [8]. То, что частицы полимера могут продолжать расти и после исчезновения мыльных мицелл из системы, было установлено для многих самых различных мономеров [9]. [c.475]

    Общепринятое представление о причинах изменения структуры макромолекулы с изменением полярности среды сводится к переходу контактных ионных пар в сольватированные (или в свободные ионы), т. е. к ослаблению (или исчезновению) регулирующего влияния противоиона. Универсальность такого подхода сомнительна, так как значительные эффекты изхменения структуры макромолекулы часто наблюдаются уже в присутствии малых, а иногда ничтожных количеств полярного агента, т. е. в условиях, когда общая полярность среды практически не отличается от исходной. Далее, полярные среды отнюдь не всегда вызывают уменьшение стереорегулярности их влияние способно проявляться в инверсии микроструктуры полимера (например, метилметакрилат) [1] или в образовании полимеров более однородного строения (например, бутадиен) [2]. Кинетические данные, известные для ряда анионных систем, также часто не согласуются с представлением о функциональной связи между полярностью среды и наблюдаемыми изменениями в строении полимера. Структурные параметры, характеризующие повышение ионного вклада реакции роста, не всегда меняются симбатно с константой скорости этой реакции. Заметим, наконец, что полярные эффекты в их обычном понимании должны были бы наблюдаться при полимеризации полярных мономеров (акрилатов и т. п.) и в отсутствие дополнительных агентов. Здесь можно было бы ожидать зависимости характера и степени стереорегулярности полимера от концентрации мономера (как полярного агента) в исходной реакционной смеси. Однако в действительности это, по-видимому, не имеет места. [c.115]

    Скорость инициирования полимеризации винилхлорида определяется двумя факторами скоростью распада инициатора и эффективностью инициирования, т. е. отношением числа радикалов, инициирующих полимеризацию, к общему числу радикалов, образующихся при распаде инициатора. Эффективность инициирования находится в зависимости от природы применяемого инициатора, от чистоты мономера и условий процесса температуры, давления и др. Из-за очень большой скорости распада активных инициаторов их концентрация в полимери-зацио ной среде быстро уменьшается, что может привести к чрезмерному затягиванию конечной стадии полимеризации. Поэтому высокоактивные инициаторы при полимеризации винилхлорида целесообразно использовать в сочетании с другими, менее активными инициаторами (перекись ацетилциклогексилсульфонила с перекисью лаурила или с порофором ЧХЗ-57 — динитрилом азобисизомасляной кислоты). [c.93]

    При обсуждении принципиальной возможности нерадикальной полимеризации на основе рассматриваемых систем и полярных мономеров следует подчеркнуть, что поведение винилхлорхвда не является с этой точки зрения особенно показательным из-за его чрезвычайно малой склонности к полимеризации под действием активных центров ионного типа. Приведенные выше результаты дают представление о механизме генерирования свободных радикалов, общий характер которого, вероятно, сохраняется и в других системах. Как мы видели, присутствие этилацетата создает условия для большего выхода полимера и более полного превращения отщепляющихся алкилов в свободные радикалы. По-видимому, аналогичный эффект способны вызвать и сами мономеры, полярные группы которых отличаются достаточной донорной активностью. Если при этом они не столь инертны по отношению к ионно-координационным активным центрам, как винилацетат или винилхлорид, то для них не исключено параллельное течение обеих реакций, относительный вклад которых должен определяться концентрациями активных центров каждого типа и константами скорости двух реакций роста. На первый взгляд такую точку зрения трудно согласовать с известными фактами полной пассивации катализаторов Циглера—Натта как источников активных центров ионно-координационной полимеризации в присутствии повышенных количеств оснований Льюиса. Это кажущееся противоречие, так как реакцию (148) нельзя считать запрещенной для сложных комплексов типа (6, X), вне зависимости от природы их компонентов. [c.262]


Смотреть страницы где упоминается термин Зависимость общей скорости полимеризации от концентрации мономера: [c.262]    [c.13]    [c.233]    [c.181]   
Смотреть главы в:

Полимеризация на поверхности твердых тел -> Зависимость общей скорости полимеризации от концентрации мономера




ПОИСК





Смотрите так же термины и статьи:

Зависимость скорости полимеризации от концентрации мономера

Концентрация общая

Мономеры концентрация

Общие зависимости

Скорость зависимость



© 2025 chem21.info Реклама на сайте