Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры и термодинамические свойства вещества

    Известно, что расчет термодинамических свойств веществ из спектральных данных может быть произведен в том случае, если известны строение молекул этих веществ и их колебательные спектры. Был предложен метод расчета термодинамических свойств органических и неорганических соединений без знания их колебательных спектров. Авторы показали, что колебательные спектры обладают свойствами аддитивности. Это позволяет по известной структуре н колебательным спектрам нескольких веществ вычислить недостающие данные для всего гомологического ряда соединений, используя следующее выражение  [c.41]


    Более того, термодинамические свойства вещества, внутренняя энергия, теплоемкость, энтропия и т. д. во многом определяются колебательным движением молекул. Частоты таких колебаний используются при расчетах констант равновесий в химических процессах. Межмолекулярное взаимодействие также непосредственно сказывается на характере колебательных спектров. Кинетические свойства веществ, т. е. скорость протекания химических реакций, в значительной мере определяются характером колебаний молекул. Колебательные спектры многоатомных молекул применяются и в аналитической химии — для спектрального анализа химических соединений и их смесей. [c.208]

    Следует заметить, что свойства атомов зависят не только от заряда ядра, ho в небольшой степени и от его массы. Различие в свойствах изотопов называется изотопным эффектом.. Изотопный эффект выражается, например, в различном положении линий спектра при разном изотопном составе вещества. В очень слабой степени от изотопного состава зависят все термодинамические свойства вещества. [c.517]

    Спектры и термодинамические свойства вещества [c.125]

    Обзорные работы, посвященные спектроскопической технике, включают такие методы, как ИК- [Ю, 12— 4], Раман- [10, 13, 14], УФ-спектроскопию [8, 10, 12—14, 37], дисперсию оптического вращения [10, 12, 14], круговой дихроизм [10, 13, 36, 37], ЯМР [12, 14, 36, 37], ядерный квадрупольный резонанс [14] и ЭПР [13]. Исследования других электронных свойств нуклеозидов, таких как распределение зарядов и константы ионизации [12], также рассмотрены в обзорах. Помимо методов УФ- и ЯМР-спектроскопии наиболее широко используемым методом идентификации нуклеозидов является масс-спектрометрия. Техника исследования обобщена в [10, 12, зе, 39], некоторые более поздние усовершенствования, особенно удобные для получения спектров малых количеств нелетучих лабильных веществ, описаны в [34, 40]. Изучены также термодинамические свойства нуклеозидов, что может быть полезно для понимания -взаимодействия компонентов нуклеиновых кислот друг с другом [14]. [c.76]

    Энергия водородных связей определяется из термодинамических свойств соответствующих веществ, из спектров и т. д. Термодинамические функции выражаются через константу равновесия [c.96]

    Идентификация индивидуальных веществ при использовании ХМС-анализа проводится по времени удержания в хроматографической колонке в том числе и традиционным методом сравнения полученных масс-спектров со спектрами стандартных соединений. Предварительно хроматографические колонки и масс-спектрометр калибруются путем анализа образцов, содержащих исследуемое вещество в смеси с другими известными соединениями. В исследуемые пробы перед анализом обычно добавляют внутренние стандарты с известным временем удержания, масс-спектры которых не перекрываются со спектрами исследуемых соединений. Используются и дополнительные нетрадиционные критерии идентификации органических соединений, связанные с термодинамическими свойствами соединений, обработкой масс-спектров и т.д. [4, 69]. [c.886]


    Экспериментальные исследования термодинамических свойств индивидуальных веществ на основании калориметрических измерений возможны только для ограниченного интервала температур (в особенности для газов) и являются весьма сложной и трудоемкой задачей. Это обстоятельство могло бы существенно затруднить распространение термодинамических методов исследования различных процессов, однако в начале тридцатых годов в результате развития статистической физики и квантовой механики и благодаря успехам, достигнутым в изучении строения атомов и молекул, были созданы принципиально новые теоретические методы определения термодинамических свойств газов. Разработка этих методов позволила вычислять термодинамические свойства газов на основании изучения спектров и структуры молекул. [c.19]

    Зная потенциальные функции молекул, можно, по крайней мере в принципе, рассчитать все термодинамические функции веществ, состоящих из свободных молекул (а учитывая, что атом—атом-потенциалы применимы и для межмолекулярных взаимодействий, можно рассчитать термодинамические свойства жидкости и кристалла). Можно рассчитать и геометрию молекулы, минимизируя потенциальную функцию. Наконец,, делаются уже попытки расчетов частот колебательных спектров молекул. В первом приближении термодинамические и термохимические свойства (например, теплоты образования, гидрирования, изомеризации, барьеры внутреннего вращения), зависят от абсолютных значений энергии, конформации — от первых производных по независимым координатам ядер и частоты колебательных спектров — от вторых производных. [c.25]

    ИНФРАКРАСНЫЕ СПЕКТРЫ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА АДСОРБИРОВАННЫХ ВЕЩЕСТВ [c.419]

    Возможности использования спектров адсорбированных веществ для оценки их термодинамических свойств [c.419]

    Важной задачей молекулярной теории адсорбции является теоретическое вычисление термодинамических свойств адсорбционных систем — теплот адсорбции, теплоемкостей адсорбционных систем и адсорбционных равновесий — только из свойств адсорбента и адсорбата (литературу см. в обзорах [1]). В связи с этим приобретают большое значение статистические методы расчета свободной и полной энергии, энтропии адсорбции и теплоемкости адсорбата. В то время как для газообразных веществ знание спектра внутренних колебаний и вращений молекул достаточно для расчета их термодинамических функций и их изменений при реакциях в газах с точностью, превышающей точность прямых измерений, в случае адсорбированных веществ аналогичная задача значительно сложнее. [c.419]

    Совершенно независимо от использования термодинамических данных, таких, как теплоты и энтропии адсорбции, для изучения промежуточных продуктов каталитической реакции на поверхности катализатора можно использовать прямые методы изучения состояния молекул. Недавно в этой области были достигнуты значительные успехи при использовании такого хорошо известного метода, как инфракрасная спектроскопия, который был соответствующим образом модифицирован для изучения адсорбции. Было сделано такн е несколько попыток исследовать электронные спектры адсорбированных молекул. Использовались и другие спектроскопические методы, особенно методы ядерного магнитного резонанса и электронного парамагнитного резонанса. Кроме того, для изучения свойств веществ в адсорбированном состоянии оказались полезными и другие методы, позволяющие обнаружить изменения определенных характеристик твердых катализаторов [c.111]

    Для химика наибольший интерес представляют два первых тома справочника. В 1-м томе (издан в 4 книгах), посвященном атомной и молекулярной физике, собраны основные физические и химические константы, характеризующие атомы, ионы (радиусы, спектры, магнитные моменты, поляризуемость), молекулы (межатомные расстояния, энергии химических связей, барьеры внутреннего вращения, ИК-, КР-, УФ- и микроволновые спектры, оптическое вращение, поляризуемость, магнитные моменты), кристаллы (типы решеток, рентгеновские спектры, радиусы атомов и ионов). Том 2 (издан в 9 книгах) содержит сведения о свойствах веществ в их агрегатных состояниях давление пара, плотность и взаимная растворимость жидкостей, осмотическое давление, крио- и эбулиоскопические константы, диаграммы плавления твердых тел, термохимические данные и термодинамические функции, электрические и магнитные свойства, оптические константы. [c.14]

    Процесс перехода веществ из газо- и парообразного состояния в твердое можно рассматривать как химическую реакцию. Это утверждение справедливо при возникновении металлических, ионных и ковалентных кристаллов. В результате такого процесса образуется качественно новое вещество. Поэтому термодинамические, электрические, магнитные, оптические и другие свойства твердых тел существенно отличаются от свойств газов и паров. Спектры твердых тел имеют полосатую структуру в отличие от линейчатых атомных спектров. Это еще одно доказательство скачкообразного изменения свойств вещества при переходе из парообразного состояния в твердое. [c.20]


    Закон Стокса-Ломмеля применим и для кристаллофосфоров. Это естественно, так как он вытекает из общих термодинамических соображений и квантового характера излучения. Однако непосредственной связи спектров поглощения и излучения у кристаллофосфоров не наблюдается. Их поглощательная способность связана главным образом с основным веществом, излучение же происходит на активаторе или вблизи него и определяется свойствами активатора., Спектр поглощения основного вещества почти всегда целиком лежит в ультрафиолетовой области спектра, излучение фосфора— в видимой части. Полосы поглощения нередко отделяются от полос излучения значительными спектральными интервалами. У отдельных фосфоров, наблюдается наложение длинноволновой части спектра поглощения на ко- [c.300]

    Определение электронных, колебательных и. вращательных постоянных. Главными результатами, получаемыми при исследовании электронных, колебательных и вращательных спектров молекул, являются значения молекулярных постоянных (электронных, колебательных, вращательных), позволяющих определять всю систему уровней энергии молекул. Эти данные имеют фундаментальное значение для расчета термодинамических функций веществ, констант равновесия реакций, в том числе процессов горения, для решения многих вопросов ракетной техники, свойств низкотемпературной плазмы, процессов, протекающих в газовых лазерах, и т. п. [c.435]

    Приведенные соображения дают повод к размышлению. Знаменательно, что квант действия h не фигурирует в результате, хотя, по-ви-димому, он нераздельно связан с явлениями излучения, по крайней мере в веществе. Мы знаем, что h входит в формулу для спектрального распределения энергии, нам известно также из термодинамических рассуждений, что распределение энергии в спектре в полости, наполненной электронным газом, такое же, как и в черном теле, построенном из атомов. Поэтому в законе распределения энергии в спектре нашей системы должно фигурировать h. Значит ли это, что h может быть выражено через электронные постоянные, газовую постоянную и постоянные эфира, и что для объяснения h не требуется никакого нового механизма, нам до сих пор неизвестного Разумеется, Льюис приравнял планковское выражение для h написанному выше для получения числового значения h на основании других постоянных . Возьмем еще один пример применения анализа размерностей в теоретических исследованиях. Разберем возможность объяснения механических свойств вещества на основе специальной формы силового закона между атомами. [c.108]

    Строение молекул может быть определено из данных по дифракции рентгеновских лучей, из электронографических данных, а также по молекулярным спектрам. Сведения о строении молекул очень важны для понимания химических реакций и для расчета термодинамических свойств и реакционной способности веш еств. Некоторые особенности химического поведения вещества могут быть предсказаны, если известно строение его молекул. [c.15]

    Третье издание практикума существенно отличается от первых двух изданий. Получили значительное развитие работы по молекулярной спектроскопии, а работы по атомным спектрам сокращены — в связи с изменениями учебных планов. В практикум введены новые работы, знакомящие со спектральными методами изучения свойств молекул и определения молекулярных констант веществ, работы по расчету сумм состояния и термодинамических функций на основе непосредственно полученных опытных данных. Студенты знакомятся с применением методов статистической термодинамики для расчета химических равновесий. Существенно изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. [c.4]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]

    Объяснение электропроводности металлов, полупроводников и диэлектриков дается на основе квантовой теории строения кристаллических тел — так называемой зонной теории. Рассмотрим некоторые общие положения этой теории. Переход атомных паров в кристаллическое вещество можно рассматривать как химическую реакцию, так как оптические, термодинамические, электрофизические и другие свойства твердых тел отличаются от свойств газов. Важно отметить, что атомные спектры газов имеют линейчатое строение, а спектры твердых тел имеют сплошной характер или полосатую, очень сложную структуру. Уже при взаимодействии двух одинаковых атомов дискретные атомные энергетические уровни расщепляются и превращаются в полосы. Тем большее расщепление уровней происходит, когда большое число N атомов, например лития, сближается с далеких расстояний до расстояний, на которых они находятся в кристаллической решетке. На рис. 70, а это расстояние между ядрами обозначено на оси абсцисс буквой о- По оси ординат отложена энергия. Находясь на больших расстояниях, атомы не взаимодействуют друг с другом, и диаграмма уровней будет такая же, как и для изолированного атома лития (1 25 ). При сближении атомов начнется взаимодействие между ними, прежде всего у каждого из них станет расщепляться уровень валентных электронов (2х). Уровень 2з) расщепляется в систему весьма близко расположенных N уровней, образуя целую полосу (зону) уровней. Более глубокие уровни при образовании кристалла оказываются совсем не расщепленными или только незначительно расщепленными. [c.233]

    М. С. Цвет отмечал необходимость изучения характера поверхностных соединений адсорбатов на поверхности адсорбентов на основании их спектроскопических свойств, изучая, например, спектр отра ения адсорбатов . Он подчеркивал, что все рассмотренные им явления подтверждают чисто физический характер адсорбции, что в чистом виде эти явления могут проявляться только в том случае, когда между наличными растворенными веществами нет взаимодействия химического или в смысле образования молекулярных комплексов . Вместе с тем ученый отмечал недостаточность термодинамической теории адсорбции и считал необходимым дополнить ее данными молекулярно-кинетической теории. М. С. Цвет наблюдал искривление фронта зон в колоннах большого диаметра (до 30 мм) за счет неравномерного движения потока через разные участки сечения колонны, излагал подробные рекомендации но выбору адсорбентов и растворителя. Из описания опытов видно, что М. С. Цвет пропускал через колонку и газ (воздух, светильный газ), но лишь для удаления растворителя. [c.18]

    Движение больплой амплитуды отражается на различных свойствах молекулы — ее дипольном моменте, спектре и т. п. и на термодинамических свойствах вещества. Поэтому в 80-е годы нежесткие молекулы интенсивно изучают экспериментальными и теоретическими методами [32]. В СССР в этом направлений работают Н. Г. Рамбиди с сотр., О. П. Чаркин с сотр. и др. [c.179]

    Огромная информация, полученная при изучении масс-спектров, систематизирована в справочниках. Для ее использования разработаны соответствующие алгоритмы. Так, в Институте высоких температур АН СССР создан банк данных по термодинамическим свойствам веществ, называемый ИВТАНТЕРМО. Располагая термодинамическими функциями и термохимическими характеристиками веществ, можно рассчитать равновесия разнообразных процессов. Результаты этих расчетов используются в различных областях науки и техники при оптимизации металлургических процессов, для выяснения поведения ионизирующейся присадки в МГД-генераторах, для обработки режимов транспортных реакций при получении полупроводниковых материалов и т. п. [c.55]

    Колебательные спектры молекул, наблюдаемые как ИК спектры и спектры комбинационного рассеяния света, являются такой же специфической харак теристикой вещества, как отпечатки пальцев человека. По этим спектрам вещество может быть идентифицировано, если его колебательный спектр уже известен, По ИК и КР спектрам определяют симметрию и структуру неизученных молекул. Частоты основных колебаний, находимые из спектров, необходимьв для расчетов термодинамических свойств веществ. Измерение интенсивности полос в спектрах позволяет проводить количественный анализ, изучать химические равновесия и кинетику химических реакций, контролировать ход техноло гических процессов. Дальнейшее развитие методов колебательной спектроскопии и расширение их применения в науке, технике и производстве — непр.елвжное требование ускорения научно-технического прогресса. [c.169]

    Справочник содержит данные по механическим, термодинамическим и молекулярно-кинетическим свойствам веществ, электрическим свойствам металлов, диэлектриков и полупроводников, магнитным свойствам диа-, пара- и ферромагнетиков, оптическим свойствам веществ, в том числе и лазерных, оптическим, рентгеновским и мёссбауэровским спектрам, нейтронной физике, термоядерным реакциям, а также геофизике и астрономии. [c.2]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]

    При изучении термодинамических свойств адсорбированного вещества на цеолитах методом ПМР в ряде работ (151, 204, 246, 525] отмечались фазовые переходы. Так, фазовый переход наблюдался при исследовании ПМР адсорбированного аммиака [525], бензола [246], пиридина [208] и воды (151, 204] на цеолитах NaX и различных катионзамещенных формах типа А и X. Отмечено [246, 307, 525], что структура адсорбированного вещества в квазитвердом состоянии отличается от структуры соответствующих твердых веществ. Сравнительно высокое значение вторых моментов спектра протонного резонанса позволило [307] сделать вывод о том, что упаковка молекул воды для адсорбированного состояния более плотная, чем для льда. Установлено [246, 525] понижение температуры плавления адсорбированных молекул по сравнению с таковой соответствующих твердых веществ, что также связано с изменением структуры вещества в квазитвердом состоянии. [c.111]

    Современная неорганическая технология характеризз ется чрезвычайно широким спектром применяемых исходных веществ, разнообразием химико-технологических условий проведения процессов, широчайшим диапазоном свойств и требований к продукции. Весьма трудно выделить все общие черты технологии неорганических веществ, поскольку термодинамические условия протекания процессов, их кинетическая характеристика, тепло-и массообмен, аппаратурно-технологическое оформление настолько специфичны в каждом конкретном случае, что это делает их практически нестыкующимися между собой, т. е. не подвергающимися классификации. Это обстоятельство затрудняет прогноз возможных результатов. [c.3]

    Для решения многих задач ценной является возможность расчета термодинамических свойств данного вещества для условий, в которых оно находится в неустойчивом состоянии или в которых оно не может быть получено. Так, энтропию Ззэз воды для стандартного состояния газа при 25 можно рассчитать на основе данных о молекулярных спектрах и о строении молекул. Результаты таких определений находят применение в качестве вспомогательных расчетных величин. Методы статистической термодинамики дают возможность рассчитать термодинамические свойства радикалов (СНз-, ОН ) и других подобных частиц, что представляет интерес для исследования кинетики химических реакций методом промежуточного комплекса. [c.457]

    Основной причиной изменения термодинамических характеристик нанокристаллов в сравнении с массивным веществом являются изменения вида и границ фононного спектра. Согласно [1] в фононном спектре малых частиц появляются низкочастотные моды, отсутствующие в спектрах массивных кристаллов. В наночастицах могут возникать юл-ны, длина которых не превышает удюенный наибольший размер частицы с1, поэтому со стороны низкочастотных колебаний фононный спекгр ограничен некоторой минимальной частотой со й/2 в массивных образцах такого ограничения нет. Численное значение зависит от свойств вещества, формы и размеров частиц. Можно ожидать, что уменьшение размера частиц должно смещать фононный спекгр в область высоких частот. Особенности колебательного спектра наночастиц в первую очередь будут отражаться на теплоемкости. [c.17]

    В работе представлены методологическое обоснование теории, термодинамическая, статистическая модель сложного вещества. Предложены релаксационные, нестационарные, марковские модели физико-химических процессов. Теория подтверждена экспериментом на примере процессов пиролиза, поликонденсации и термополиконденсации. Анализируются отличительные особенности термодинамики многокомпонентных систем, подчеркивается особая роль энтропии в формировании их разнообразия. Рассмотрена специфическая для вещества энтропия разнообразия, рост которой является источником эволюции вещества. Излагается новое направление, необходимое при изучении сложных органических систем - непрерывный, феноменологический подход к спектрам веществ. Анализируются закономерности, открытые нами в спектрах, в частности закон связи различных свойств и спектральных характеристик систем. Последнее означает, что свет несет информацию практически о всех свойствах материи. На основе данных спектроскопии предпринята попытка построения теории реакционной способности многокомпонентных органических систем. Отмечена особая роль квазичастиц- типа структуронов и вакансионов в формировании их реакционной способности. Показана роль слабых химических взаимодействий в гидродинамике многокомпонентных жидких сред. Даны новые подходы к направленному синтезу сложных органических систем. Экологические, геохимические системы и вопросы генезиса углеводородных систем планируется рассмотреть во второй части книги. [c.4]

    Ряд закономерностей можно считать примером сопоставления физико-химических величин, связанных с химическими свойствами, и микросвойств веществ. К уравнениям вида (II, 1) относятся взаимосвязи между радиусами ионов и различными величинами теплотой гидратации [580]) и некоторыми термодинамическими характеристиками солей, связанными с их растворимостью вводе [581] между перенапряжением водорода (и кислорода) на различных металлах и межатомным расстоянием [582] положением длинноволнового максимума поглощения различных комплексных анионов и ионным радиусом комплексообра-зователя [583] частотами валентных колебаний и длиной связей [584] минимумом поглощения в инфракрасном спектре и расстоянием металл — кислород в некоторых минералах [585] энергией и длиной связей С—X [586—587] энергией активации и межатомным расстоянием [588—590] энергией активации и электронным зарядом связи [590а] коэффициентами влия- [c.102]

    Применение спектроскопических и электронографических методов исследования, а также укследование теплоемкостей веществ позволило значительно уточнить п эедставление классической органической химии о свободном вращении групп атомов в молекулах вокруг осей ординарных связей. Результаты этих исследований привели к заключению о существовании не свободного, но более или менее заторможенного вращения или крутильных колебаний атомных групп вокруг осей ординарных связей. Экспериментальные и теоретические исследования в этой области позволили определить энергетический барьер, препятствующий свободному вращению, доказать существование поворотных изомеров молекул и установить связь заторможенного вращения и поворотной изомерии с рядом физико-химических свойств молекул и термодинамических величин соответствующих веществ — энергией образования, колебательным спектром, дипольным моментом, теплосодержанием, теплоемкостью, энтропией, свободной энергией и т. д. [6—12]. [c.50]


Библиография для Спектры и термодинамические свойства вещества: [c.287]   
Смотреть страницы где упоминается термин Спектры и термодинамические свойства вещества: [c.87]    [c.545]    [c.13]    [c.35]    [c.12]    [c.114]    [c.290]    [c.134]    [c.26]    [c.7]    [c.180]   
Смотреть главы в:

Введение в молекулярную спектроскопию -> Спектры и термодинамические свойства вещества




ПОИСК





Смотрите так же термины и статьи:

Возможности использования спектров адсорбированных веществ для оценки их термодинамических свойств

Инфракрасные спектры и термодинамические свойства адсорбированных веществ

Свойства веществ

Термодинамические свойства

Термодинамические свойства веществ



© 2025 chem21.info Реклама на сайте