Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конфигурационный анализ

    Удельное вращение является физической константой каждого вещества и служит для контроля чистоты и для идентификации веществ. Молекулярное вращение используется в конформационном и конфигурационном анализе. [c.152]

    При изучении сополимера этилена с этилакрилатом обнаружено [595] образование в основном этилена, а также следов этанола. На основании этого было высказано предположение, что в первую очередь расщепляется алкильная связь, в результате чего в оставшейся полимерной цепи образуется карбоксильная группа. Показано [597], что расщепление (образец массой 3 мг) в основном приводит к образованию значительных количеств этанола. Это согласуется с результатами, полученными для сополимера этилена с метилакрилатом. Условия, предложенные в работе [595], обладают преимуществами при анализе состава, а условия, предложенные в работе [597], более предпочтительны для проведения конфигурационного анализа, так как в этих условиях фрагментации подвергается только основной углерод,-ный скелет. [c.171]


    В данной главе приведен обзор общих представлений различных теорий разрушения, не имеющих явной связи с характерными свойствами молекулярных цепей, их конфигурационной и надмолекулярной организацией, тепловой и механической перестройкой. Это относится к классическим критериям ослабления материала и общим механическим моделям сплошных сред. Теории кинетических процессов разрушения учитывают вязкоупругое поведение полимерного материала, но вывод критериев разрушения не связан с подробным морфологическим анализом. Эти основополагающие теории тем не менее неоценимы для объяснения статистических неморфологических сторон процесса разрушения или его характеристики с точки зрения механики сплошных сред. [c.59]

    Как было показано в гл. I и будет подробнее рассмотрено в гл. IV, высокоэластичность резины связана с изменением конфигурационной энтропии полимерных цепей при деформации, тогда как упругость обычных твердых тел связана с изменением внутренней энергии. Термодинамический подход к анализу равновесной деформации позволяет сделать некоторые заключения о законе деформации резины. [c.111]

    Метод ЯМР высокого разрешения весьма чувствителен. к природе химической связи и строению отдельных групп атомов и поэтому достаточно надежен при анализе конфигурационных последовательностей звеньев в макромолекулах. Сравнение площадей сигналов отдельных групп позволяет определить относительное содержание последовательностей, например триад и тетрад в сополимерах, что особенно важно при проверке модели роста цепи. [c.220]

    Квантовохимическое понятие химической структуры исследовалось рядом авторов [4, 5, 113—115, 125—131, 137—143]. Возникал тот же самый вопрос, сопоставимо ли понятие структуры с квантовой механикой [137—139, 143], и были предложены различные подходы. Метод генерирующей координаты, разработанный первоначально для описания структуры ядер [144, 145], был предложен для описания молекул [140—142], и молекулярные графы, полученные в результате анализа рассчитанных плотностей заряда, предложены в качестве возможной основы квантовомеханического понятия структуры [ИЗ—115] . При использовании иного подхода топологическая модель ядерного конфигурационного пространства и энергетических гиперповерхностей [4, 5, 125—131] приводит естественным образом к топологическому определению химической структуры, отражающему фундаментальные негеометрические (фактически топологические) свойства квантовых частиц. Топологическая концепция химической структуры также имеет некоторые практические применения, связанные с квантовохимическим дизайном синтеза если гиперповерхности потенциальной энергии действительно важны для теоретического планирования синтеза, то удобно определять химическую структуру и реакционный механизм с помощью свойств энергетических гиперповерхностей [4в]. [c.99]


    Это также следует из анализа конфигурационной энтропии, приводящего к [c.53]

    Определение средней движущей силы ниже рассматривается для стационарных процессов массопереноса применительно к различным структурно-конфигурационным комплексам. В этих разделах анализ ведется на языке фазы х на примере переноса вещества из этой фазы в фазу (рабочая область процесса [c.806]

    Готовых рецептов анализа конфигурационной неоднородности до сих пор не существует, некоторую косвенную информацию о ней можно было бы получить при исследованиях степени сегрегации, искажениях соотношений МКХ и т. п. При этом надо все время считаться с тем, что оба типа композиционной неоднородности существуют одновременно и на них накладывается неизбежное ММР, вносящее собственный вклад в спектр смещений . [c.56]

    Но главный смысл разделения АЯ и А5 на конфигурационный и, конформационный термы, непосредственно следующий из дуализма строения полимеров (большая система образована из малых), состоит в облегчении анализа фазовых переходов и создает удобные возможности моделирования их для интерпретации в различных терминах от привычных до фрактальных или перколяционных. [c.111]

    Конформационный анализ циклогексановых колец, несущих два и более алкильных заместителей, аналогичен описанному выше, за исключением того, что, когда заместители присоединены к различным углеродным атомам в кольце, следует рассматривать и конфигурационные взаимоотношения [21]. Если два неодинаковых заместителя связаны с одним и тем же атомом углерода, то при инверсии кольца аксиальные и экваториальные заместители меняются местами, и молекула стремится принять конформацию, в которой более крупный заместитель занимает экваториальное положение. [c.89]

    Надежность современной хиральной капиллярной ГХ побудила использовать ее как метод секвенаторного конфигурационного анализа пептидов [29]. Этот новый метод заслуживает более детального рассмотрения. Его принцип наказан на схеме 8.3. Пептид (0,5—1 мг) сначала превращают в трет-бутилкарбамоильное производное реак- [c.183]

    На основании химических соображений нельзя произвести определение абсолютных конфигураций оптических антиподо.в даже сравнительный конфигурационный анализ очень труден из-за возможности инверсии конфигураций в процессе замещения. Теоретические расчеты вращательной способности данных конфигураций и сопоставление результатов расчетов с экспериментальными значениями не вполне однозначны. Такие расчеты предпринимаются для комплексных соединений очень редко, за исключением недавней работы Моффитта [179], рассмотревшего оптическую вращательную способность октаэдрических комплексов переходных металлов тина [М(АА)з] на основании теории кристаллического поля. Полная оптическая вращательная способность соединения (М) может быть разделена на отдельные части (парциальные вращательные способности Му), ассоциированные с отдельными полосами поглощения в спектре комплекса, так что М = Показано 1) что пер- [c.198]

    Представленная зависимость показьшает, что Оэф связан с коэффициентом молекулярной диффузии и так назьтаемой геометрической, или стерической, составляющей < (Х), которая является основным фактором конфигурационной диффузии. Теоретический анализ, проведенный авторами работы [цит. по 60],показал, что для относительно больших сферических молекул величина С(Х), характеризующая влияние геометрических и гидродинамических эффектов внутри поры может быть представлена выражением  [c.80]

    В зарубежной литературе последних лет появились ряд публикаций, посвященных вопросам поиска оптимальной поровой структуры катализаторов для процессов каталитического гидрооблагораживання нефтяных остатков с применением математических методов, основанных на принципах диффузионной кинетики [60, 61, 62]. Наиболее интересные результаты получены на баае развиваемых в последнее время представлений о протекании основных реакций в режиме конфигурационной диффузии. Учитывая большое влияние на эффективность используемых катализаторов накопления в порах отложений кокса и металлов, необратимо снижающих активность катализаторов, наибольшее внимание уделяется анализу закономерностей изменения физико-химических свойств гранул катализатора в процессе длительной эксплуатации. В качестве примера рассмотрим результаты анализа влияния размера пор катализаторов на скорость деметаллизации нефтяных остатков [60]. Авторы предложили следующую зависимость для определения скорости деметаллизации с учетом физических свойств катализатора и времени его работь  [c.83]

    В циклогексановом ряду конфигурационная изомеризация изучена особенно широко. Скорость достижения термодинамического равновесия в ряду гомологов циклогексана зависит от природы и активности катализаторов, условий проведения реакции и свойств исходных изомеров. Так, Ватерман и сотр. показали [28], что цис-и транс-, 3- и 1,4-диметилциклогексаны в присутствии катализатора Ni/кизельгур при 170—180°С и давлении водорода (7—8)-10 Па быстрее достигают термодинамического равновесия, чем 1,2-диметил-циклогексаны. Под действием скелетного никеля транс-1,2-диметил-циклогексан быстрее достигает равновесия, чем соответствующий цис-изомер. Аллинджеру с сотр. принадлежит серия работ [29—34], посвященных конформационному анализу стереоизомерных гомологов циклогексана, которые с помощью конфигурационной изомеризации в присутствии Pd-катализатора обратимо превращаются друг в друга. Состав термодинамически равновесных смесей, образующихся при этом, позволил авторам рассчитать константы равновесия, значения ряда термодинамических функций, а также энергий взаимных переходов различных конформеров. [c.76]


    Эти годы ознаменовались все возрастающим значением исследований по нефтехимии и химии нефти. Внедрение новых методов исследования, особенно газовой хроматографии с использованием высокоэффективных капиллярных колонок, микрореактор-ной техники, стереоспецифического синтеза цикланов путем мети-ленирования, проведение равновесной конфигурационной и структурной изомеризации — все это позволило подойти к решению весьма сложных проблем химии углеводородов, совершенно невыполнимых еще 10 — 15 лет назад. Разработка новых методов анализа, успехи в области синтеза индивидуальных углеводородов весьма сложного строения немедленно нашли свое отражение и в исследованиях, посвященных изучению нефтяных углеводородов. Именно в эти годы в трудах отечественных и зарубежных ученых была показана вся сложность и своеобразность строения нефтяных углеводородов. Была также найдена связь между строением нефтяных углеводородов и строением важнейших природных соединений (изопреноиды, тритерпаны, стераны и т. д.). [c.3]

    Абсолютная конфигурация аминокислот. После того как работы Куна и других исследователей на основании теоретических представлений, связанных с явлением вращательной дисперсии (стр. 427), и в особенности работы Бийво по рентгеноструктурному анализу (1956) привели к установлению абсолютной конфигурации винной кислоты, а отсюда и многих углеводов, очередной задачей стало установление конфигурационной связи между аминокислотами и этими соединениями. [c.368]

    Известно, что высокоэластичность полимеров связана с изменением конфигурационной энтропии полимерных цепей при деформации, тогда как упругость обычно твердых тел связана с изменением внутренней энергия. Термодинамический подход к анализу равновесной деформации позволяет сделать некоторые заклюмепня [c.65]

    Расчет молекул на основе принципа локализации электронов на связях носит название метода валентных связей (ВС). Локализованное описание систем может быть важным при структурных исследованиях, анализе химических реакций и т. д. Однако в силу ряда причин (простота расчета по методу МОХ и легкость интерпретации результатов, популярность полуэмпирических методов для решения на ЭВМ конкретных, особенно оптических задач, успехи расчетов аЬ initio с конфигурационным взаимодействием и др.) квантовохимические расчеты проводятся в основном методом МО. Учитывая краткость нашего курса, мы не будем останавливаться на методе валентных связей. [c.100]

    Как правило, пересечение (касание) потенциальных поверхностей происходит в достаточно узких областях внутренних коорданат. Можно сохранить представление об адиабатических поверхностях, введя специальное рассмотрение только для этих областей конфигурационного пространства. Такое рассмотрение основано на анализе так называемых эффектов Яна—Теллера первого и второго порядков. В наиболее важных с точки зрения структурной химии случаях пересечения или сближения поверхностей основного и первого возбужденного электронных состояний эффекты Яна—Теллера определяют характер искажений, которые испытывает молекулярная система. [c.177]

    Вырожденные критические точки энергетической гиперповерхности играют важную роль в анализе эффектов вклада колебательной энергии в полную энергию молекулы. Недавно отмечалось [171—173], что существование молекулы 1HI в значительной степени определяется колебательной стабилизацией и дестабилизацией в различных доменах соответствующего пространства ядерных конфигураций. Хотя на борн-оппенгеймеровской поверхности потенциальной энергии основного электронного состояния IH1 не существует истинного невырожденного минимума (только вырожденные минимумы при бесконечно разделенных ядрах), тем не менее уменьшение энергии нулевых колебаний в окрестности седловой точки гиперповерхности приводит к связанному состоянию в этой окрестности. При учете компонент колебательной энергии аналогичные химические структуры, не отвечающие истинным минимумам ППЭ, стабильные молекулы или структуры переходных состояний могут возникать в доменах, где качественные характеристики гиперповерхностей потенциальной энергии не указывают на их наличие. Существование таких структур может быть исследовано при использовании топологических методов [174]. Предполагая, что в топологической модели вклад колебательной энергии в полную энергию может быть включен непрерывно, все фундаментальные изменения структуры бассейновой области ядерного конфигурационного пространства могут быть выявлены путем контроля наличия вырожденных критических точек J174]. Гиперповерхность по- [c.109]

    Метод Хартри-Фока для атомных и молекулярных систем позволяет определить совокупность орбиталей (или спин-орбиталей), из иэторых строится многоэлектронная волновая функция. Эти же орбитали могут служить тем базисом, из которого возможно создавать конфигурационные функции состояния, используемые в методе конфигурационного взаимодействия. Поэтому целесообразно продолжить анализ того, что может дать хартри-фоковское приближение. [c.288]

    Струюурные и химические особенности стероидов. Структуры стероидов представляют собой уникальные конденсированные циклогексановые системы, анализ которых в плоском приближении, конечно же, невозможен. Циклогексановые циклы в своей кресловидной конформации при сочленении могут образовывать пару конфигурационных изомеров — С15-1гап5- по типу декалинов (схема 7.4.7). Такой тип изомерии может иметь место для каждой пары циклов, т.е. цис-транс изомерия [c.188]

    Теоретич. анализ энергетич. состояний молекул проводят, как правило, с помощью упрощенных моделей, не учитывающих в полной мере всех взаимод. в системе ядер и электронов. При этом характерно появление В. э. у., к-рое, однако, снимается при переходе к моделям более высокого уровня. Так, при оценке первых потенциалов ионизации молекулы СН по методу молекулярных орбиталей получают 4-кратное вырождение основного электронного состояния иона СН4, к-рое отвечает удалению электрона с одной из четырех локализованных молекулярных орбиталей связи С—Н. Модели, более полно учитывающие электронную корреляцию (см. Конфигурационного взаимодействия метод), предсказывают снятие 4-кратного вырождения и появление 3-кратно вырожденного и одного невырожденного уровня (при сохранении эквивалентности всех четырех С—Н связей). Соответственно для молекулы СН должны наблюдаться хотя бы два различных, но близких по величине потенциала ионизации, что подтверждено экспериментально. Точно так же учет колебательно-вращат. взаимодействий снимает вырождение вращат. состояний молекул снятие случайного вырождения колебат. состояний связывают с учетом ангармоничности потенциальных пов-стей спин-орбитальное взаимод. частично снимает В.э.у. с различными значениями проекции спина на ось. Для квантовой химин очень важен эффект снятия вырождения электронных состояний молекулы при изменении ее ядерной конфигурации. Так, учет электронно-колебат. взаимодействия снимает упомянутое выше 3-кратное В. э. у. иона СН и объясняет колебат. структуру фотоэлектронных спектров СН,. [c.440]

    СТЕРЕОХЙМИЯ (от греч. stereos-пространственный), отрасль хнмии, исследующая пространств, строение молекул и его влияние на физ. и хим. св-ва. Стереохим. подход применим ко всем мол. объектам, используется во всех разделах химии (орг., неорг., координац. и т.д.). С. состоит из четырех осн. разделов. Статическая, или конфигурационная, С. имеет своей главной задачей определение абс. конфигураций энантиомеров хиральных молекул (см. Конфигурация стереохимическая) и установление зависимости хироптич. св-в (см. Хироптические методы) от структуры. Конформационный анализ концентрирует внимание на внутренней жизни молекул в отсутствие хим. р-ций, исследует конформации молекул, их взаимопревращения и зависимость физ. и хим. св-в от конформац. характеристик. Динамическая стереохимия представляет собой составную часть совр. теории механизмов хим. р-ций, она изучает влияние пространств, строения молекул на скорости и направление р-ции, в к-рых они участвуют. Теоретическая С. имеет дело с осн. понятиями и концепциями, мат. основаниями и описанием формализма стереохим. процессов. [c.433]

    Стремление свести рассмотрение конформационных свойств природных аминокислотных последовательностей к анализу решетчатых моделей объясняется не только естественным желанием максимально упростить задачу. Не меньшее значение имело также то обстоятельство, что модели такого вида уже давно использовались в физике полимеров. Впервые и сразу же в квадратном и кубическом вариантах они были предложены в 1947 г. У. Орром [106] при изучении конформационных свойств синтетических гомополимеров и вскоре стали основой дальнейшего развития конфигурационной статистики полимерных цепей. Лишь спустя 30 лет решетчатые модели были опробованы Гё и Такетоми для белков [57] Моделирование сложного объекта с помощью простых схем может иметь физический смысл и быть оправданным только при одном непременном условии исследуемые макроскопические свойства этого объекта, а именно, самопроизвольное свертывание белковой цепи в компактную нативную конформацию, не должны определяться индивидуальными свойствами его микроскопических составляющих, т.е. конкретным химическим строением 20 стандартных аминокислотных остатков. [c.498]

    ЯМР уже давно вьннел на первое место среди методов структурных исследований. Сегодня двух- и трехмерная ЯМР-Фурье-спектроскопия позволяет по спектрам OSY (корреляционная спектроскопия) и NOESY (спектроскопия ядерного эффекта Оверхаузера) определить взаимодействия атомов внутри молекулы, установить первичную и вторичную, а иногда даже третичную структуру сложнейших биомолекул полимера. Метод ЯМР высокого разрешения достаточно надежен при анализе конфигурационных последовательностей звеньев в макромолекулах полимеров. [c.267]

    Аннулен (74) был получен Зондхеймером и сотр. из тетра-декадиен-4,10-триина-1,7,13 по схеме, включавшей последовательно стадии окислительной конденсации, прототропной перегруппировки и частичного гидрирования. Это соединение существует в виде смеси двух конфигурационных изомеров. Для кристаллического компонента этой смеси методом рентгеноструктурного анализа была доказана конфигурация (74). Молекула значительно отклоняется от планариости, а длины связей С—С лежат в интервале 0,135—0,147 нм [36]. Вид спектра Н-ЯМР изомера (74) зависит от температуры. Наблюдаемые при —60°С два сигнала с б 7,6 (10 Н) и 0,0 (4Н) млн- ) при комнатной температуре сливаются, образуя синглет с б 5,58 млн-. В спектре другого изомера появление двух сигналов наблюдается при гораздо более низкой температуре. [14]Аииулен не так устойчив, как [18 получить продукты замещения не удается 15 [c.473]

    Расчет гибкости конкретных полимерных цепей должен основываться на их химическом строении. Так, конформации мономерных звеньев в полимерах типа (—СН2—СНН—) (например, полистирол, см. рис. 3.1) и (—СН2—СНг—) определяются преимущественно взаимодействиями массивных боковых привесков Н. Сведения об этих конформациях удается получить путем исследования кристаллических полимеров методом рентгеноструктурного анализа. Вследствие конфигурационной гетерогенности и дисперсии длин цепей обычные полимеры не кристаллизуются или кристаллизуются лищь частично. Однако стереоре-гулярные полимеры кристаллизуются хорощо, их можно получить даже в виде монокристаллов. Но в блоке и стереорегулярные полимеры кристаллизуются не полностью. Наряду с гетерогенностью, кристаллизации препятствуют кинетические факторы. Для того чтобы образовать кристалл, макромолекулы должны переориентироваться. Стастические флуктуирующие клубки закристаллизоваться не могут — цепи должны вытянуться. Даже если термодинамические условия благоприятствуют развертыванию клубков и ориентации цепей, эти процессы могут потребовать слищком длительного времени по сравнению с временем опыта. Необходимо преодолеть барьеры внутреннего вращения. Равновесные термодинамические свойства поворотно-изомерной макромолекулы определяются разностями энергий поворотных изомеров напротив, кинетические свойства определяются высотами энергетических барьеров. Для кристаллизации существенна не только термодинамическая, но и кинетическая гибкость цепей. Прогрев полимера или его набухание в низкомолекулярном растворителе облегчают кристаллизацию. [c.132]


Смотреть страницы где упоминается термин Конфигурационный анализ: [c.270]    [c.47]    [c.127]    [c.220]    [c.220]    [c.47]    [c.127]    [c.263]    [c.94]    [c.107]    [c.357]    [c.630]    [c.41]    [c.135]    [c.287]    [c.476]   
Смотреть главы в:

Аналитическая химия синтетических красителей -> Конфигурационный анализ




ПОИСК





Смотрите так же термины и статьи:

ЯМР-спектроскопия конфигурационный анализ



© 2025 chem21.info Реклама на сайте