Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклизация насыщенных углеводородов

    Результаты гидрокрекинга нормальных непредельных углеводородов были очень близки к данным, полученным при гидрокрекинге соответствующих нормальных парафиновых углеводородов [31]. Продукты гидрокрекинга представляли собой насыщенные углеводороды, так как скорость присоединения водорода по месту двойной связи весьма велика. Образования ароматических углеводородов при гидрокрекинге непредельных и парафиновых углеводородов в исследованиях [30] и [31] не наблюдалось. Это связано с подавлением реакции конденсации и циклизации, обусловленным повыщенным давлением водорода и присутствием гидрирующего катализатора. [c.43]


    Наряду с реакциями полимеризации и разложения идет циклизация и дегидрогенизация олефинов. Наличие насыщенных углеводородов в продуктах крекинга олефинов показывает, что при распаде не только образуются два олефина меньшего молекулярного веса, но протекает реакция перераспределения водорода с образованием системы парафин — диолефин. Последний, будучи весьма неустойчивым, вступает в реакции конденсации с олефинами. [c.29]

    При повышении температуры каталитической циклизации (над окисью хрома) выше 500° С делаются заметными уже процессы распада. Так, ири температурах 536 и 566° С газы содержали соответственно 13,3 и 19,7% насыщенных углеводородов. [c.244]

    Наряду с полимеризацией и разложением происходит циклизация и дегидрогенизация олефинов. Наличие насыщенных углеводородов в продуктах крекинга олефинов показывает, что при разложении не только образуются два олефина меньшей молекулярной массы, но про- [c.161]

    В рассмотренных случаях возможно протекание параллельных реакций сернистого и не содержащего серу соединений. Приведем несколько примеров. На алюмохромовых катализаторах насыщенные углеводороды в присутствии ЗОг превращаются в ароматические углеводороды и тиофены [324]. На окислах, сульфидах и фосфатах металлов в присутствии ЗОг одновременно протекают реакции окислительного дегидрирования олефинов и парафинов, а также их циклизации с образованием. ароматических углеводородов и тиофенов [365]. На алюмо-платиновом катализаторе параллельно протекают реакции риформинга углеводородов и обессеривания [344, 346, 348, 351, 352] алюмосиликат [c.75]

    Наконец, в результате вторичных реакций — термического и каталитического дегидрирования с последующим гидрированием и циклизации сопряженных систем — возможно образование насыщенных, ароматических и циклических углеводородов. [c.11]

    Термическую некаталитическую полимеризацию следует отличать от каталитической полимеризации. Для каталитической полимеризации олефинов Ипатьев [36] и Ипатьев и Пинес [37] проводят различия между истинной и сопряженной полимеризацией. Под истинной полимеризацией подразумевается процесс, дающий только димер, тример и полимерные продукты. Сопряженная полимеризация — это полимеризация, при которой, кроме циклических соединений, образуются насыщенные и ненасыщенные парафиновые углеводороды. Ипатьев, исследуя полимеризацию олефинов под влиянием серной кислоты, установил, что при действии разбавленной кислоты происходит истинная полимеризация, при которой образуются полимеры исходных олефинов. В этом процессе из исходных алкильных эфиров серной кислоты получаются более длинные цепи, реакция идет с отщеплением серной кислоты и соединением алкильных остатков. Полимеризация с концентрированной серной кислотой сопровождается другими реакциями, именно деполимеризацией, циклизацией, дегидрогенизацией, гидрогенизацией и изомеризацией и поэтому [c.638]


    Циклизация и гидрогенизация гексадекана при реакции образуются насыщенные и конденсированные циклические углеводороды, температура 500—600°, давление 3—9 кг/сл 2 [c.511]

    Интенсивность любой из этих реакций может изменяться в весьма широких пределах в зависимости от продолжительности, температуры и парциального давления водорода. Потенциально при соответствующем выборе катализатора и условий водород способен тем или иным способом взаимодействовать с любым углеводородным компонентом нефти практически при любых температуре и давлении. Обычно температура промышленных процессов не превышает приблизительно 540° С, а давление — около 700 ат. Как правило, с повышением температуры усиливаются реакции гидрокрекинга, т. е. реакции, при которых происходит разрыв связей углерод — углерод, например деалкилирование, разрыв колец, разрыв цепей. Если парциальное давление водорода недостаточно высокое, то одновременно происходит также разрыв связей углерод — водород, сопровождающийся выделением молекулярного водорода и образованием алкенов и ароматических углеводородов. Хотя интервалы температур, при которых проводят термический крекинг и гидрирование, практически совпадают, применение катализаторов и малая продолжительность реакций, а также присутствие водорода подавляют нежелательные термические реакции, которые неизбежно протекали бы при обычных условиях. Повышение давления благоприятствует образованию связей углерод — водород и насыщению кратных связей углерод — углерод. При достаточно низких давлениях алканы претерпевают дегидрирование до алкенов и циклизацию в ароматические углеводороды цикланы дегидрируются до алкенов и ароматических углеводородов, а пятичленные цикланы изомеризуются и дегидрируются до ароматических. Практически при любых условиях гидрирования в той или иной степени происходит изомеризация углеводородных цепей и колец. Выбор надлежащих условий и применение достаточно активных катализаторов позволяют достигнуть преобладания любой из рассмотренных реакций, т. е. высокой избирательности превращения углеводородов в целевые продукты. [c.127]

    Интересны исследования циклизации на алюмохромовом катализаторе гептана-1, содержавшего в положении 1 радиоактивный углерод — С [231]. Около двух третей углерода — С было найдено в кольце и одна треть — в метильной группе полученного толуола. Скорость реакции циклизации возрастает с уменьшением степени насыщенности молекул водородом циклоолефин>циклопарафин>оле-фин>парафин. Углеводороды с шестью углеродными атомами за одно и то же время показали  [c.237]

    Гексан, циклогексан и циклогексен при нагревании легко поглощают кислород. При пропускании смесей из 1 моля кислорода с 4 молями этих углеводородов через печь Esteraderess наблюдал, что образование перекисей достигает максимума соответств енно при 330, 340 и 410° одновременно появляется окись углерода. Перекиси исчезают при высоких температурах. Соответственно этому циклизация насыщенных углеводородов только слабО повышает их сопротивление окислению, но образование ненасыщенных соединений дает заметньий эффект. [c.923]

    Хотя все нефти состоят главным образом из насыщенных углеводородов, они зачастую очень сильно различаются по своему химическому составу даже в тех случаях, когда их добывают из разных пластов одного и того же месторождения. Это объясняется тем, что образовавшиеся вначале жирные кислоты различным образом изменялись под влиянием окружающей среды. Щелочные минералы могли способствовать циклизации нли образованию кетонов (ср. стр. 218), глины, обладающие кислыми свойствами, — наоборот, могли вызывать изомеризации. Декарбоксилирование жирных кислот могло протекать как под влиянием бактерий, так и чисто химическим путем. Высокая температура, очевидно, вызывала различные реакции расщенления давление также имело значение для дальнейших превращений. [c.84]

    Однозначно установлено прямое участие атомарных форм водорода в дегидрировании насыщенных углеводородов, например циклогексана, адсорбированного на поверхности палладиевых и никелевых катализаторов. В результате изучения дегидрирования циклогексана на образцах с предварительно адсорбированным дейтерием был предложен механизм реакции, в соответствии с которым адсорбированный водохюд и водород хемосорбированной молекулы циклогексана рекомбинируют с выделением молекулы водорода. По аналогичному механизму, предусматривающему рекомбинацию атома водорода, принадлежащего активированному углеводородному комплексу, с поверхностно-адсорбированным атомом водорода, протекает реакция Св-дегидроциклизации. Так, без Нг в реакционной среде циклизация алканов на РуА120з происходит медленно. В отсутствие Нг (в Не) алканы сначала дегидрируются в алкены, а затем последние циклизуются. Скорость образования циклопентанов из алканов на Р1/Л120з возрастает при увеличении парциального давления Н2, так как циклопентаны легче образуются из алканов, чем из алкенов. [c.699]


    Циклизация алифатических углеводородов например, н-гептан полностью ароматизируется в особых условиях при 468° в других условиях образуются олефины, а также значительное количество насыщенных углеводородов, составляющих около 25% жидких продуктов реакции при применении окиси тория как катализатора при 468° получаются только насыщенные углеводороды то же самое имеет место при применении геля окиси алюминия, но при 540° чрезмерно активная окись алюминия при такой же температуре вызывает образование 16% олефинов и 2% ароматики, кроме насыщенных углеводородов с. повышением температуры реакция крекинга становится более резко выраженной [c.513]

    Спектры поглощения рассматриваемых соединений имеют большое сходство со спектрами алкильных производных бензола аналогичного строения. Циклизация насыщенных заместителей вызывает появление тонких различий в спектрах, имеющих тот же характер и порядок, что и при удлинении или разветвлении алкильных заместителей. Эти особенности состоят в незначительном смещении спектра вдоль оси длин волн, а также изменении его интенсивности и контура, не меняющих, однако, общего характера всей полосы поглощения. Это наглядно видно из сопоставления спектров псевдокумола, циклогексил-о-ксилола и тре/п.бутил-о-ксилола (рис. II ), а также п-ксилола, 1,4-дициклопентилбензола и 1,4-дициклогексилбензо-ла (рис. III). Закономерности, наблюдающиеся в спектрах поглощения углеводородов рассматриваемых типов, аналогичны закономерностям, имеющим место в спектрах алкилированных бензолов (см. стр. 9 [c.13]

    Пары амилена, смешанные с водородом, превраш(аются под действием электрических разрядов 3 озонаторе (приблизительно на 85%) в жидкие продукты, в которых преобладают насыщенные углеводороды типа s Hi, (или их изомеры) Газообразньши продуктами при этом являются ацетилен, аллилен, ви-нилацетилен и диацетилен. Из амилена, как чистого, так и смешанного с азотом, не было получено насыщенных углеводородов. Водород действует, повидимому, не только как гидрирующий, но и как дегидрирующий агент, связываясь с водородным атомом ненасыщенного углеводорода и вызывая соединение получающихся углеводородных остатков. Это обстоятельство объясняет образование соединений с удвоенным числом атомов углерода. Амилен претерпевает также ряд других превращений, в том числе перемещение связей, перегруппировки, циклизацию, молекулярное расщепление, образование простых и кратных связей и полимеризацию. На основании своих данных Meneghini и Sorgato не смогли провести грани между этими различными превращениями. Кроме того в условиях опыта имеют место реакции, ведущие к увеличению внутренней энергии, а потому эндотермический характер тройной связи ведет к образованию большого количества ацетиленовых углеводородов. При применении трубки, дающей коронирующий разряд, доля превращенного амилена оказалась значительно меньше, хотя происходящие изменения были более глубокими при этом происходит также выделение свободного угля. [c.293]

    Как следует из табл. 3.27, гетероциклические соединения более интенсивно взаимодействуют с бензолом, в то время как энтальпия взаимодействия с циклогексаном практически не зависит от циклизации растворителя [97]. Гетероциклические соединения более сильно ассоциированы, что приводит к повышенным затратам энергии на образование полости при растворении углеводородов тем не менее, предельные парциальные энтальпии смешения АЯ° бензола с ЛГ-метилпирролидоном оказываются ниже, чем с ]У,ЛГ-диметилпропионамидом, и с у-бутиролактоном-ниже, чем с этилацетатом. Теплоты смешения с насыщенными углеводородами выше для систем с гетероциклическими растворителями. Более интенсивное взаимодействие гетероциклических соединений с углеводородами-донорами тг-электронов-по сравнению с ациклическими аналогами обусловлено их более высокими дипольными моментами и, по-видимому, меньшими стерическими препятствиями при образовании я-комплексов. Действительно, как показано методом ЯМР-спектроскопии, стерические препятствия, создаваемые, например, диэтиламиногруппой, выше, чем пирролидиновым и даже пиперидиновым кольцом [173]. [c.81]

    При увеличении продолжительности контактирования с десяти до тридцати часов, вероятно, за счет частичного крекинга, несколько снизился выход жидких углеводородов и увеличилось количество газа и легких фракций в нолимеризате. Кроме того, изменился и состав продуктов реакции в газе содержались только предельные углеводороды — этан, пропан, бутан, а также водород. Одновременно повысилось содержание насыщенных углеводородов и в жидком нолимеризате. При еще более длительном контактировании (60 часов) наблюдалось дальнейшее понижение бромного числа фракций, а также образование некоторого количества ароматических углеводородов, но пЬчти не увеличилось количество кокса, адсорбированного на катализаторе. По-видимому, процессы перераспределения водорода, приводящие к образованию насыщенных углеводородов, связаны не столько с образованием обедненных водородом смол и кокса, сколько с протеканием вторичных процессов, в том числе и процессов циклизации. [c.294]

    Наиболее сложный процесс происходит в случае ациклических спиртов и олефинов, которые до гидридного перехода претерпевают реакции алкилирования, перегруппировки, циклизации и фрагментации [19, 63, 74]. трет-Бути-ловый спирт дает равные количества насыщенных углеводородов и циклопентенильных катионов. Образующаяся смесь состоит из ациклических сильно разветвленных углеводородов, содержащих в основном от 4 (изобутан) до 16 атомов углерода и только около 20% более высокомолекулярных углеводородов. Циклопентенильные катионы главным образом имеют состав от Сю до i0 и только около 20% — выше ie- Типичным является ион (4). Такое [c.356]

    Б. содержится в коксовом газе и частично в коксовой смоле, а также в нек-рых нефтях, нанр. майкопских и восточных районов СССР и др. Из коксового газа Б, извлекают растворителями (высококи-пящими фракциями каменноугольной смолы или нефти) после удаления смолы и аммиака. Перегонкой в ректификац, колоннах растворителя, насыщенного Б,, иолучают сырой Б,, который очищают обработкой серной к-той и щелочью и многократной перегонкой в ректификационных колоннах. Из коксового газа Б, улавливают также адсорбцией на активном угле или др, сорбентах и далее выделяют из адсорбента перегонкой с водяным паром. Значительные количества Б, получают также каталитической циклизацией алифатич, углеводородов нефти (см. Коксохимическое производство. Ароматизация нефтепродуктов). [c.206]

    В каталитическом крекинге применяются смеси окисей металлов, например окись алюминия — окись тория на силикагеле, и интенсивное изучение большого числа алканов С3 — С24 показало, что в этом случае разрыв связей С — С не является--случайным процессом, как, по-видимому, при некаталитическом крекинге. При это.м нреимущественно разрываются связи, находящиеся ближе к центру молекулы. Для объяснения природы продуктов предлагались различные механизмы, причем наиболее вероятными являются механизмы, рассматривающие промежуточное образование свободных радикалов. Однако анализ имеющихся данных крайне осложняется многочисленными побочными реакциями, наблюдаемыми при этом перегруппировки, образование алкенов с последующими реакциями присоединения или полимеризации и циклизации. Поскольку углеводороды всех типов (насыщенные, ненасыщенные и ароматические) могут подвергаться пиролизу, то легко представить себе все сложности на пути к окончательному решению вопроса [c.258]

    Термолитический подход к деструкции молекул нефтяных асфальтенов использовали авторы работ [377—381], изучавшие ме тодом ГЖХ состав углеводородов, образующихся при кратковременном воздействии на ВМС нефтей температур порядка 300— 400°С. Дж. Кнотнерус [382] провел обширное исследование превращений модельных углеводородов, а также смол и асфальтенов различного происхождения при температуре около 600°С, применив сочетание последовательно соединенных пиролизера, реактора гидрирования пиролизата и газового хроматографа. Он нашел, что при столь высоких температурах происходит глубокий распад насыщенных структур и новообразование колец за счет циклизации алифатических цепей. По его мнению, метод пиролиза пригоден для качественного сопоставления различных битумов, но не для углубленного изучения их состава и строения. Для сохранения нативной природы фрагментов рекомендовано проводить термическую деструкцию в высоковакуумном пироли-зере, непосредственно связанном с ионным источником масс-спектрометра т. е. в условиях крайне слабого развития радикально-цепных реакций [379, 383, 384]. [c.44]

    Превращения непредельных жирных кислот приводят к образованию широкой гаммы алканов, цикланов и аренов. Так, например из олеиновой кислоты была при 250° С получена смесь (1 1) насыщенных и ароматических углеводородов, масс-спектральный анализ, которой приведен в табл. 50. Как видно из этой таблицы, процессы, циклизации непредельных кислот протекают с образованием не только моноцикланов и моноаренов, но и би- и трициклических углеводородов. Исследование продуктов реакции, а также промежуточно образующихся соединений показало, что основным процессом здесь является дегидратационная циклизация, проходящая по схеме кислота лактон -> кетон -> углеводороды. [c.195]

    При гидрировании ненасыщенных трех-, четырех- и пятичленных алициклических углеводородов и их производных легко происходит полное насыщение циклов. Циклобутен, циклопентен, циклопентадиен и их производные над Р1 или N1 превращаются в соответствующие предельные соединения. Однако эти реакции надо проводить осторох<но, так как перечисленные циклы, особенно трех-и четырехчленные, подвергаются гидрогенолизу в соответствующие парафины (стр. 415). Действительно, циклопентадиен и ц 1клопентен гидрируются над Р1 уже при 125°. И. Н. Назаров [56] путем циклизации диенинов (стр. 521, 753) открыл новый способ получения разнообразных замещенных циклопентенонов. При гидрировании последних были отмечены некоторые закономерности. [c.378]

    ЦИКЛОАЛКАНЫ (циклопарафины, иолиметилепы, цик-ланы), насыщенные алициклич. углеводороды общей ф-лы СпНгп, где к > 3. Плохо раств. в воде, легко — в орг. р-рителях. Обладают наркотич. действием. Устойчивость циклов возрастает от Сз к Сб, затем до i2 несколько понижается (см. Напряжение молекул). По хим. св-вам Ц. начиная от s подобны предельным алиф. углеводородам циклопропан по склонности к электроф. присоединению напоминает непредельные углеводороды, но пассивнее их. Ц. вступают также в р-ции с изменением величины цикла, раскрытием цикла и трансаннуляриой циклизации. Получ. циклизация дигалогенидов гидрирование циклоалкенов или аром, соед. из функционально замещенных Ц. Пяти- и шестичленные Ц. содержатся в иефти. См. также Циклопропан, Циклопентан, Циклогексан. [c.679]

    Дальнейшее повышение температуры вызывает реакции крекинга алкенов. Если при деполимеризации распад молекул на две части происходит, повидимому, по правилу двойной связи, то при крекииге может разорваться любая связь независимо от положения двойной связи. Крекинг сопровождается реакциями перераспределения водорода, в результате которых, с одной стороны, получаются легкие продукты насыщенного характера, с другой — на катализаторе образуются коксовые отложения как продукт реакций глубокой конденсации исходных и промежуточных продуктов. Другой источник водорода при каталитическом крекинге алкенов — реакции циклизации алкенов и дегидрирования цикленов, приводящие к образованию ароматических углеводородов. Реакциям насыщения ненредельных благоприятствуют умеренные температуры (до 400° С) и относительно длительное время контакта продукта с катализатором. Скорость насыщения зависит от структуры алкена иапример, изобутен превращается в изо-бутан в 7 раз быстрее, чем нормальный бутен в нормальный бутан. [c.208]

    Другой, более значительный по масштабам источник образования циклоалканов связан с дегидратационной циклизацией -непредельных жирных кислот с образованием насыщенных циклических углеводородов  [c.58]

    При получении циклоалканов обычно исходят из соединений, которые подобно соответствующим представителям алифатического ряда могут быть превращены в насыщенные циклические углеводороды. Болынииство таких исходных соединений для синтеза циклоалканов, в свою очередь, синтезируется из предшественников с открытой цепью с номоп1,ью реакций циклизации. При этом в большинстве случаев существует определеппая связь между размером цикла и выходом циклического соединения. [c.211]

    Синтетические душистые вещества встречаются в очень многих классах органических соединений. Строение их весьма разнообразно это соединения с открытой цепью насыщенного и ненасыщенного характера, ароматические соединения, циклические соединения с различным числом углеродных атомов в цикле. Среди углеводородов вещества с парфюмерными свойствами встречаются довольно редко. Большинство душистых веществ содержат в. молекуле одну нли несколько функциональных групп. Сложные и простые эфиры, спирты, альдегиды, кетоиы, лактоны, иитропродукты — вот далеко не полный перечень классов химических соединений, среди которых разбросаны вещества с ценными парфюмерными свойствами. Для получения душистых веществ применяется самое разнообразное сырье, переработка которого основана на использовании большого числа химических процессов органического синтеза. Некоторые химические превращения приводят к введению заместителей в органические соединения нитрование, алкилирование, галоидирова-ние. К другой группе химических процессов относятся превращения, связанные с изменением функциональной группы веществ окисление, восстановление, этерификация, омыление. Третьи химические процессы приводят к изменению углеродного скелета химических веществ пиролиз, конденсация, изомеризация, циклизация, полимеризация. Ниже рассмотрены химические процессы, наиболее часто используемые в синтезе душистых веществ. [c.232]

    Различные стадии адсорбции, сдвига двойной связи, полимеризации, циклизации и ароматизации, в процессе которых, видимо, в основном й происходит потеря активности катализаторов в реакциях превращения углеводородов, исследовались методами ИК-спектроскопии. Так, Эберли [235] изучал адсорбцию гексена-1 на НУ при 93—260° С, Уикс и Болтон [236]— адсорбцию бутена-1 на НУ и на дегидроксилированном НУ при О—300° С, Деклерк и соавторы [88] — адсорбцию бутена-1 на НУ при 25—150° С. Появление в ИК-спектре бутена-1 полос, относимых к ва1лентным колебаниям связи С = С в бутене-1 и г/ис-бутене-2, были зарегистрированы сразу же после адсорбции при 0°С [236]. При повышении температуры до комнатной эти полосы быстро исчезают, и в спектрах появляются полосы, характерные для насыщенных молекул. [c.68]

    Накопившееся в осадках органическое вещество подвергается распаду не целиком. Распадаются только наиболее термически нестойкие компоненты. Подсчитано, что достаточно распада 10— 15% органического вещества на нефть и газ, чтобы обеспечить существующие масштабы нефтяных месторождений. Раснад сопровождается выделением газов — водорода, азота, углекислоты и окиси углерода — и образованием термически более стойких веществ — углеводородов разного молекулярного веса и в том числе ненасыщенных. Одновременно образуются и более высокомолекулярные соединения. Их накопление происходит отчасти за счет реакции полимеризации, но главным образом в результате диспро-порционирования водорода. В результате насыщения водородом продуктов распада, циклизации непредельных и других превращений в конечном птоге образуется смесь углеводородов в основном насыщенного характера. [c.181]

    Наиболее интересной реакцией явилась реакция дегидрата-ционной циклизации непредельных кислот, приводящая к получению насыщенных циклических углеводородов (нафтенов) при одновременном удалении кислорода в виде воды. Общее направление этой реакции понятно на основании приведенной схемы циклизации олеиновой кислоты  [c.215]

    Продукты распада пафтенов также подвергаются вторичным реакциям изомеризации и дегидрогенизации с образованием ароматических углеводородов. В результате при каталитическом крекинге происходят передвижение кратной связи, изменение строения углеродного скелета, насыщение двойных связей, циклизация и алкилирование. Наибольшее значение в процессе крекинга имеет температура, определяющая степень и скорость каталитического разложения углеводородов, тем более, что крекирующее действие катализаторов проявляется в сравнительно узком интервале температур. Обычно средняя температура крекинг-процесса 450—475°С. Повышение ее углубляет процесс разложения углеводородов. Так как процесс крекинга протекает в адсорбционном слое на поверх- [c.157]

    Продукты распада нафтенов также подвергаются вторичным реакциям изомеризации и дегидрогенизации с образованием ароматических углеводородов. В результате при каталитическом крекинге происходят передвижение кратной связи, изменение строения углеродного скелета, насыщение двойных связей, циклизация и алкилирование. Наибольшее значение в процессе крекинга имеет температура, определяющая степень я скорость каталитического равложевия углеводородов, тем более, что крекирующее действие катализаторов проявляется в сравнительно узком интервале температур. Повышение ее углубляет процесс разложения углеводородов. Так как процесс крекинга протекает в адсорбционном слое на поверхности катализатора, а не в объеме, то влияние давления незначительно. Повышение давления способствует полимеризации, перераспределению водорода и коксообразованию. Но в промышленности давление изменяют незначительно. На результаты крекинга влияет его продолжительность. Объемная скорость подачи жидкого сырья при каталитическом крекинге, как правило, изменяется в пределах от 0,1 до 10 дм ч-м катализатора (наиболее употребительны объемные скорости 0,5—2,0 дм ч-м катализатора при 0°С) нем меньше объемная скорость, тем больше глубина крекинга при прочих равных условиях. [c.127]

    ЛИЧНЫХ состояниях гибридизации и электрофильное замещение в ароматическом ряду. К сожалению, как и в большинстве учебников, ничего не говорится об электрофильном замещении у насыщенного атома углерода. Автор обращает внимание на промежуточные частицы, образующиеся в анализируемых реакциях, и хотя материал, связанный с химией карбониевых ионов и карбанионов, в общем объеме книги занимает мало места, основные вопросы этих областей органической химии затронуты. Остальные главы книги отведены разбору конкретных классов соединений углеводородов, галогенпроиз-водных, простых эфироЬ и оксисоединений, карбонильных соединений, карбоновых кислот и изс производных, соединений, содержащих серу и азот, гетероциклических соединений, среди которых рассматриваются наиболее известные. Из перечисления ясно, что некоторые разделы органической химии, и особенно касающиеся химии природных соединений, в книгу не включены. В заключительной главе рассматривается внутримолекулярное взаимодействие в органической молекуле и такие принципиальные вопросы, как кислотно-основное взаимодействие, таз томерия, участие соседних групп, в том числе внутримолекулярный катализ, трансаннулярный эффект и реакции внутримолекулярной циклизации. [c.6]


Смотреть страницы где упоминается термин Циклизация насыщенных углеводородов: [c.151]    [c.104]    [c.159]    [c.941]    [c.155]    [c.196]    [c.106]    [c.206]    [c.401]    [c.54]    [c.82]    [c.156]    [c.748]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.923 ]




ПОИСК





Смотрите так же термины и статьи:

Насыщенные углеводороды



© 2024 chem21.info Реклама на сайте