Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь механизм окисления

    Промотирование железоокисных катализаторов щелочными металлами (8-9%) оказывает существенное влияние на энергию связи кислорода в кристаллической решетке катализатора и соответственно на скорость выгорания углеродистых отложений, но не оказывает влияния на механизм окисления углеродистых отложений [3.27]. При температуре ниже 550 С каталитическое выгорание углерода происходит вследствие воздействия двух соединений — карбоната калия и оксида железа. При температуре выше 550"С калий связывается оксидом железа (П1) в феррит. Введением промоти-рующих добавок можно повысить, но нельзя понизить энергию связи кислорода. Поэтому промотирующее влияние добавок щелочных металлов на процесс окисления углерода будет проявляться в основном лишь в области высоких температур, когда лимитирующим этапом регенерации является присоединение кислорода к катализатору и увеличение энергии связи кислорода приводит к ускорению окисления угле- [c.70]


    Как мы видели, холоднопламенные вспышки присущи окислению углеводородов, протекающему при относительно низких температурах. С повышением начальной температуры они исчезают и сменяющее их свечение всей газовой смеси уже не связано пи со скачкообразным приростом давления, ни с измеримым подъемом температуры. Создается, таким образом, представление о наличии двух разных механизмов окисления углеводородов — нижне- и верхнетемпературного. [c.80]

    Для пропана и более высокомолекулярных углеводородов область температур 350—450 °С—это область отрицательного температурного коэффициента, когда скорость реакции уменьшается с увеличением температуры. Предполагается, что это связано со сменой механизма окисления и преобладанием крекингового направления реакции (распада алкильных радикалов) с повышением температуры снижается скорость образования продуктов, разветвляющих цепи. [c.166]

    Области механизмов окисления углеводородов. В зависимости от условий окисления углеводородов и их строения окисление протекает [ о одному из 4 возможных цепных механизмов. Каждый механизм реализуется в определенной области температур, концентраций и прочностей С—Н-связи. С изменением одного или нескольких факторов система (RH—О ) переходит из области одного механизма в область другого. Границей между двумя соседними областями является совокупность условий, которые делают равными по скоростям ключевые реакции этих двух механизмов. С некоторыми упрош,ениями в окислении можно выделить следующие механизмы. Нецепное окисление через пероксидный радикал, включающее элементарные акты R- -f-Oj- ROj-, [c.217]

Рис. 21. Области механизмов окисления углеводородов в зависимости от прочности С—Н-связи Рис. 21. Области <a href="/info/394162">механизмов окисления углеводородов</a> в зависимости от прочности С—Н-связи
    В процессе переработки и эксплуатации полимеры находятся в контакте с кислородом и подвергаются окислению, которое приводит к деструкции полимера и накоплению в нем кислородсодержащих групп (карбонильных, гидроксильных, пероксидных и т, д.). Механизм окисления полимеров, в котором участвуют С — Н-связи, в своих главных чертах похож на механизм окисления углеводородов в жидкой фазе. По реакции кислорода с С — Н-связями полимера и содержащимися в нем примесями образуются свободные радикалы. Окисление развивается как последовательность стадий [c.290]


    При обсуждении механизма окисления аммиака на платине (как катализаторе) можно предположить адсорбцию как кислорода, так и аммиака на поверхности платины. Первый подход рассмотрен в предыдущей задаче. Какая связь, N—Н или 0—0 легче разрывается на платине Предположим, что на платине имеет место адсорбция молекул аммиака и их диссоциация [c.174]

    Механизм окисления альдегидов точно не установлен, но очевидно, что возможны по крайней мере два типа механизмов свободнорадикальный и ионный [168]. В свободнорадикальном процессе водород альдегида отрывается, оставляя ацильный радикал, который присоединяет ОН от окислителя. Первой стадией ионного процесса является присоединение частицы 02 по карбонильной связи при этом в щелочной среде образуется структура 9, а в кислой или нейтральной — структура 10. Затем в обеих структурах альдегидный водород отрывается основанием в виде протона, а группа 2 уходит со своей электронной парой. [c.82]

    Вероятно, в большинстве случаев механизм окисления включает первоначальное образование гликоля (т. 3, реакция 15-36) или циклического сложного эфира [186] с последующим окислением по реакции 19-7 [187]. Тройные связи более устойчивы к окислению, чем двойные, что согласуется с электрофильной атакой на олефин. [c.285]

    При взаимодействии газов с углеродом могут быть выделены следующие стадии реакции подход молекулы газа к поверхности, адсорбция молекулы газа на поверхности, реакция между адсорбированными молекулами газа и углерода, десорбция продуктов реакции, диффузия продуктов реакции от поверхности в объем газовой фазы. Для кислорода, диоксида углерода и паров воды в соответствии с этими стадиями были предложены различные схемы механизма окисления и их математическое описание [65]. В зависимости от условий проведения опытов (температуры, давления газа, скорости потока) ход реакции углерода с газами лимитируется разными стадиями, и скорость реакции может иметь различную зависимость от концентрации реагентов и температуры. Результатом этого является значительное расхождение в величинах кинетических параметров реакции, определенных различными исследователями ее порядка и энергии активации, в связи с тем, что каждая из вышеописанных стадий имеет свою энергию активации. [c.118]

    Зависимость lg — Р, представленная графически, является параметрической диаграммой. Для построения параметрической зависимости ( , К), при разных значениях Тит предварительно рассчитывается Q. Наклон линейной зависимости Ig g — Р определяется показателем степени п уравнения (51). Экспериментальные значения g, полученные при разном времени выдержки или разной температуре испытания ложатся на одну прямую при условии, что механизм процесса не изменяется Из уравнения, (55) следует, что температура и время связаны между собой, и при неизменности механизма окисления при разных температурах можно получить одинаковые значения параметра. Например, при температуре металл окисляется в течение времени в одном опыте, а при более высокой температуре Т , для того чтобы получить такое же значение параметра, как и в первом опыте, нужно окислять металл меньшее время чТа  [c.308]

    Некоторое представление о механизме окисления этана можно получить на основе изучения продуктов, образующихся при различных условиях реакции. Начальное воздействие кислорода или свободного радикала на этан связано с отнятием атома водорода, ведущим к возникновению свободного этильного радикала  [c.204]

    Кинетические данные по окислению фенола в воде не подчиняются общим закономерностям. По-видимому это связано с тем, что механизм окисления фенола диоксидом хлора в воде отличается от механизма окисления в органических растворителях. Так известно, что в водной среде происходит диссоциация фенола на протон и фенолят-анион, с которым и реагирует диоксид хлора. В органических растворителях диссоциация фенола происходит в меньшей степени, поэтому можно предположить следующий механизм реакции, на первой стадии которого происходит образование феноксильного радикала  [c.18]

    Образование N0 связано с окислением азота воздуха и азотсодержащих компонентов самого топлива. В настоящее время существуют три основных механизма образования N0. [c.204]

    Все научные исследования направлены к расшифровке механизма окисления на атомарном уровне. В этой связи наиболее ясной представляется начальная стадия взаимодействия металла с кислородом — адсорбция. В литературе в настоящее время встречаются разные определения адсорбции. Для рассматриваемого случая пригодно одно из последних универсальных определений адсорбция - концентрирование (сгущение) какого - либо вещества в пограничном слое у поверхности раздела двух фаз. [c.9]


    Для определения механизма образования МпОг электролизом сульфата марганца была исследована осциллографическим методом поляризация платинового электрода во времени при постоянной плотности тока в кислом растворе сульфата марганца. Результаты, представленные на рис. 70, показывают, что процесс окисления марганца (II) начинается при потенциале - 1,4 В. Первые и вторые горизонтальные участки на кривых не связаны с окислением марганца, так как они обнаруживаются и в чистых растворах серной кислоты. [c.178]

    Особенности механизма окисления в присутствии бора, ni видимому, связаны с протеканием следующих реакций  [c.338]

    Значительный вклад внесли советские исследователи в теорию окисления металлов и сплавов сухими газами (газовая коррозия). Одним из выдающихся достижений здесь явилась развитая П. Д. Данковым кристаллохимическая теория первичных стадий окисления, особенности которых впервые были объяснены на основе принципа ориентационного и размерного соответствия кристаллических решеток окисла и металла. Исходя из представлений о падении во времени числа дефектов в пленке, но которы.м ионы металла диффундируют к границе окисел—газ, П. Д. Данков объяснил также образование окисных пленок предельной толщины. Существенное значение для понимания механизма первичных стадий окисления имеют работы Р. X. Бурштейн с сотрудниками, в которых установлена связь между глубиной окисления и изменениями работы выхода электрона. Широкое признание получили исследования В. И. Архарова, посвященные установлению детальной связи механизма окисления железа со строением его окалины. Согласно развитой В. И. Архаровым теории жаростойкости, во многих случаях хорошо подтверждаемой на опыте, легирование должно предотвращать образование вюститной фазы и приводить к возникновению окисла типа шпинели с возможно меньшим параметром решетки. Этот принцип был успешно использован в теории окисления сплавов N1—Сг, развитой П. Д. Данковым и позднее Д. В. Игнатовым, и в теории окисления сплавов Ре—Сг—А1 И. И. Корнилова, который показал также необходимость учета химических реакций компонентов сплава с окисной пленкой. Существенную роль в развитии представлений о процессах окисления мета.ллов и сплавов сыграли работы Н. А. Шишакова, А. А. Смирнова, Н. П. Жука, И. Н. Францевича и ряда других советских исследователей. [c.236]

    Если подвергаемое окислению соединение содержит только вторичные и первичные углерод-водородпые связи, то основным продуктом реакции является кетон. Так, пропан может быть превращен в ацетон с выходом последнего 75% при употреблении смеси пропана, кислорода и бромистого водорода в отношении 2 2 1. Конверсии подвергаются примерно 75% от первых двух компонентов, причем регенерируется около 83% катализатора. Температура процесса несколько выше температуры, необходимой для окисления изобутана (190° вместо 160° С в последнем случае), и максимальный расход катализатора также больше. В таких условиях около 8% пропана превращается в пронионовую кислоту. Между механизмом образования кетона и приведенным выше механизмом окисления углеводородов с разветвленной цепью можно провести четкую параллель  [c.275]

    Изложенные выше рассуждения и оценки позволяют однозначно понять, почему углеводороды окисляются по цепному радикальному механизму. Геометрия и прочность С—С- и С—Н-связей в углеводородах с одной стороны и триплетное состояние кислорода с другой препятствуют молекулярной реакции КН с О2. Высокий потенциал ионизации углеводородов, низкое сродство кислорода к электрону, ковалентный характер С—Н-связей и неполярный характер углеводородов как среды препятствуют ионному протеканию реакции окисления. Единственно возможной оказывается гомолитическая реакция КН с кислородом с образованием радикалов К. Несмотря на то что эта реакция эндотермична и протекает очень медленно (см. раздел Кинетика автоокисления углеводородов ), образующиеся радикалы К вызывают цепную реакцию окисления, которая протекает как последовательность многократно повторяющихся актов. Первичным молекулярным продуктом такой цепной реакции является гидропероксид, сравнительно легко распадающийся на свободные радикалы. Таким образом, причиной цепного автоинициированного механизма окисления углеводородов является ковалентный характер их С—Н-связей, высокая активность радикалов К по отношению к кислороду и КОг по отношению к КН, цикличность последовательных радикальных реакций [c.28]

    Промотирование СГ2О3 щелочными металлами не влияет на механизм окисления углерода. Однако при этом изменяется лимитирующая стадия процесса (лимитирующим этапом становится отрыв кислорода от катализатора) в связи с повышением энергии связи кислорода поверхности катализатора, что приводит к изменению энергии активации процесса выгорания углерода [104]. Эффективность влияния щелочной добавки возрастает с увеличением атомной массы металла-промотора и определяется энергией связи кислорода катализатора. [c.47]

    В механизме окисления углеводородов, не содержащих активных двойных И тройных связей молекулярным кислородом (автоокисления, автооксидации), доминирующая роль в первичной стадии протекания процесса принадлежит, повидимому, гидроперекисям и оксиалкилперекисям, образующимся по формуле [c.155]

    Ингибирование реакций окисления углеводородов В присутствии ингибиторов окисления, веществ, способных (теагиро-вать с активными промежуточными продуктами окисления, происходит обрыв спонтанно развивающихся цепных процессов и замедление скоростей реакций. Действие ингибиторов связано с радикально цепным механизмом окисления углеводородов. [c.26]

    Трудно переоценить значение, которое имело бы для вскрытия механизма окисления углеводородов выяснение причин указанного явления. Многозначительность такого факта, как прекращение необратимо протекающей реакции задолго до израсходования исходных веществ, стала особенно очевидной, когда был установлен цепной характер окисленпя углеводородов. При таком кинетическом механизме преждевременная остановка реакции, несомненно, связана с возникновением в ее ходе условий, либо препятствующих распространению или инициированию (включая и разветвление) ценей, либо, наоборот, облегчающих обрыв. Таким образом, расшифровка создающихся по ходу реакции тормозов дальнейшего окисления привела бы к познанию самых основ химического механизма окислительного превращения углеводородов. К сожалению, приходится констатировать, что несмотря на все свое значение этот вопрос не подвергался обстоятельному исследованию в течение почти 30 лет, прошедших со времени появления работы Поупа, Дикстра и Эдгара, и до сих пор еще остается загадочным. Более подробно об этом вопросе будет сказано позднее (см. стр. 436—437). [c.40]

    Второй радикал, который участвует в развитии основной цепи схемы Уббелодэ, это радикал R H OO. Он был введен в схему потому, что без его участия невозможно представить себе при окислении углеводородов образование алкилгидроперекиси цепным путем (а это является основным положением схемы). Действительно, если принять, как это сделал Уббелодэ, монорадикальный механизм окисления, то первым продуктом превращения углеводорода должен явиться алкильный радикал (вне зависимости от того, рвется ли при этом С—Н- или С—С-связь в исходпой углеводородной молекуле). Дальнейшее превращение алкильного радикала произойдет при его реакции с молекулой кислорода. Возможный распад алкильного радикала мы сейчас не рассматриваем, так как этим путем гидроперекись возникнуть не может. [c.115]

    Как было показано вышо (см. стр. 243), такое представлелие о механизме окисления углеводородоп, сводящееся к образованию перекисного алкильного радикала, его изомеризации и последующего распада изомеризованного радикала по О — 0-связи, приводит в случае атаки кислородом по 1-му атому углерода углеводородной молекулы к позпикиовенню С -альдегида н алкоксильного радикала  [c.267]

    Следующий кардинальный вопрос, возникаюхций при обсуждении механизма окисления олефинов, это судьба всех остальных, кроме аллиль-пого, свободных радикалов, возникающих в ходе реакции. Выше было предположено, что при взаимодействии свободных радикалов с олефиновой молекулой происходит отщепление водородного атома от а-углеродного атома и при этом образуется валентно-насыщенная молекула и соответствующий олефиновый радикал. Нельзя, однако, исключать из обсуждения и другую возможность, а именно присоединение свободного радикала по месту двойной связи олефина. [c.410]

    При более высокой температуре реакция R сOj становится обратимой и окисление идет с образованием олефинов и HOj-. Все эти области в координатах Т — Dr h показаны на рис. 21. Видно, что область цепного окисления с образованием ROH представляет собой остров (II), окруженный областями, где окисление идет в гидропероксид (I), карбонильные соединения (III) и нецепным путем. Прочность С — Н-связи, температура и концентрация углеводорода однозначно определяют механизм окисления. [c.218]

    Необходимо отметить, что приведенное определение окисления не имеет никакого отношения к механизму. Так, превращения бромометана в метанол под действием КОН (т. 2, реакция 10-1) и в метан под действием алюмогидрида лития (т. 2, реакция 10-77) идут по одному и тому же механизму 8к2, но одна из этих реакций — восстановление, а другая — нет. Нецелесообразно рассматривать в этой главе механизмы окисления и восстановления в широких категориях, как это делалось для реакций, обсуждавшихся в гл. 10—18 [2]. Основная причина заключается в следующем механизмы этих реакций весьма разнообразны, что в свою очередь обусловлено значительными различиями в изменении характера связей. Например, в т. 3, гл. 15, изменение связей для всех реакций имеет вид С = С->-—С—С—V, и все такие реакции протекают по относительно небольшому числу механизмов. Но при окислительном и восстановительном изменении связей они значительно более разнообразны. Другая причина заключается в том, что механизм конкретной реакции окисления или восстановления может сильно изменяться в зависимости от природы окислителя или восстановителя. Часто механизм реакций оказывается тщательно изученным только для одного или нескольких из используемых для данного превращения реагентов. [c.261]

    В молекуле HNOз атом азота образует одну ковалентную связь по донорно-акцепторному механизму с возбужденным атомом кислорода. С двумя другими (невозбужденными) атомами кислорода атом азота связан простой ковалентной связью с одним о-связью (второй р-электрон кислорода участвует в связи с атомом Н), а со вторым а- и я-связями. Степень окисления азота в HNOз -]-5. Молекулу НЫОз можно представить / О -1 >0 /О  [c.132]

    При анализе соотношения радикального К) и молекулярного (Л/) направлений реакции диоксиранов следует иметь в виду, что со многими органическими соединениями диоксираны реагируют очень быстро, так что з> /сд. В этом случае мы имеем дело не с термолизом диоксирана, а с проявлением его высокой окислительной активности по отношению к субстрату окисления. Механизм распада диоксирана описывается реакциями (1) и (2) с возможным вкладом скрыторадикального направления — реакции (3) и (6). Вопросы, касающиеся продуктов, кинетики и механизма окисления диоксиранами органических соединений различных классов подробно рассмотрены в работах [62-72]. В присутствии соединений с неактивированными С-Н-связями радикальное направление распада диоксиранов становится более отчетливым. [c.246]

    Механизм окисления вторичных спиртов подобен окислению первичных сппртов]в альдегиды, поэтому для получения кетонов пригодны некоторые методы, рассмотренные нами ранее в предыдущем разделе. Ниже приведены примеры окисления вторичных спиртов до кетонов. Как мы видим из этих примеров, можно осуществить окисление спиртовой группы, но затрагивая двойные или тройные связи в этой же молекуле. [c.417]

    ЮЩИХ защитными свойствами. Большое развитие эти процессы получают при температуре 120—140° С, практически являющейся температурным пределом устойчивости реагента (рис. 28). Однако при избытке его в растворе даже после нескольких часов термообработки может быть сохранена удовлетворительная водоотдача, в особенности если КМЦ имела высокую степень полимеризации, поддерживалось оптимальное значение pH и присутствовали реагенты-антиоксиданты. Это следует связывать с механизмом термоокислительной деструкции. Последний у КМЦ, подобно целлюлозе и другим ее эфирам, обусловлен разрывом на окисляемой поверхности одной из валентных связей молекулы кислорода с образованием промежуточных перекисных, соединений, тут же разрушающихся с выделением активного кислорода и свободных радикалов, вызывающих цепную реакцию. Б процессе окисления и автоокисления происходят повторная пероксидация, внутримолекулярные перегруппировки и др. Деструкция при повышенных температурах является следствием разрушения гликозидных связей и окисления карбонильных [c.164]

    Связи к—О—в гидролизуются в процессе окисления, в результате образуется спирт. Следует отметить, что механизм окисления включает серию В—0-миграций алкильных групп, которые мигрируют со своими связующими электронами. Общим стереохимическнм результатом окисления 51вляется замещение связи С—В с сохранением конфигурации, в сочетании с описаниыии ранее закономерностями ориентации эти результаты позволяют достоверно предсказать структуру и стереохимию спиртов, получаемых при гидроборирования — окислении. Некоторые примеры реакций показаны на схеме 3.5, Недавно были открыты условия, позволяющие окислять борорганические соединения до спиртов с использованием в качестве окислителя молекулярного кислорода [66]. Более сильные окислители замещают бор и окисляют замещенный атом углерода, давая кетоны [67]  [c.98]

    ТЕРМОСТОЙКОСТЬ (термостабильность), способность хим. в-в и материалов сохранять неизменным хим. строение (и физ, св-ва) при повышении т-ры. Нагревание может вызьшать в образце крекинг, пиролиз, окисление, деструкцию полимеров и др. процессы. Т. зависит от природы в-ва и определяется прочностью хим, связей в нем (термодинамич. аспект),, механизмом и кинетикой термич. р-ций (кинетич. аспект). Факторы, влияющие на кинетику термич. р-ций (дефекты кристаллич, структуры, наличие примесей, природа среды и т. д.), могут изменять Т. Знание прочности хим. связей, механизма и кинетики термич. р-ций позволяет предсказывать Т. Иногда для этого используют мат. модели термдч- процессов или эмпирич. зависимости скорости термин. р-ций от параметров системы, напр, от т-ры стеклования в случае жестких неплавких ароматич. полимеров. [c.546]

    Лая объяснения закономерностей протекания реакций окисления < 1 е(П) кислородом в водных растворах высказываются различные гипоте-, зы и предположения, однако единого взгляда на механизм не существу-, ет. Более подробно механизмы окисления желеэа (П) в водных 11астворах изложены в гл. I. Однако окислительно-восстановительные процессы в. реальных условиях электрсосаждения железа исследованы недостаточно. Более глубокое понимание физико-химических превращений, происходящих, в электролитах железнения, связано с изучением термодинамической и кинетической устойчивости систеш, химических равновесий с учетом основных закономерностей термодинамической, химической й электрохимической кинетики. з [c.54]

    На скорость реакции Прилежаева влияют заместители, находящиеся при углеводородных атомах, соединенных двойной связью . Алкоксильные и алкильные заместители увеличивают скорость окисления олефина, а фенильная, сульфоксильная и карбоксильная группы, а также группы NO2, N и Hal замедляют реакцию. Не все олефины удается окислить до их окисей подобным образом. Иногда окисление идет гораздо глубже и задержать его на стадии получения а-окиси не удается. Хотя кинетике и механизму окисления надкислотами посвящен целый ряд работ механизм эпоксидирования до сих пор до конца не ясен и нуждается в изучении. [c.149]

    Метод восстановления применялся Трейбсом и Шеллнером и для определения продуктов аутоокисления углеводородов, имеющих фенильные группы, связанные с циклогексильным кольцом через сопряженную двойную связь. Концентрат продуктов аутоокисления подвергался каталитическому гидрированию на палладии. Анализ продуктов гидрирования показал, что в аутооксидате присутствуют как гидроперекиси, так и эпоксидные соединения. Так, циклогексилидендифенилметан при аутоокислении в течение 15 ч при 80°С без катализатора и растворителя дал продукт, содержащий 20—25% перекиси. О механизме окисления можно судить на основании состава продуктов [c.155]

    Существует много способов проведения реакции окисления полиолефиновых кислот и их эфиров. Некоторые из них уже рассмотрены (гл. I и VIII). В тех случаях, однако, когда получаются мономерные продукты, механизм реакции весьма близок к механизму окисления моноолефинов образование аллильных гидроперекисей сопровождается обычно перегруппировкой двойных связей в конъюгированную систему Сообщалось также об образовании гликолей (через эпоксидные соединения) и кетонов . Аутоокисление эфиров сорбиновой и подобных ей кислот кислот рыбьего жира и каучука также приводит к образованию гидроперекисей, продуктов деструкции и полимеров. Имеется обзор работ, проводивщихся в области катализированного аутоокислення метиллинолеата 204, [c.505]

    Химия 1,4-дигидропиридинов (ДГП) в основном развивалась по двум направлениям 1) синтез новых ДГП путем варьирования исходных компонентов реакции Ганча в целях получения биологически активных соединений, 2) применение синтетических 1,4-ДГП в качестве моделей кофермента КАВН и исследование механизма окисления последнего. Изучению реакций ДГП-цикла не уделялось должного внимания, вследствие чего долгое время не была обнаружена тесная связь между реакционной способностью ДГП и закономерностями химии енаминов. [c.96]


Смотреть страницы где упоминается термин Связь механизм окисления: [c.48]    [c.100]    [c.469]    [c.22]    [c.446]    [c.261]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.903 ]




ПОИСК







© 2025 chem21.info Реклама на сайте