Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки динамические системы

    Макромолекула белка сходна с твердым телом в том отношении, что значительная часть атомов имеет в ней фиксированные положения. Макромолекула белка в этом смысле является апериодическим кристаллом. Подходы к рассмотрению такой структуры, основанные на положениях физики твердого тела, естественны и разумны. Вместе с тем макромолекула белка — динамическая система, характеризуемая большей или меньшей конформационной лабильностью. Это — своего рода машина, поведение которой зависит от положения и свойств каждого индивидуального аминокислотного остатка. Исследование динамических свойств белка требует теоретических и экспериментальных методов физики макромолекул. [c.177]


    Молекулы белков — самые сложные из известных науке. Их биологически функциональная пространственная структура, а также структура надмолекулярных систем, содержащих белки (мембраны и др.), определяются как химическими связями в белковых цепях, так и целой гаммой слабых взаимодействий. Нативные белки никогда не являются статистическими клубками. Белковые глобулы — апериодические кристаллы сложной структуры. Это не-статистические, но динамические системы, своего рода машины,, поведение которых зависит от положения и свойств всех их элементов. Наряду с глобулярными существуют фибриллярные белки — сократительные и опорные. [c.88]

    Молекулы, которыми занимается биофизика, характеризуются многими особенностями, отличающими их от молекул неживой природы. Белки — самые сложные из известных нам молекул. Будучи макромолекулами, белки и нуклеиновые кислоты не являются статистическими системами, в отличие от макромолекул синтетических полимеров. Это — динамические системы, своего рода машины, поведение которых определяется положением и функциональностью каждого элемента, образующего молекулу. Основная задача молекулярной биофизики состоит в исследовании специфических особенностей, определяющих строение и свойства биологических молекул. Физическая теория, с которой приходится иметь дело в молекулярной биофизике, есть теория строения и физических свойств этих молекул и одновременно теория методов исследования, применяемых в эксперименте. [c.9]

    Белки являются динамическими системами [c.173]

    Д. Сложные вещества. Динамические системы, содержащие сложные вещества и смешанные организмы и встречающиеся в естественных системах, изучены еще недостаточно. Исследование обогащенной культуры такого типа для анаэробных условий было проведено для смеси бутирата и ацетата [9], а также пропионата и ацетата. Исследованы [18] прошедшие анаэробную обработку осадки сточных вод, представляющие собой сложную смесь углеводов, жиров, жирных кислот и белков. Отмеченные при этом изменения концентраций некоторых основных компонентов в зависимости от степени разведения приведены на рис. 30. Хотя концентрация каждого компонента при определенной степени разведения является результатом последовательного и параллельного действия множества различных организмов в сложной цепи реак- [c.107]


    Мембрана — это динамическая система, поскольку белки могут совершать в ней латеральные перемещения. На такие перемещения указывает множество экспериментальных данных. Возможно также, что белковые молекулы вращаются вокруг осей — перпенди- [c.228]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]

    Возможность развития динамических структур такого типа заложена в коренных свойствах объектов микромира, о которых шла речь в первых главах этой книги. С этой точки зрения уникальность определенного химического набора исходных вешеств ( органогенов ) заключается в том, что только они способны создать структуры типа РНК, ДНК и белков и могут обеспечить выход эволюционирующих диссипативных организаций на тот путь развития, на котором индивидуальные химические свойства и термодинамические параметры составных частей системы постепенно утрачивают свое значение, уступая место информационным, кодовым механизмам управления потоком энергии. Развитие потенциальных возможностей интеллекта раскроет перед человечеством пути преодоления сил хаоса и создания гармонии в природе. [c.396]

    При переходе от молекулярных систем к надмолекулярным структурам живых клеток и организмов мы встречаемся со специфическими проблемами физики конденсированных сред. Биологические мембраны, сократительные системы, любые клеточные структуры имеют высоко специализированное гетерогенное строение. Во всех функциональных надмолекулярных структурах определяющую роль играют белки, взаимодействующие с другими органическими молекулами (например, с липидами в мембранах) и с различными ионами, начиная с малых ионов щелочных и щелочноземельных металлов. В гетерогенных надмолекулярных системах реализуется специальное динамическое поведение, ответственное в конечном счете за важнейшие явления жизнедеятельности. Это поведение определяется особым состоянием биологических надмолекулярных систем. Мембраны имеют жидкое или жидкокристаллическое строение, белки плавают в липидном море . Сократительные белковые системы, ответственные за превращение химической энергии (запасенной преимущественно в АТФ) в механическую работу, т. е. системы механохимические, построены из различных фибриллярных белков, взаимодействующих друг с другом. Естественно, что внутримолекулярная и молекулярная подвижность, т. е. конформацион-ные движения, играют главную роль в динамике надмолекулярных структур. В конечном счете электронно-конформационные или ионно-конформационные взаимодействия лежат в основе всей клеточной динамики. [c.611]

    Д. Конденсация воды над наиболее слабо взаимодействующими участками поверхности (неполярными областями) приводит к образованию многослойного покрытия при степени гидратации 0,4 г воды/г белка. На поверхности белка вода должна располагаться особым локальным образом для достижения высокого значения степени покрытия в расчете на одну молекулу адсорбированной воды. Конденсация является главным этапом процесса гидратации. Это видно из результатов измерения теплоемкости, т. е. статических измерений, и является тем пунктом, с которого начинается изменение динамических свойств (диэлектрической релаксации, времени корреляции для спиновой метки, ферментативной активности). Подвижность системы белок — вода резко увеличивается после завершения формирования монослоя. [c.134]

    Основные успехи разделения биополимеров в гетерогенных системах достигнуты при использовании равновесия между раствором и твердой фазой. Одними из наиболее ранних приемов, сохранивших свое значение и до настоящего времени, являются методы осаждения и кристаллизации. Еще большее значение в настоящее время играют процессы сорбции и их динамическая модификация — процессы хроматографии. Одноактная сорбция белков на окислах металлов и других минеральных сорбентах служит для очистки белков и ферментов уже несколько десятилетий. К этим процессам присоединилась избирательная сорбция белков ионообменными смолами. Одним из наиболее значительных достижений современной физической химии в области фракционирования сложных смесей веществ, в частности белков, нуклеиновых кислот, полипептидов, аминокислот и нуклеотидов, явилась хроматография, особенно в виде ее ионообменной модификации и гельфильтрации на сефадексах. [c.7]


    Анализ ряда ферментов показал, что они являются просто белками и не содержат иных соединений. С другой стороны, известно значительное число ферментов, представляющих собой системы из двух составных частей белка, иногда называемого апоферментом, или носителем, и активной, или прос.тетической, группы небелковой природы, Активная группа может быть прочно связана с белком и не терять связи с ним в процессе катализа, но может удерживаться и очень слабо и в ходе метаболических реакций переходить с одного ферментного белка на другой. В этом случае активную группу часто называют коферментом. Ко-фермент, субстрат и белок объединяются в общий комплекс в момент реакции. Мы встречаемся здесь с весьма своеобразным явлением, резко отличающимся от тех, к которым мы привыкли при изучении обычных каталитических реакций в неживой природе. Динамические свойства ферментов определяются динамикой образования и распада белковых структур высших порядков и самого белка. Если же активная группа фермента имеет небелковую природу, то, вообще говоря, скорость обмена белковой и небелковой частей могут и не совпадать. Активные группы некоторых ферментов представляют собой витамины запас витаминов в организме нуждается в постоянном пополнении, так как высшие организмы не способны сами синтезировать их. Это тот крайний случай, когда скорость образования активной группы сама по себе равна нулю и практически зависит от темпа введения витаминов с пищей. [c.54]

    Можно предположить, что в природе существовали механизмы, производящие различные белки белков всегда был избыток, и органические молекулы, способные к каталитическим функциям, образовывали с ними огромное число сочетаний некоторые из них приобрели в системах регулирования повышенную ценность и были вовлечены в процесс репродукции в возникшей динамической структуре. [c.179]

    Фотосинтетические процессы связывают химию космоса с биохимией Земли. Потоки квантов, возникающие в результате бурных ядерных реакций, разыгрывающихся на Солнце, возбуждают синтезы органических веществ в растениях и микроорганизмах. Энергия Солнца запасается в молекулах белков, углеводов и жиров, из которых живые системы строят сложные динамические структуры. [c.220]

    Жизнь представляет собой тонкое динамическое равновесие между рядом синтезов и распадов, осуществляемых в открытой системе. Особенностью живых организмов является ускорение химических реакций при помощи таких катализаторов, которые создаются самими организмами. Эти катализаторы получили название ферментов (энзимов) и представляют собой белковые молекулы. Некоторые из ферментов — весьма стабильные и растворимые соединения и сравнительно легко поддаются выделению и очистке. В принципе выделение и очистка ферментов совершаются при помощи методов, которые используются в белковой химии, но ферменты выгодно отличаются от других белков тем, что они обнаруживают свое присутствие способностью катализировать определенные реакции. Это свойство дает возможность обнаружить фермент даже при его ничтожном содержании в материале. В настоящее время получено в кристаллическом виде или в состоянии высокой очистки свыше 140 ферментов. [c.202]

    Такие ферменты, идентичные по своей каталитической функции, но различные по другим молекулярным характеристикам, называются изоэнзимами или изозимами. Образование дублирующих друг друга ферментных белков связано с существенными затратами, но это обеспечивает клетке возможность специфической и точной регуляции систем, содержащих одинаковые этапы. Существование изоэнзимов, различающихся по конечному назначению, составляет одно из важных условий динамической организованности метаболизма. Конечная функция или назначение фермента становится существенным дополнением к его непосредственной функции. Существование различных молекулярных форм ферментов, аналогичных по своей специфической основной функции, но различных по конечному назначению в физиологическом отнощении, является одним из важнейших условий нормального метаболизма клетки. Химические сигналы в клетке могут приниматься избирательно, и таким образом создается весьма точно действующая система строго направленных каналов связи для управления обменом веществ на основе информации о внутри- и внеклеточной химической среде. [c.243]

    Мы рассмотрели несколько биологически важных внутриклеточных структур, имеющих характер частицы и выполняющих определенные более или менее известные функции. Понимание природы этих частиц может послужить выяснению ряда других динамических процессов, происходящих в живой клетке и, следовательно, в тканях. Если взять, к примеру, мышечное сокращение, то в нем в единый комплекс сплетаются влияние нервного импульса, гистологической структуры мышц, молекулярного строения мышечных белков, их ферментативных свойств, биохимических реакций, электрохимических изменений и ряда тепловых и физико-механических процессов. В простейших организмах функции подвижности и возбудимости связаны практически с одними и теми же биологическими структурами, но в результате дифференцирования в процессе эволюции они проявляются затем в различных специализированных структурах в конечном счете в скелетной мускулатуре и нервной системе. Естественно, что структура и биохимические процессы в мышечной и нервной тканях отличаются необычайной сложностью и их рассмотрение следует отнести к области специальной литературы. [c.312]

    Стохастический подход к выяснению механизмов самоорганизации белковой глобулы позволяет прояснить некоторые закономерности этого процесса. Однако для выяснения реальных путей сворачивания конкретных белков необходимо изучение их динамического поведения и строения гиперповерхности потенциальной энергии макромолекулы. Именно особенности строения гиперповерхности потенциальной энергии в конфигурационном пространстве определяют направленность движения системы в процессе сворачивания к нативной конформации. [c.252]

    Кроме того, невалентные фермент-субстратные взаимодействия реализуются в системах, состоящих из многих сотен атомов, в то время как электронные, чисто химические взаимодействия происходят в активном центре между ограниченным числом атомов, принадлежащих функциональным группам. Невалентные взаимодействия приводят к конформационным изменениям, характерные времена которых намного больше, чем времена колебательной релаксации, сопровождающие чисто электронные переходы. На первом этапе катализа определяющее значение приобретает характер структурно-динамического взаимодействия фермент - субстрат. На втором этапе, после образования активного комплекса, основную роль уже играют квантово-механические электронные процессы взаимодействия между ограниченным числом атомных групп в активном центре. Следовательно, конформационно-динамические аспекты ферментативного катализа, связанные с формированием химически активной конфигурации, можно рассматривать независимо от кванто-во-механической природы элементарного акта разрыва связей субстрата в активном центре. Это обстоятельство отражает природу ферментативного акта как следствие электронно-конформационных взаимодействий в молекуле белка-фермента. [c.427]

    Третья причина развития теоретической энзимологии за последние десятилетия главным образом в терминологическом и популяризационном планах связана с рядом ограничений самого рентгеноструктурного анализа. Во-первых, несмотря на уникальность и ценность этого метода как практически единственного источника информации о трехмерных структурах белков, получаемые им результаты касаются только статического состояния фермента и, следовательно, прямо не отвечают на вопрос о динамических конформационных и электронных характеристиках активной конформации, что представляет первостепенный интерес в изучении биокаталитического процесса. Выявление потенциальных возможностей объектов исследования и предсказание их поведения - прерогатива теоретического подхода. Во-вторых, рентгеновский метод позволяет расшифровать трехмерные структуры комплексов ферментов, но комплексов не с субстратами, а с ингибиторами. Могут быть получены структурные данные о целой серии ингибиторных комплексов одного фермента, которые в той или иной мере (но всегда неявной) соответствуют химическим элементарным стадиям каталитического акта. Однако в таком наборе все ингибиторы отличаются по своему химическому и пространственному строению как от истинного субстрата, так и друг от друга. Не зная продуктивной ориентации субстрата в активном центре, а также актуальных для катализа фермент-субстратных взаимодействий и обусловленных ими конформационных перестроек и имея дело со сложной системой, трудно составить полное и объективное представление о причинах спонтанного протекания каталитической реакции. Предпринимаемые здесь попытки представляют собой стремление воссоздать механизм каталитического акта, располагая структурными данными, одна часть которых отвечает реальному, исходному состоянию фермента, а другая, большая часть, фермент-ингибиторным комплексам, которые в чем-то (в чем именно, неизвестно) отличаются от промежуточных продуктивных комплексов истинного многостадийного процесса. [c.106]

    Распространенность представления об энергетической предпочтительности вторичных структур можно объяснить традицией, недооценкой роли боковых цепей и, главным образом, отсутствием альтернативных соображений. В связи с тем, что при статистическом анализе нельзя учесть взаимодействия боковых цепей и определить их конформации, на основе такого подхода невозможно прийти к пониманию принципов пространственной организации белковой молекулы и созданию физической теории. Сложнейшая система взаимодействий боковых цепей специфична для каждого природного аминокислотного порядка, и поэтому только она ответственна за беспредельное многообразие трехмерных структур белковых молекул и их динамических конформационных свойств. Реализующаяся пространственная структура белка определяется конкретной аминокислотной последовательностью. В силу своей уникальности, она непредсказуема на основе статистических характеристик уже изученных белков (речь не идет о гомологах). Понятие "среднего белка" здесь имеет еще меньший смысл, чем, например, понятие "средний автомобиль" или "средний мост". [c.330]

    Белки могут быть разбиты на два больших класса в соответствии с формой их молекул и некоторыми физическими свойствами глобулярные и фибриллярные белки (рис. 6-1). В глобулярных белках одна или большее число полипептидных цепей свернуты в плотную компактную структуру сферической, или глобулярной, формы. Обьлно глобулярные белки растворимы в водных системах и легко диффундируют одни из.этих белков выполняют функции, обусловленные их подвижностью, а другие функционируют как динамические системы. К глобулярным белкам относятся почти все ферменты, равно как и транспортные белки крови, антитела и пищевые белки. Фибриллярные белки представляют собой нерастворимые в воде длинные нитевидные молекулы, полипептидные цепи которых не имеют глобулярной формы, а вытянуты вдоль одной оси. Большинство фибриллярных белков выполняет структурные или защитные функции. Типичными фибриллярными белками являются а-кератин волос и шерсти, фиброин шелка и коллаген сухожилий. [c.140]

    Если причиной дифференциации служит различие в скоростях работы генов, то все явление в целом представляет собой пример временного кодирования в слож-нокодированной пространственной структуре. Хромосома (ее ДНК) служит кодом для образования молекул РНК, в свою очередь обусловливающих кодированный синтез белков. Но если на разных участках хромосомы молекулы РНК возникают с различной скоростью, то совокупность скоростей определяет некоторый временный код, от которого зависит в динамической системе относительное количество ферментов и, следовательно, тот или иной уклон в общей массе процессов метаболизма. На этой основе можно хотя бы приблизительно осмыслить механизм дифференциации. В гигантских хромосомах дрозофилы содержат пучки хромосом, причем в тех местах, где гены тесно примыкают друг к другу, белковый синтез замедлен, а в тех зонах ( пуффы ), в которых хромосомы расположены более рыхло, образование белка идет более энергично. В ходе развития эмбриона изменяется и расположение пуффов. [c.213]

    Обратимся теперь к развитой Пригожиным в 1970-1980-е годы нелинейной термодинамике неравновесных процессов, важнейшими составными частями которой являются теории диссипативных систем и бифуркаций. На первый взгляд может показаться, что рассмотренные на ее основе системы существенно отличаются от выбранной системы структурной организации белков. Конвекционные ячейки Бенара, когерентное излучение лазера, турбулентное движение жидкости, реакция Белоусова-Жаботинского, модель Лотке-Вольтерра, описывающая взаимоотношения между "хищником и жертвой", - все это открытые диссипативные структуры. Динамические процессы перечисленных и подобных им неравновесных макроскопических систем, действительно, приводят при достижении условий, превышающих соответствующий критический уровень, к спонтанному возникновению из беспорядка высокоорганизованных пространственных, пространственно-временны х и просто временных структур. Однако во всех случаях поддерживание возникшего из хаоса порядка в стационарном режиме оказывается возможным только при постоянном энергетическом и/или материальном обмене между окружающей средой и динамической системой. Совершающийся в такой открытой системе неравновесный процесс вдали от положения равновесия связан с диссипацией, т.е. с производством энтропии, или, иными словами, с компенсируюпщм это производство потреблением негэнтропии из окружающей среды. Перекрытие внешнего потока негэнтропии автоматически приводит к прекращению системой производства энтропии и, как следствие, распаду созданной диссипацией структуры. У открытых диссипативных систем аттрактором является не равновесное состояние, а расположенное далеко от него состояние текущего равновесия. [c.462]

    Большое значение для понимания роли белков в системе ней-рон-нейроглия имеют исследования их метаболизма. Эти исследования позволяют изучить не только динамическое состояние нейрональных и нейроглиальных белков, но и их взаимоотношения. Экспериментальные данные свидетельствуют о том, что синтез нейрональных белков протекает в 2-3 раза интенсивнее по сравнению с нейроглиальными белками. Метаболизм белков различен не только в зависимости от клеточной популяции, но и внутри самой популяции. Так, установлено, что метаболизм белков крупных нейронов имеет более высокий уровень по сравнению с мелкими нейронами, а белки астроцитов метаболируют интенсивнее белков олигодендроглии. Эта закономерность прослеживается как у взрослых, так и у растущих животных. [c.198]

    Липиды — это амфифильные соединения они образуют мицеллы, если содержат по одной жирнокислотной цепи, и двойные слои или бислойные пузырьки, если таких цепей две. Свойства и состав двух поверхностей бислоя не обязательно одинаковы. Природные мембраны помимо липидов содержат большое количество белков. Периферические белки легко экстрагируются из мембраны, в то время как интегральные мембранные белки прочно связаны с ней, вероятно, с помощью гидрофобного участка пептидной цепи. Некоторые интегральные цепи локализуются только на одной поверхности мембраны, другие пронизывают ее насквозь. В липидных бислоях происходят фазовые переходы между состояниями, которые условно можно считать твердым и жидким. В природных мембранах тоже наблюдаются аналогичные переходы, а также латеральное фазовое разделение. От других биологических тpyктyi) мембраны отличает то, что они являются динамическими системами. В них происходит довольно быстрое латеральное перемещение белков и липидов и вращение различных компонентов. Однако перескок компонентов с одной поверхности на другую происходит весьма редко. [c.235]

    Фоточувствительные системы (фотоферменты) являются удобными объектами для анализа возможных корреляций между динамическими и функциональными свойствами белков. После светового импульса можно наблюдать перенос электрона по цепи, а с помощью внутренних и внешних физических меток следить за динамическими состояниями матрицы. Такое исследование было проведено на реакционных центрах (РЦ) [c.556]

    Так как при статистическом анализе невозможно учесть взаимодействия боковых цепей и определить их конформации, то и нельзя на основе эмпирического подхода прийти к пониманию принципов пространственной организации белковой молекулы. Ведь именно сложнейшая, строго упорядоченная, однако не сводящаяся к регулярной, система взаимодействий боковых цепей специфична для каждого природного аминокислотного порядка, а поэтому только она и ответственна за практически беспредельное многообразие трехмерных структур белковых молекул и их динамических конформационных свойств. Реализующееся пространственное строение белка определяется конкретной аминокислотной последовательностью. В силу уникальности последней ее нативная геометрия непредсказуема на основе среднестатистических характеристик уже изученных белков. Вероятностный подход адекватен синтетическим полипептидам, строение и свойства которых статистичны и описываются равновесной термодинамикой и статистической физикой. Белок же в физиологических условиях однозначно детерминирован как в отношении своих конформационных свойств, так и функции, и должен являться объектом рассмотрения нелинейной неравновесной термодинамики. [c.80]

    Рассматриваемая здесь задача является качественно иной, имеющей смысл только для избранных, главным образом, природных аминокислотных последовательностей. Поэтому ее решение может быть вьпюлнено лишь на основе самостоятельной теории, учитывающей выработанную эволюцией конформационную специфику белков, а именно статистикодетерминистический механизм структурной самоорганизации и детерминистическую (в отношении как статических, так и динамических свойств) природу нативных конформаций белковых молекул. Стремление описать сборку белка с чисто статистических позиций, не учитывающих гетерогенности цепи и взаимообусловленности поведения макроскопической системы от внутреннего строения микроскопических составляющих, объясняется иллюзорным представлением о том, что в этом случае можно идти по уже проторенному для синтетических полимеров пути и тем самым избежать разработки несравненно более сложного статистико-детерминистического подхода. Однако традиционный поиск решения не отвечает самой сущности рассматриваемого явления, и, следовательно, все попытки дать чисто статистическую трактовку структурной самоорганизации белка следует признать, как отмечалось, обреченными на неудачу (см. разд. 1.3). [c.101]

    Основная функция нуклеиновых кислот заключается в хранении, воспроизведении и передаче генетической информации. Являясь системами динамическими, нуклеиновые кислоты осуществляют все процессы с высокой скоростью и эффективностью, постоянно аэаимодействуя с соответствующими белками, прежде всего с ферментами. Главными процессами с их участием являются репликация, транскрипция и трансляция. [c.406]

    Представление о стабильности внутриклеточных молекул белка, противопоставляемое идее о том. что эти молекулы пребывают в состоянии динамического равновесия, находит подтверждение в исследованиях, проведенных на некоторых бактериальных системах. Моно и сотрудники [600, 601] исследовали индуцированный синтез р-галактозидазы в растущих клетках Es heri hia oli. При выращивании на сравнительно простой среде, содержащей соли и янтарную кислоту, эти микроорганизмы не синтезируют заметных количеств р-галактозидазы. Если же добавить к растущей культуре соответствующее индуцирующее соединение (например, галактозид, который не обязательно является субстратом р-галактозидазы), то клетки начинают синтезировать р-галактозидазу в таком количестве, что [c.275]

    Вода играет важную роль в живых системах и в значительной степени определяет структуру и функции биологических полимеров, таких, как белки. Однако в этом сообщении мы сконцентрируем внимание в первую очередь не на том, как влияет вода на биополимеры, а на влиянии биополимеров на воду, которая с ними взаимодействует. Представляют интерес изменения структурных, энергетических и динамических свойств молекул воды. В результате изучения вращательной подвижности молекул воды на поверхности белков молекулы растворителя были поделены на три группы [1]. Первая группа включает быстро реориентируемые молекулы с временем вращательной релаксации (тг) не более 10 " с. В следующую группу входят частицы, имеющие время вращательной релаксации пример,но 10 с они предположительно идентифицируются как молекулы воды, связанные сильной связью с ионными остатками. Третья группа имеет Тг порядка 10- с эти молекулы растворителя считаются связанными с макромолекулами связями, запрещающими вращение примером могут служить четыре молекулы воды, распо- [c.31]

    Объясните каждый из приведенных терминов азотистый резерв, динамическое состояние тканевых белков, незаменимые аминокислоты, полноценный белок, гем, порфин, система сопряженных связей, тетрапиррольный пигмент, вердогемоглобин, биливердин, билирубин, ферритин, билиноген и его отношение к стеркобилиногену и уробилиногену, билин и его отношение к стеркобилину и уробилину, проба на билирубин, желтуха, гемолиз... [c.415]

    Величину М необходимо определить с помощью статического или динамического эксперимента. При этом следует обратить внимание на обычно наблюдающееся постепенное снижение скорости межфазного обмена на ионитах с ограниченной проницаемостью для изучаемых крупных ионов. Опыты показывают, что значение коэффициентов диффузии в зерне сорбентов постепенно падает от 10" (10" ) до 10" (10 ) см /с. Для завершения процесса на зернах радиусом 200—300 мкм в этих системах требуется 5— 10 (20) ч. Степень ошибки в определении величины с при этом не превосходит нескольких процентов, что не искажает теоретического анализа препаративных, а тем более производственных процессов. Следует учитывать к тому же, что степень индивидуальности используемых для экспериментальной работы ионов антибиотиков, алкалоидов, гормонов и ферментов, как правп.по, не достигает 95—97 %, а чаще (особенно для белков, даже кристаллических) оценивается еще меньшей величиной. Естественно, возникает здесь и вопрос об оценке равновесия, которое может быть как истинным, так и метастабильным. [c.88]

    При увеличении общей концентрации белка значение коэффициентов седиментации обычно падает. Если же при увеличении концентрации белка коэффициент седиментации возрастает, это указывает на то, что между компонентами системы установилось состояние динамического равновесия (гл. УП1). Причина уменьшения значения 5 с увеличением концентрации белка подробно обсуждается Шахманом [1]. Данное явление связано с изменением плавучих плотностей, влиянием вязкости и с обратными потоками, возникающими при седиментации вещества. Моделью седиментации может служить движение жидкости через неподвижную пористую перегородку [2, 3], Однако описывающие эту модель математические уравнения непригодны для описания седиментации при больших разбавлениях. Это очень интересный подход, но, к сожалению, его нельзя подробно осветить в таком кратком вводном курсе, как эта книга. [c.60]

    Анионообменной обработкой достигалось снижение кислотности молока до требуемой величины, катионообменной — частичное уда-. ление кальция для восстановления солевого равновесия молока. Контакт молока с анионитами осуществлялся как в статических, так и в динамических условиях. Катионообменный процесс проводился только в статических условиях, так как в динамических условиях при контакте молока с гранулами катионита в Н-форме происходит коагуляция белка в результате сильного местного повышения кислотности и забивание пор ионообменной колонки свернувшимся молоком. Обработку молока ионитами проводили двумя способами только анионитом или системой анионит — катионит— анионит, после чего молоко направлялось в вакуум-аппарат для сгущения. Технологические режимы ионообменной обработки молока в лабораторных условиях приведены в табл. 3. [c.288]

    У взрослых животных содержание ферментов в тканях практически не меняется, и их количество определяют по константе скорости реакции нулевого порядка их синтеза и константе скорости реакции первого порядка их распада. Динамическое состояние отдельного белка часто характеризуют скоростью полуобновления, выраженной через период его полужизни для ферментов из печени крысы, органа, исследуемого чаще других, период полужизни колеблется от 0,2 до 150 ч. Корреляция между скоростью полуобновления и функцией фермента или между скоростью полуобновления и субклеточной локализацией фермента, по-видимому, выражена слабо [4122]. Однако исследования показали, что в печени крысы высокомолекулярные полипептиды расщепляются быстрее, чем небольшие молекулы. Из этого правила, однако, имеется много исключений, так что размер фрагмента—-субстрата системы деградации, вероятно, является только одним из факторов, влияющих на скорость катаболизма [1082]. [c.115]

    Эта сложная система может обладать своеобразным динамическим поведением. Действительно, оказалось, что для концентрации внутриклеточного посредника, — ионов Са , характерно колебательное изменение в ответ на сигналы гормонов и медиаторов. В клетке наблюдаются осцилляции внутриклеточной концентрации Са с периодами от < 1 до почти 30 мин. Рассмотрим одну из моделей этого явления (Голдбетер). Под влиянием гормона и, соответственно, рецептора Д с С-белком активируется фосфатидилинозитспецифическая фосфолипаза С, которая гидролизует фосфатидилинозит-1,4-бисфосфат с образованием инозит-1,4,5-трифосфата 1Рз и диацилглицерина ДГ (рис. XXVI.10). 1Рз воздействует на 1Рз-зависимый внутриклеточный пул Са через свои рецепторы, заполняемые им со степенью р. Скорость индуцированного выхода Са из 1Рз-чувствительного пула, пропорциональна насыщению р рецептора 1Рз. Таким образом, 1Рз регулирует выход в цитозоль ионов Са , которые в свою очередь запускают осцилляторные циклы выброса [c.272]


Смотреть страницы где упоминается термин Белки динамические системы: [c.17]    [c.162]    [c.311]    [c.609]    [c.282]    [c.349]    [c.179]    [c.255]    [c.53]    [c.102]    [c.116]   
Возможности химии сегодня и завтра (1992) -- [ c.173 ]




ПОИСК







© 2025 chem21.info Реклама на сайте