Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация плотность

    Из уравнения (5 38) следует, что с ростом степени ориентация, плотности связей, т. е. с увеличением Л о, время до разрыва увеличивается, [c.320]

    В общем случае узор, согласно которому укладываются. молекулы в элементарной ячейке, т. е. и.ч число, взаимная ориентация, плотность расположения и т. д., трудно заранее предсказать, исходя лишь из [c.44]

    Структура межфазных слоев определяется строением макромолекул, их ориентацией, плотностью упаковки в пограничном слое, а также химической природой поверхности твердого тела. К выводу об иной структуре поверхностных слоев приходят ряд исследователей, изучавших структурообразование в полимерных системах в присутствии частиц твердой фазы П. А. Ребиндер [44—48], Б. В. Дерягин [49, 50], П. В. Козлов [55—58], В. А. Каргин и Ю. С. Липатов [53, 54] и многие другие авторы [55—58]. Упрочнение пограничного слоя обычно связывают с ориентацией макромолекул. С использованием данных ИК-спектроскопии было показано, что толщина адсорбционного слоя намного превышает толщину мономолекулярного слоя [59, 60]. [c.38]


    С увеличением степени ориентации плотность волокна, выделение воды и особенно его прочность резко возрастают, в то время как способность к дальнейшей вытяжке снижается. Вытягивание (даже до 150%) широко применяется в производстве для того, чтобы получить волокна с хорошими текстильными свойствами. [c.62]

    Помимо величины адсорбции и силы связи между молекулами адсорбата и адсорбента определенное влияние на эффективность противоизносного действия присадок оказывают также характер ориентации молекул в адсорбированном слое и плотность упаковки последнего. Считается, что молекулы ПАВ могут ориентироваться в граничном слое не только перпендикулярно, но и параллельно поверхности адсорбента. К числу таких ПАВ относятся и мно- [c.257]

    Указанный выше статистический характер упорядоченного расположения молекул в жидкости приводит к тому, что в жидкости (как и в газе) имеются всегда временные местные отступления от средней плотности и ориентации. Эти флуктуации плотности и ориентации тем реже осуществляются в данной области, чем они больше по величине. В жидкости флуктуации всегда имеются, но они особенно велики вблизи критической точки, где вызывают опалесценцию. [c.162]

    В растворах наблюдаются те же явления ближнего кристаллического порядка и флуктуации, осложняющиеся наличием молекул нескольких, по крайней мере двух сортов. К флуктуациям плотности и ориентации прибавляются флуктуации концентрации, вследствие которых в любом небольшом участке раствора очень часто осуществляется временное увеличение концентрации того или другого компонента по сравнению со средним составом раствора. [c.162]

    То, что система нитей при плотности числа частиц больше критического значения приближается по своим свойствам к идеальному газу, позволяет ожидать, что при ограничении движения центров масс частиц в этих условиях основной вклад в поверхностные силы будут давать ориентационные эффекты. Ниже приведены результаты расчета для модели прослойки, в которой движение центров масс нитей ограничивалось параллельными линиями на расстоянии Н друг от друга независимо от их ориентации. Расчеты проведены для ограниченных систем нитей при ехр [ц /С Г)] = 10. Ориентационная упорядоченность системы характеризуется величиной <5 >, которая отражает также характер флуктуаций параметра порядка. [c.131]


    Но, разумеется, наличие границы сказывается на структуре кластеров. В объемной воде ориентация молекул воды, естественно, хаотична. В кластерах наблюдается преимущественная ориентация диполей молекул параллельно границе кластера [401, 402, 404]. При этом обнаруживается стремление атомов водорода молекул воды находиться на периферии кластера [400, 402, 404]. В проведенных нами численных экспериментах с использованием других потенциальных функций — потенциалов (1) [393]—эти выводы были подтверждены (рис. 8.4) это свидетельствует о том, что количественные результаты численного эксперимента справедливы для широкого класса потенциальных функций. Границы кластеров выражены достаточно четко, о че.м свидетельствует резкое спадание их средней плотности на некотором расстоянии от центра масса [402, 404]. [c.144]

    Если ядро с квадрупольным электрическим моментом (ядерный спин 7 1 см. разд. 7.2 и рис. 7.1) находится в неоднородном электрическом поле, являющемся следствием асимметрии электронного распределения, то может возникнуть градиент электрического поля (см. ниже). Квадрупольное ядро будет взаимодействовать с этим градиентом электрического поля в различной степени в зависимости от различных возможных ориентаций эллиптического квадрупольного ядра. Поскольку квадрупольный момент возникает в результате несимметричного распределения электрического заряда в ядре, нас будет больше интересовать электрический квадрупольный момент, нежели магнитный момент. Число разрешенных ядерных ориентаций определяется ядерным магнитным квантовым числом т, которое принимает значения от -(- / до — 1 (всего 27 -Ь 1). Низший по энергии уровень квадруполя соответствует ориентации, для которой наибольшая величина положительного ядерного заряда располагается ближе всего к наибольшей плотности отрицательного заряда в электронном окружении. Разности энергий различных ориентаций не очень велики, и при комнатной температуре в группе молекул существует распределение ориентаций. Если электронное окружение ядра является сферическим (как в С1 ), то все ядерные ориентации эквивалентны и соответствующие энергетические состояния квадруполя вырождены. Если сферическим является ядро (/ = О или 1/2), то энергетических состояний квадруполя не существует. В спектроскопии ЯКР мы изучаем разности энергий невырожденных ядерных ориентаций. Эти разности энергии обычно соответствуют радиочастотному диапазону спектра, т.е. от 0,1 до 700 МГц. [c.260]

    В напорных и дренажных каналах плоскокамерного модуля реализуется двумерное течение газа с односторонним или двусторонним отсосом или вдувом при этом канал может быть ориентирован горизонтально или вертикально. В рулонных модулях кривизна канала не слишком велика, и в первом приближении можно использовать модели двумерного течения, однако следует учесть меняющуюся ориентацию стенок канала относительно вектора силы, связанной с гравитацией. В трубчатых и половолоконных элементах внутренний канал обладает симметрией тела вращения, течение в них также двумерно. Внешняя цилиндрическая поверхность элемента омывается потоком газа, возникает задача массообмена на проницаемых поверхностях, образованных пучком трубок. Следует отметить, что свободноконвективное движение (возникающее при потере устойчивости двумерного вынужденного движения вследствие концентрационной неоднородности плотности среды) в общем случае усложняет течение газа, делает его трехмерным. [c.121]

    Диаграмму сдвига для развитого псевдоожиженного слоя (если не рассматривать упомянутые выше искажения) можно представить как функцию зЬ, что легко объяснить исходя из так называемой структурированной вязкости. При увеличении силы сдвига изменяются кинетическая энергия и ориентация твердых частиц, обусловливая некоторое изменение структуры. Разница между первоначальной неупорядоченной структурой слоя и новой структурой с частичной ориентацией не может быть обнаружена рентгеноскопическим методом Столь небольшое изменение структуры мало влияет на плотность слоя, но, очевидно, вызывает понижение напряжения сдвига (нри высоких градиентах скорости последнего). Следовательно, вязкость слоя (т. е. отношение напряжения к скорости сдвига) не является постоянной, а уменьшается с увеличением скорости сдвига. [c.242]

    Для ориентации при выборе одной из фильтровальных тканей применительно к осуществлению данного процесса разделения суспензии необходимо иметь сведения о назначении фильтрования (получение осадка, фильтрата или того и другого одновременно), а также по возможности полные данные о свойствах твердых частиц (размер, форма, плотность), жидкости (кислая, щелочная, нейтральная температура, вязкость, плотность), суспензии (соотнощение твердой и жидкой фаз, агрегация частиц, вязкость), осадка (удельное сопротивление, сжимаемость кристаллический, рассыпчатый, пластичный, липкий, слизистый). Кроме того, следует иметь представление о производительности, что поможет определить движущую силу процесса (сила тяжести, вакуум, давление). [c.377]


    В фото электронных графопостроителях дополнительно к ЭЛТ используется устройство регистрации изображения типа фотоаппарата. В фото-электронных графопостроителях используются прецизионные ЭЛТ с экраном от 130 до 180 мм. Они обладают малым размером пятна и сохраняют этот размер и равномерную световую отдачу постоянными при перемещении пятна по, экрану трубки. Такая трубка позволяет записывать детальную информацию и получать одинаковые по внешнему виду выходные документы, что очень важно для пользователей. Возможность увеличивать или уменьшать размер пятна на экране ЭЛТ графопостроителя позволяет выбирать толщину линий, а для многообразия средств изображения текстового материала могут изменяться высота знаков, а также их плотность и ориентация. Скорость формирования знаков на таких графопостроителях обычно лежит в диапазоне 104—105 знаков/с, а скорость вычерчивается линией в диапазоне 5—140 км/с. [c.137]

    Интересно, что такое расположение очень далеко от наиболее плотной укладки молекул. В последнем случае, если укладывать шары радиусом 1,38 A, то мольный объем льда мог бы равняться мл, в то время как в действительности он равен 9,6 мл, т. е. примерно в два раза больше. Это происходит потому, что при раз-мешении молекул в более плотной структуре ие могла бы сохраниться такая их взаимная ориентация, которая отвечает тетраэдрическому распределению четырех связей кислородного атома и которая необходима для возникновения водородной связи. Искажение же валентных углов требует затраты значительного количества энергии. Всем этим объясняется рыхлая структура льда и тот факт, что плотность льда меньше, чем плотность жидкой воды. [c.140]

    Интенсивность процесса конвективного теплообмена существенно зависит от условий движения среды, которые, в частности, определяются скоростью течения и геометрией канала. При естественной конвекции следует также принимать во внимание ориентацию поверхности нагрева, поскольку силы, обусловленные разностью плотностей среды, всегда направлены противоположно силам гравитации. [c.98]

    Постоянная а, отражающая форму и плотность клубка макромолекулы, зависит от природы растворителя и гидродинамического взаимодействия в объеме клубка. Значения ее лежат в основном в пределах от 0,5 до 1,0. В хорошем растворителе макромолекула развертывается и занимает большой объем, увеличивая вязкость, а в плохом растворителе она свертывается в плотный клубок, и вязкость при той же концентрации оказывается значительно меньше. Напрпмер, для гибких макромолекул каучука в толуоле а A 0,64, для более жестких молекул целлюлозы и ее производных аж 0,81, а для растворов нитроцеллюлозы в ацетоне а 1,0. Как уже отмечалось, для растворов полимеров часто наблюдается снижение вязкости с увеличением напряжения, что объясняется разворачиванием клубков макромолекул и их взаимной ориентацией в потоке. Чем больше напряжение, тем больше развертывание макромолекул, их ориентирование и тем меньше вязкость. [c.372]

    На прочность агломератов оказывает влияние ряд факторов, из которых важнейшими являются число (площадь) контактов между зернами системы и прочность этих контактов. Очевидно, что площадь контактов 5конт пропорциональна общей площади 5 порошкообразной системы. Кроме того, 5коят зависит от формы частиц, их относительной ориентации, плотности упаковки, обусловленной приложенным к системе усилием (давлением). Очевидно, что сферические частицы образуют наименьшее число контактов, пористость (пустотность) системы в таком случае наибольшая. Частицы же неправильной формы, особенно игольчатые, волокнистые, с шероховатостями и выступами создают значительно большее число контактов. Плотность упаковки частиц определяется в значительной степени гранулометрией порошка. В монодисперсных системах плотность контактов между зернами меньше, чем в полидисперсных, так как во втором случае пустоты между крупными зернами заполняются более мелкими частицами. Таким образом, чем меньше пористость порошка и плотнее его упаковка, тем больше контактов между зернами порошка. При прессовании число таких контактов еще более увеличивается, а прочность прессовки возрастает. [c.298]

    Если образец не обладает предпочтительной ориентацией (например, беспорядочно ориентированная масса мелких кристаллов порошка), рассеянные лучи расходятся по образующим кругового К01нуса, осью которого служит ось первичного п ка рентгеновских лучей. При пересечении этих конусов с фотографической пленкой и образуются линии рентгенограммы порошка. Если, однако, кристаллики обладают предпочтительной ориентацией, плотность линий на рентгенограмме становится неоднородной, что указывает на ориентацию. Одной из значительных работ по изучению ориентации в области катализа является работа Бика [1]. При помощи метода диффракции электронов Бик показал, что никелевые пленки, полученные при определенных условиях, обладают необычной каталитической активностью, которая связана с частичной ориентацией кристаллов никеля. [c.358]

    Температура образования монокристальных ориентировок Б толстых слоях (Те2)- Она в зав исимости от различных обстоятельств может лежать существенно выще Tei. При осаждении вещества на первоначальный слой пересыщение отклоняется от значения, соответствующего кристаллизации на чистой подложке. Если свободная адсорбционная энтальпия осажденного вещества на ту же по составу подложку AG° > AGa, то пересыщение при образовании зародыщей на начальном слое выше, чем при образовании зародышей на непокрытой подложке. Поэтому на начальном слое могут расти зародыши не только с той же ориентацией, но и такие, для которых AG (g ) >AG(g ), причем AG(g ) представляет собой изменение свободной энтальпии всей системы при образовании зародышей на непокрытой подложке. Для сохранения начальной ориентации плотность частиц в паре должна быть уменьшена соответствующим образом. Ухудшение степени ориентировки при увеличении толщины слоя может происходить и под влиян ием других причин, например из-за образования чужеродных зародышей, зародышеобразования в паре и др. [c.314]

    При трехмерной ориентации плотность осей волокон, ориентированных в заданном направлении, может быть охарактеризована величиной йМ1йО., где N — количество осей частиц наполнителя, проходящих через телесный угол Q. При хаотичном распределении волокон [c.70]

    Энтропия активации. Кроме энергии активации важным условием осуществления химической реакции является ориентация молекул в момент столкновения. Нетрудно заметить, что перераспределению электронной плотности в активном комплексе А2...В2 более всего благоприятствует условие, когда при столкиовении молекулы А2 и 83 ориеичированы, как это показа1Ю на рис. 116, а, тогда как при ори- [c.197]

    Исследование процесса образования пузырей и капель при истечении жидкостей или газов из отверстий и сопел имеет исключительно важное значение для разработки научно-обоснованных методов расчета колонных аппаратов, в которых межфазная поверхность создается путем диспергирования жидкости или газа. Механизм образования пузырей и капель чрезвычайно спожен и определяется очень большим числом параметров. Параметры, влияющие на процесс образования пузырей, можно подразделить на конструктивные, параметры, связанные со свойствами газов и жидкостей, и режимные параметры. К первому классу относятся диаметр, форма, ориентация и конструкция сопла, а также материал, из которого он изготовлен. Кроме того, чрезвьиайно важным конструктивным параметром для образования пузырей, является объем газовой камеры, из которой происходит йстечение газа в жидкость. К параметрам, связанным со свойствами выбранной системы, можно отнести поверхностное натяжение на границе раздела фаз, плотность и вязкость жидкости и газа, угол смачивания и скорость звука в газе. И, наконец, режимные параметры включают объемный расход диспергируемой фазы, величину и направление скорости сплошной фазы, высоту уровня жидкости в колонне, перепад давления в сопле и температуру. Не все названные параметры равноценны и одинаково важны для процессов образования капель и пузырей, однако большинство оказывает существенное влияние на величину отрывного диаметра и частоту образования диспергируемых частиц. [c.48]

    Стало обычным рассматривать влияние заместителя на ориентацию и скорость замещения с точки зрения изменения плотности облака электронов при различных положениях в ароматическом кольце [164, 309] как следствие индукции и резонанса. Нанример, сильная о-лг-ориептация, наблюдаемая у фенолов, исходя из этого положения, приписывается резонансному взаимодействию, которое с индукцией увеличивает плотности электронов во всех положениях кольца, но особенно в о- и п-ноложениях, [c.413]

    Подобным же образом преимущественная ж-ориентация у нитробензола является следствием резонанса с индукцией понижающего плотность электронов во всех положениях кольца, но особенно в о-и-положе-ниях, что делает этн положения наименее чувствительными к действию электрофильных реагентов (XLVIII)  [c.414]

    Например, в монозамещенных металлоорганических производных, таких, как фенилкалий (СУШ), влияние отрицательного полюса на циклический углерод должно было бы увеличивать электронную плотность кольца. Влияние должно было бы быть наиболее сильным в о-ноложении и уменьшаться для м- и и-полон ений в указанном порядке. Можно было бы ожидать, что нуклеофильный реагент должен атаковать различные положения в таком порядке п-> м->о-. Более ранние литературные данные по ориентации, наблюдаемой при введении двух атомов металла, противоречат этому. Однако в недавно опубликованной работе [66] сообщается, что при введении двух атомов металла в бензол при помощи этилкалия при 20° было получено соотношение п-/лс-замещенных, равное [c.473]

    ДЫ параллельно поверхности [2—10]. При этом эффект упорядоченной ориентации распространяется на ,0 значительное расстояние, т. е. является дальнодейст-вующим. Такое расположение молекул воды приводит к снижению плотности вблизи стенок и повышает подвижность молекул в тангенциальном направлении, что можно интерпретировать как снижение вязкости граничных слоев. Макроскопически этот эффект может проявляться как скольжение воды по гидрофобной подложке. [c.8]

    Эти результаты прямо указывают на то, что иммобилизация воды в дисперсиях гидрофильных веществ и структурообразо-вание тесно связаны между собой. Тиксотропная коагуляционная структура, по-видимому, формируется при взаимном влиянии поверхности гидрофильных частиц на структуру полислоев воды и их свойства, а структура гидратных оболочек — на характер ориентации и силы сцепления частиц твердой фазы друг с другом. Связанная вода во многом обусловливает те свойства, которые присущи коагуляционным структурам пониженную механическую прочность, способность к замедленной упругости и т. д. [135]. Вместе с тем в результате формирования коагуляционной сетки в дисперсии заметно снижается молекулярная подвижность иммобилизованной воды [136], изменяется также кинетика ее удаления из дисперсии [137]. Уже отмечалось, что в процессе структурообразования дисперсий монтмориллонита (перехода золь — гель) наблюдается обратимое увеличение объема дисперсии. Это указывает не только на понижение плотности граничных слоев воды при структуриро- [c.44]

    Изменение устойчивости ири изменении кислотности среды и незначительном изменении ионной силы может быть объяснено влиянием pH на свойства поверхности ЗЮг и, вследствие этого, на свойства и протяженность ГС. При щелочных pH образование ГС может быть связано с ориентацией диполей воды иод действием сильного электрического иоля поверхности частиц ЗЮг (л Ю В/см). Следует отметить, что при pH = 9- 11 существенную роль в устойчивости частиц кварца могут также играть поверхностные гелеобразные слои иоликремниевых кислот. При pH = 2 наблюдаемая устойчивость системы может быть обусловлена ориентацией молекул воды за счет водородных связей, возникающих около незаряженной поверхности, несущей недиссоциированные силанольные группы [502, 503, 508]. Таким образом, для золя ЗЮ2 в случае как незаряженной, так и высокозаряженной поверхности частиц возможно образование достаточно толстых и прочных ГС, что обусловливает высокую агрегативную устойчивость системы. В промежуточной области (рН = Зч-6), где с одной стороны, часть силанольных групп уже диссоциирована, а с другой стороны, плотность фиксированного заряда еще недостаточно велика, развитие ГС является минимальным. [c.175]

    Второй разновидностью вандерваальсовых межмолекулярных сил является притяжение, обусловленное такой синхронизацией движения электронов на заполненных орбиталях взаимодействующих атомов, при которой они по возможности избегают друг друга. Например, как показано на рис. 14-12, электроны на орбиталях атомов, принадлежащих взаимодействующим молекулам, могут синхронизировать свое движение таким образом, что в результате возникает притяжение между мгновенными диполями и индуцированными ими диполями. Если в некоторый момент времени атом, изображенный на рис. 14-12 слева, имеет большую электронную плотность слева (как и показано на рисунке), то этот атом превращается в крошечный диполь с отрицательно заряженным левым концом и положительно заряженным правым концом. Положительно заряженный конец притягивает к себе электроны атома, изображенного на рис. 14-12 справа, и превращает его в диполь с аналогичной ориентацией. В результате между двумя атомами возникает притяжение, потому что положительно заряженный конец левого атома и отрицательно заряженный конец правого атома сближены. Аналогичные флюктуации электронной плотности правого атома индуцируют мгновенный диполь, или асимметрию электронной плотности, на левом атоме. Флюктуации электронных плотностей происходят непрерывно, а их результирующим эффектом является очень слабое, но важное по своему значению притяжение между [c.611]

    Интересно применить эти уравнения к тензору анизотропного СТВ для ядра С, который зависит главным образом от плотности неспаренного электрона на р-орбитали атома. Рассмотрим знаки Т,, и для этой системы. Три ориентации р-орбитали в молекуле относительно направления приложенного поля показаны на рис. 9.20. Штриховыми ЛИНИЯМ указаны областп, где функция j os G - 1 равна нулю. Это позволяет учесть знаки для различных областей линий поля, создаваемого ядерным моментом. Поэтому, глядя на рис. 9.20, можно решить, каков знак [уравнение (9.34)]. Например, как следует из рис. 9.20,Л. если Pj-орбиталь направлена вдоль поля, почти полное усреднение дипольного взаимодействия ядерного момента по р,-орбитали происходит в положительной части конуса. Поэтому можно ожидать, что представляет собой большую положительную величину. Для ориентации [c.39]

    Если молекула обладает неспаренным электроном, дипольный эффект передается через пространство и ощущается исследуемым ядром. Когда д-фактор изотропен, дипольные эффекты усредняются до нуля вследствие быстрого вращения молекулы в поле. Это явление рассматривалось в главе, посвященной ЭПР, где было показано, что этот же самый эффект приводит к дипольному вкладу в сверхтонкое взаимодействие, который усредняется до нуля в растворе. В тех случаях, когда д-фактор анизотропен, величина дипольного вклада в магнитное поле на интересующем нас ядре, обусловленная плотностью неспаренного электрона на металле, зависит от ориентации молекулы относительно поля. Поскольку для разных ориентаций д-фактор имеет различные значения, этот пространственный вклад не должен усредняться до нуля в результате быстрого вращения молекулы. Таким образом, те же самые эффекты, которые приводят к анизотропии д-фактора, дают и псевдокон-тактный вклад. Этот псевдоконтактный эффект, связанный с влиянием через пространство, можно сопоставить с анизотропным вкладом соседнего атома, рассмотренным в гл. 8. который, как было показано, зависит от разности в для различных ориентаций. То же самое справедливо для Применяя уравнение (12.8), мы рассматриваем систему, в которой Д% меняется симбатно Ад [2]. Часть гамильтониана, описывающая псевдоконтактный вклад, аналогична гамильтониану дипольного взаимодействия, рассмотренному в гл. 9. [c.171]

    Прямой метод описан в гл. 13 работы [3], и с ним необходимо познакомиться. Здесь же мы только укажем, что программа расчета прямых методов включает математическое соотношение, которое позволяет производить отнесение к сильным отражениям, основываясь на приближенных соотношениях между фазами групп отражений. Можно также оценить точность отнесения. Фазы можно приписать некоторым отражениям, а другие отражения получат фазы исходя из первоначального их набора. Если эту процедуру осуществить до того уровня, при котором фазы получают восемь или десять отражений одного независимого атома, то можно получить карту электронной плотности, показывающую содержимое ячейки. Как правило, процесс фазирования может требовать отнесения к некоторым точкам гипотетических значений, так что иногда находят до восьми возможных фазовых схем. Программа MULTAN 74 способна выбрать среди них наиболее вероятную. Она также включает алгоритм обработки данных, который учитывает предположительное число, тип и даже группировку атомов в элементарной ячейке (не их положения или ориентации, которые, естественно, неизвестны). Кроме того, MULTAN 74 облегчает поиск -карты для атомов в положении связывания, что приводит к согласованию предпола- [c.403]

    Поляризация — это явление образования или ориентации электрических моментов молекул вещества в направлении электрического поля вследствие взаимного смещения электрической плотности в молекуле. Поляризация вещества ведет к появлению электрических зарядов. В связи с этим склонность молекул к поляризации имеет важное значение в процессах электриза- ции топлива. Поляризация численно измеряется в м и относится к молю (мольная поляризация) или единице объема (удельная поляризация) вещества. Чем больше величина удельной поляризации, тем легче топливо электризуется. [c.83]

    Характер адсорбции на отдельных кристаллйграфических плоскостях. При образовании защитных пленок может иметь значение не только плотность упаковки плоскости кристалла, но и соответствие кристаллографической структуры поверхности металла и возникающей пленки. При большом несоответствии в пленке возникают механические напряжения, приводящие к ее разрушению. Иногда кристаллографическая ориентация оказывает влияние на механизмы протекания анодного и катодного процессов электрохимической коррозии металлов. [c.327]

    Новые комплексные катализаторы, состоящие из металлорга-нических соединений [например, А1(С2Нб)з] и хлоридов металлов переменной степени окисления (например, Т1С14), позволили получить стереорегулярные полимеры со строго линейной структурой и симметричной пространственной ориентацией. Подобные полимеры отличаются повышенной прочностью и плотностью и обладают более высокой температурой плавления. Такие макромолекулы легко ориентируются при вытягивании, при этом прочность полимеров в направлении вытяжки значительно увеличивается. Стереорегулярные полимеры получаются обычно по анионному механизму, и процесс осуществляется при гомогенном и гетерогенном катализе. [c.194]

    Величины 5м были рассчитаны из предположен 1я, что молекулы представляют собой сферы, образующие гексагональную упаковку [43]. Было предположено также, что плотность адсорбата на поверхности равна плотности соответствующего жидкого или твердого вещества, взятого при температуре измерения адсорбции [38, 43]. Чаще всего при определении удельной поверхности в качестве адсорбата используется азот, и величина 5м для него принимается равной 16,2 А . В ряде работ [15,48] имеются указания на то, что 5м для азота при— 95 "С может изменяться от 14,5 до 19 А на молекулу на разных поверхностях вследствие различий в ориентации, упаковке и силе взаимодействия с поверхностью. При адсорбции азота, как правило, юлучаются изотермы II типа с крутым изгибом, при этом значения о , рассчитанные с помощью уравнения БЭТ, и значение Vв очень близки. Поэтому азот представляется особенно удобным адсорбатом, позволяющим проводить экспериментальную проверку правильности определения удельной поверхности путем расчета по изотерме адсорбции [37]. [c.295]

    Во всех случаях применения неподвижных слоев перепад давления является одним из основных факторов, определяющих стоимость их эксплуатации. На перепад давления в слое влия]ОТ скорость жидкости, ее плотность и вязкость, размер, форма и ориентация частиц, пористост . слоя, шероховатость поверхности и, возможно, наличие стенок. Для интерпретации экспериментальных данных развиты два основных подхода  [c.152]

    На рис. 4 показана зависимость от е элоигационной вязкости Т1 расплава полиэтилена малой плотности. При малых скоростях деформации ц стремится к постоянному значению, равному Зт1(,. По мере возрастания скорости деформации т) сначала увеличивается, затем постепенно выходит на почти постоянное значение и дальше уменьшается аналогично тому, как уменьшается т) при больших у. Возрастающий участок в зависимости 1 (а) для полимерных жидкостей объясняется тем, что в этой области происходят ориентация макромолекул материала в направлении приложенной силы и их растяжение. В таком состоянии полимерные жидкости обладают повышенной сопротивляемостью к деформации. [c.169]

    Из рис. 1 видно аметное увеличение Я, II вдоль оси вытяжки и уменьшение >,1 в поперечном направлении. В частично кристаллических полимерах ориентация создает высокую анизотропию теплопроводности, ослабляющуюся с понижением температуры. Например, при относительной вытяжке е—13 для полиэтилена высокой плотности 1ц/Х1=10, тогда как при 7 <10 К это отношение составляет 1,5, [c.186]

    Сланцевый кокс имеет однородную структуру, для которой не наблюдается какой-либо преимущественной ориентации структурных элементов. Особенно это характерно дпя кокса, полученного из предварительно окисленной смолы. Предварительное окисление - один из способов подготовки сырья к коксованию Кокс сланцевый из окисленного сырья (КСОС) по плотности и прочности значительно превосходит нефтяные и по свойствам очень близок к коксу марки КНПС. Но этот кокс менее термостоек и не выдерживает значительных перепадов температур. [c.92]

    Значительное увеличение вязкости прп поииженин температуры меньшает как скорость образования зародышей, так и скорость их роста. Поэтому, например, глицерин очень легко переохлаждается. 1 рп температуре замер.занпя его вязкость чрезвычайно высокая, что затрудняет движение молекул, необходимое для их правильной ориентации при флуктуациях плотности. [c.105]


Смотреть страницы где упоминается термин Ориентация плотность: [c.324]    [c.414]    [c.371]    [c.183]    [c.44]    [c.58]    [c.29]    [c.239]   
Новейшие методы исследования полимеров (1966) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Флуктуация плотности ориентации

Флуктуация плотности ориентации концентрации



© 2025 chem21.info Реклама на сайте