Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода, дипольный момент взаимодействий

    Таким образом, полярность молекул определяется довольно сложно, так как она учитывает все взаимодействия, которые могут возникнуть в такой сложной структуре, как молекула. Кроме того, полярность молекулы не определяется лишь величиной дипольного момента, а зависит также от размеров и конфигурации молекул. Например, молекула воды более резко проявляет свои полярные свойства (образование гидратов, растворимость и т. д.), чем молекула этилового спирта, хотя дипольные моменты у них почти одинаковы ( хн о== = 1,840 [хс н он =1,70 О). Значения дипольных моментов для некоторых веществ приведены в табл. 24. [c.85]


    Все многообразие зависимостей поверхностного натяжения от концентрации может быть представлено кривыми трех типов (рис. 43). Для поверхностноактивных веществ (ПАВ) характерны кривые типа 1. ПАВ менее полярны по сравнению с растворителем, обладают меньшим, чем растворитель, поверхностным натяжением. Интенсивность взаимодействия молекул растворителя с молекулами ПАВ меньше, чем молекул растворителя между собой. По отношению к воде, полярному растворителю, поверхностно-активными веществами являются органические соединения, состоящие из углеводородного радикала (гидрофобная или олеофильная часть) и полярной группы (гидрофильная часть) карбоновые кислоты, их соли, спирты, амины. Такое дифильное строение молекулы является характерным признаком ПАВ. Углеводородные цепи, не имеющие постоянного дипольного момента, гидрофобны, взаимодействуют с молекулами воды слабее, чем между собой, и выталкиваются на поверхность. Поэтому органические вещества, не обладающие полярной группой (например, парафины, нафтены), в воде практически нерастворимы. Полярные группы типа —ОН, —СООН, —NH и др. обладают высоким сродством к воде, хорошо гидратируются, и наличие такой группы в молекуле обусловливает растворимость ПАВ. Таким образом, растворимость ПАВ в воде зависит от длины углеводородного радикала (растворимость уменьшается с увеличением длины в гомологическом ряду). Например, карбоновые кислоты i — С4 неограниченно растворяются в воде растворимость кислот С5 — С12 заметно падает с ростом числа С-атомов, а при длине углеводородной цепи более i2 они практически нерастворимы. Увеличение длины углеводородного радикала молекулы ПАВ на одну СНа-группу приводит к увеличению поверхностной активности в 3,2—3,5 раза (это правило называется правилом Дюкло — Траубе). [c.205]

    У дипольных молекул ориентационные силы сравнимы с дисперсионными. Относительная роль дисперсионных сил определяется обычно числом электронов. Так, во взаимодействии молекул воды дисперсионные силы почти не играют роли. При отсутствии дипольного момента вода имела бы температуру кипения, близкую к температуре кипения кислорода, В метиловом спирте роль дисперсионных сил увеличивается, а в этиловом дисперсионный эффект сравним с ориентационным. Так как дипольный момент у всех этих молекул одинаков, то рассматриваемое явление обязано увеличению молекулярной массы. [c.492]


    В табл. 18 приведены также температуры кипения ряда соединений с близкой молекулярной массой, но отличающихся по своей химической природе и тем самым по характеру нековалентных взаимодействий между молекулами. Видно, что самые низкие температуры кипения у веществ, молекулы которых неполярны, — пропана и пропилена. Это и понятно, если учесть, что в них действуют лишь дисперсионные силы. Заметно выше температуры кипения ме-тилхлорида и диметилового эфира, так как их молекулы полярные, обладаюш,ие постоянным дипольным моментом, а между ними в дополнение к дисперсионным силам действуют силы, обусловленные индукционным и ориентационным взаимодействием. Еще существенно выше температуры кипения у аминов, этилового спирта и муравьиной кислоты, молекулы которых способны образовывать водородные связи. Уместно в этой связи упомянуть воду, температура кипения которой 100°С, притом, что температура кипения близкого к ней по молекулярной массе неполярного метана —162°С [c.126]

    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    Для электрической ориентации частиц имеется гораздо больше возможностей. Исследования показывают (Толстой, 1955 г.), что анизометрические коллоидные частицы в водных растворах обычно обладают электрическими дипольными моментами, достаточными для того, чтобы за время достижения стационарной ориентации частиц в электрическом поле не произошло заметного разогревания раствора за счет прохождения через него тока (при надлежащей очистке раствора от электролита). Коллоидные частицы и макромолекулы могут иметь как собственный дипольный момент, определяемый их строением, так и дипольный момент, индуцированный электрическим полем. Если использовать постоянное электрическое поле (или постоянные импульсы напряжения), то ориентация частиц будет обусловлена взаимодействием с полем обоих видов диполей, и вклад от каждого из них в общий эффект выделить нелегко. Автор с сотрудниками (1959 г.) добились ориентации коллоидных частиц (галлуазита, бензопурпурина и многих других веществ в воде) с помощью высокочастотного электрического поля при частоте порядка десятков и сотен килогерц. При этом было пока зано, что влияние собственного дипольного момента, который жестко связан с частицей и заставляет ее колебаться в переменном поле, полностью подавлено из-за инерционности частицы. В этом случае она ориентируется только за счет взаимодействия с полем индуцированного момента, который, меняя направление синхронно с полем, создает постоянный момент силы. Величина этого момента в водных растворах достаточна для ориентации частиц. По-видимому, он возникает за счет поверхностного слоя воды. Если эта гипотеза подтвердится, то данный метод электрической ориентации частиц окажется универсальным для водных растворов. Применение высокочастотных электрических полей помогает значительно ослабить или устранить такие мешающие явления, как электролиз, поляризация и электрофорез, что делает метод особенно перспективным. Если же исследования этим методом дополнить параллельными исследованиями при ориентации в постоянном электрическом поле, то можно оценить величину постоянного диполь-ного момента частиц и найти угол между постоянным и индуцированным дипольными моментами. Например, при изучении частиц, галлуазита выяснилось, что индуцированный момент ориентиро  [c.33]

    На поверхности воды положительно адсорбируются молекулы поверхностно-активных веществ с более короткими цепями, чем у тех, которые мы уже рассматривали (см. стр. 48). Углеводородные цепи, не имеющие постоянного дипольного момента, взаимодействуют с молекулами воды слабее, чем друг с другом, и играют роль воздушного шара , который тянет молекулы вверх к поверхности. Если цепь очень длинна, это действие настолько сильно, что вещество практически нерастворимо и образует поверхностные монослои. При умеренной длине цепи (меньше 12—14 атомов углерода для насыщенных жирных кислот) полярные группы, которые стремятся ввести молекулы в объем жидкости, начинают играть заметную роль и поверхностно-активные вещества становятся [c.62]


    При рассмотрении электрических свойств молекул было показано, как ведут себя дипольные молекулы в поле заряженной частицы или иона. Попытаемся распространить изложенное воззрение на процесс обезвоживания веществ активны.ми молекулами или ионами. Процесс обезвоживания сводится к удалению из вещества молекул растворителя. Если растворителем вещества являются жидкости, молекулы которых обладают постоянным дипольным моментом, то при сообщении (ему энергии первыми, как правило, вырвутся из него молекулы, обладающие максимальным дипольным моментом. По всей вероятности, такие молекулы лри вылете из вещества могут иметь и своих спутников — молекул с меньшим дипольным моментом. При этом вылет комплексных молекул из вещества происходит в результате взаимодействия молекул с различным дипольным моментом. Дипольные молекулы в силу асимметрии обладают большей способностью к колебательным и вращательным движениям и находятся как бы в неустойчивом положении в веществе. В качестве примера можно привести процесс обезвоживания окрашенной ацетилцеллюлозы (вальцмассы), растворителем которой являются ацетон и вода. Дипольный момент [c.187]

    Рассмотрим результаты расчета некоторых свойств объемной фазы воды для двух моделей. В модели межмолекулярного потенциала ST2 [340] используются четыре точечных заряда, расположенных в вершинах тетраэдра. Электростатическое взаимодействие плавно выключается при малых расстояниях между молекулами. Короткодействующие силы отталкивания учитываются потенциалом Леннарда — Джонса 6-12 между атомами кислорода. Дипольный момент. молекулы воды равен 2,35 Д, а абсолютный минимум энергии.-димера воды составляет 28,4 кДж/моль при расстоянии 0,285 нм между атомами кислорода. [c.120]

    Для определения величины <р,/Л1>, входящей в уравнение (15.4), необходимо проделать следующие операции 1) для фиксированного смещения зарядов (кроме электронов) молекулы воды, определяющих ее дипольный момент р/, найти среднее значение дипольного момента всей среды 2) учитывая различные возможные смещения зарядов сорбированной молекулы, рассчитать среднюю величину Ввиду сложности подобных расчетов в теории диэлектриков используется приближенный метод Кирквуда. Согласно этому методу, учитывается только короткодействующее взаимодействие между ближайшими соседними молекулами, и дипольный момент М определяется как векторная сумма дипольного момента молекулы и среднего значения суммы моментов ближайших соседей для фиксированного ц. Для жидкости с учетом эквивалентности всех молекул и направлений их дипольных моментов теория Кирквуда позволяет получить следующее выражение  [c.251]

    Наличие элементов кристаллической структуры наряду с большим дипольным моментом молекулы Н2О обусловливает очень большое значение относительной диэлектрической проницаемости воды е при 25 °С она равна 79,5." Таким образом, взаимодействие между заряженными частицами в водной среде приблизительно в 80 раз слабее, чем в вакууме. Благодаря этому все ионные соединения в водных растворах диссоциируют. В отличие от растворителей с меньшим значением е диссоциация в водной среде является практически полной. В водном растворе диссоциируют на ионы также многие соединения с полярной связью в молекулах, такие, как галогеноводороды, НгЗ и др., хотя для подобных соединений степень диссоциации может не равняться 100%. [c.156]

    Особенность растворов электролитов обусловлена, во-первых, тем, что в них находятся заряженные частицы, во-вторых, тем, что эти частицы имеют заряд разного знака. Основная составляющая взаимодействий в таких растворах — это взаимодействие между ионами и молекулами растворителя. Ион оказывает значительное поляризующее влияние — индуцируемый им дипольный момент в молекулах растворителя соизмерим с дипольным моментом молекул даже такого полярного растворителя, каким является вода (поэтому введение в воду первых порций электролита вызывает особенно большое возмущающее действие). [c.168]

    При растворении сильных электролитов в воде, имеющей большую диэлектрическую постоянную, электростатические силы между ионами уменьшаются и так же, как при плавлении, ионы приобретают подвижность. Это обусловлено взаимодействием дипольных моментов молекул воды с зарядами ионов, т. е. гидратацией. Такое взаимодействие может быть не только электростатическим, но и химическим. Так, ион водорода образует с водой ион гидроксония Н3О+, имеющий природу молекулы типа аммиака. [c.112]

    Если бы молекулы воды не имели отрицательно заряженных ветвей электронного облака и дипольных моментов, они не могли бы взаимодействовать друг с другом. [c.9]

    Дипольный момент этилового спирта (ц = 1,7) близок к дипольному моменту воды. Молекулы спирта также взаимодействуют между собой и образуют ассоциированные молекулы  [c.138]

    Сходство спиртов с водой проявляется и в их растворимости. Метиловый, этиловый и пропиловый спирты смешиваются с водой во всех отношениях молекулы воды, так же как и молекулы спирта, отличаются высокими дипольными моментами, поэтому между ними также может происходить взаимодействие. Этим объясняется большая растворимость метилового, этилового и пропи-лового спиртов в воде. Кроме того, спирт может образовать с водой гидраты, о чем свидетельствует повышение температуры при смешивании спирта с водой и то, что объем получаемой смеси меньше суммы объемов спирта и воды в отдельности. [c.139]

    Отсюда видно, что энергия взаимодействия между ионами и образовавшимися ионными двойниками зависит от дипольного момента ионного двойника и расстояния между ионом и центром тяжести противоположных зарядов молекулы. Этот путь учета энергии пригоден и к рассмотрению взаимодействия между любыми молекулами и ионами при гидратации ионов молекулами воды взаимодействие будет определяться зарядом иона и дипольным моментом молекулы воды, так как выведенное уравнение применимо для любого взаимодействия между ионом и дипольными молекулами. [c.121]

    Все эти силы имеют электрическую природу. Молекулами, обладающими постоянным диполем, являются молекулы воды, спирта, фенола. Опыт показал, что молекулы, не имеющие постоянного и индуцированного диполя, также способны взаимодействовать друг с другом. В этом случае взаимодействие вызывается существованием так называемого мгновенного дипольного момента. [c.39]

    С такой точкой зрения можно согласиться, заметив,-однако, что некоторые макромолекулы биологического происхождения могут иметь несимметричное строение, а следовательно, и собственный момент. Такие макромолекулы энергично взаимодействуют с водой, и в водных растворах их дипольный момент складывается из собственного момента частички и момента, обусловленного адсорбцией воды. [c.110]

    Катионы шелочных и щелочноземельных металлов координируют (связывают) молекулы воды в гидраты преимущественно посредством электростатического ион-дипольного взаимодействия. Последнее зависит от заряда и радиуса катиона, его массы и магнитного момента, дипольного момента воды, поляризации иона и воды и от кинетических параметров (импульс, момент количества движения и др.). Между катионами переходных металлов и молекулами воды возникает, благодаря наличию вакантных атомных орбиталей у катионов и неподеленных пар электронов молекулы воды, донорно-акцепторная связь. Часто электростатический и донорно-акцепторный вид связи в гидрате катиона проявляется совместно. [c.414]

    В системе сорбент — сорбированная вода реактивное поле по мере увлажнения сорбента растет, что обусловливает увеличение дипольного момента комплекса даже в том случае, когда дополнительно сорбированные молекулы непосредственно не взаимодействуют с комплексом. При этом изменение е может происходить не только за счет роста е , но и за счет увеличения бос. В наибольшей мере это должно проявиться тогда, когда приращения Дея и Деоо в результате увлажнения материала отличаются незначительно. В этом случае увеличение е системы обусловлено протонной поляризацией в большей степени, чем ориентационной. Можно предположить, что при включении слабого электрического поля при измерении диэлектрических характеристик системы сорбент — сорбат происходит ориентация диполей, которая способствует переносу протона вдоль Н-связи. Последнее вызывает переход КВС из молекулярной в ионную форму. Вероятность такого перехода в системе сорбент — сорбат зависит от диэлектрической проницаемости среды, окружающей КВС она резко увеличивается при определенной для данной системы критической величине йо- [c.247]

    Низкие вязкость (1/4 вязкости воды) и плотность жидкого аммиака обусловливают подвижность ионов в нем и легкость проведения химических реакций, в том числе гетерогенных, в которых ведущую роль играют процессы диффузии растворенных соединений. Высокое значение дипольного момента облегчает химическое взаимодействие между полярными молекулами аммиака и ионами, а также между самими молекулами аммиака. Диэлектрическая проницаемость аммиака значительно меньше, чем диэлектрическая проницаемость воды (е = 78,5), однако она гораздо больше, чем диэлектрическая проницаемость уксусной кислоты ( = 6,4). Поэтому естественно ожидать, что значения растворимости ионных солей [c.167]

    Для описания межмолекулярного взаимодействия в расчетах методом Монте-Карло использовали потенциал Роулинсона [343]. В модели Роулинсона (КШЬ) на атомах водорода воды располагаются положительные заряды, отрицательные заряды помещаются на линии, проходящей через атом кислорода перпендикулярно плоскости молекулы. Дипольный момент молекулы в этой модели равен 1,85 Д. Энергия связи димера воды 22,6 кДж/моль при равновесном расстоянии 0,269 нм. [c.122]

    Таким образом, у нас есть два возможных объяснения существования водородной связи. Систему с водородной связью можно рассматривать как электроноизбыточное соединение, связи в котором описываются в рамках модели молекулярных орбиталей так же, как мы это проделали Для ионов дигалогенидов. Поскольку несвязывающие электроны размещаются на концевых атомах, эти атомы должны обладать высокой электроотрицательностью. Однако атом водорода можно рассматривать и как акцептор электронов, поскольку в связях, которые он образует, заряд смещается в сторону его более электроотрицательного партнера (F, О или N). Дипольный момент HF (1,82 D) указывает на то, что заряд смещается от протона и его валентная оболочка остается заполненной лишь частично. При этом может возникнуть донорно-акцепторное взаимодействие с подходящим донором электронов. Более низкий дипольный момент молекулы НС1 (1,07 D) означает, что в ней взаимодействие такого типа должно быть слабее. У молекулы воды дипольный момент равен 1,82 D при этом дипольный момент -связи составляет 1,49 D (см. разд. 6.4). Водородные связи в молекуле воды занимают промеж,уточ-ное положение между связями в НС1 и в HF. Если это действительно так, то мы можем предположить, что между водой и отрицательными ионами, такими, например, как F , СГ, Вг или 1 , образуются сильные водордные связи. Из табл. 7.8 видно, что энергия связи С1—Н. .......... СГ равна 14 ккал, а энергия связи С1—Н.............Вг  [c.228]

    Из сказанного ясно, что в действительности при-чинод расслоения в данном случае является пе изменение характера притяжения молекул растворителя и растворенного вещества, как в случае большинства расслаивающихся систем, а разрушение водных клеток, заключающих молекулы растворенных веществ, Тем не менее резкое изменение характера взаимодействия молекул воды и растворенных в ней веществ все же имеет место при расслоении, хотя и не влияет пепосредственно на параметры перехода. Дела в том, что в клетках из молакул воды основным структурным элементом являются плоские пятерные и шестерные кольца из молекул воды, дипольные моменты которых направлены наружу по отношению к заключенной внутри клетки молекуле-гостю. Электрическое поле молекул воды, образующих клетку, может быть значительным, 0 0 способно поляризовать органическую молекулу либо удерживать ее в одном из конформационных состояний с наибольшим дипольным моментом. Разрушение клеток при расслоении уничтожает и плоские кольца, заменяя их характерными для льда шестерными зигзагорбразными кольцами с равным нулю суммарным электрическим моментом. В итоге по- [c.91]

    Поляризационно-деформационные явления обусловливают цветность соединений и их термическую устойчивость. Малое поляризующее действие ионов щелочных и щелочноземельных металлов (тип 8 е) и малая деформируемость являются причиной их белого цвета и большой термической устойчивости. Оксиды же Ag20, HgO и др. (тип 18 е), наоборот, мало устойчивы к нагреванию, имеют окраску, но не взаимодействуют с водой, как первые, и т.д. Из-за взаимной поляризации ионов возникают индуцированные дипольные моменты и упрочняются связи между ионами. Этим, например, легко объясняется различие в свойствах Mg(OH) и 2п(0Н) 2, MgS и 2п5 и т. д. [c.103]

    Высокая полярность молекул воды является одной из важнейших причин ее высокой активности при многих химических взаимодействиях. Она же служит причиной и электролитической диссо-ииации в воде солей, кислот и оснований. С ней связана также и растворимость электролитов в воде. В табл. 6 приведены значения дипольных моментов некоторых веществ. В углеводородах, содержащих двойную нли тем более тройную связь, также может не [c.80]

    Бернал и Фаулер в результате реитгеноструктурного исследования воды установили, что в ней остаются группировки молекул, сходные со структурой льда. Для большей части молекул в жидкой воде сохраняется тетраэдрическое окружение, которое они имели в структуре льда среднее координационное число молекул в жидкой воде близко к четырем. Наличие элементов кристаллической структуры у воды, а также большого дипольного момента у ее молекул обусловливает высокое значение диэлектрической проницаемости воды при 25° С она равна 79,5. Это означает, что взаимодействие между заряженными частицами в водной среде почти в 80 раз слабее, чем в вакууме. [c.81]

    Явление сольватации обязано тому,, что заряженная частица (ион), появившаяся среди молекул растворителя, изменяет свойства и порядок распределения последних в растворе. Если молекулы растворителя имеют дипольный момент, то они взаимодействуют с ионами, образуя сольватные оболочки. При этом электростатическое бзаимодействие не является единственной причиной сольватации ионов. Сольватация может возникать и за счет некулоповских — химических сил. Многие соли образуют гидраты и сольваты не только в растворах, но и в твердом состоянии. К такому комплексообразованию склонны почти все соли. Например, образование гидратов солей меди является типичным процессом комплексообразования. В таких соединениях связь между ионами и молекулами воды чисто химическая, она обусловлена обычной координационной валентностью, типичной для комплексных соединений. [c.137]

    Особенность растворов электролитов обусловлена, во-первых, тем, что в них находятся заряженные частицы, во-вторых, что эти частицы имеют заряд разного знака. Основная составляющая взаимодейстний в таких растворах — это взаимодействие между ионами и молекулами растворителя. Ион оказывает значительное поляризующее влияние — индуцируемый им дипольный момент в моле кулах растворителя соизмерим с динольным моментом мо лекул даже такого полярного растворителя, каким яв ляется вода (поэтому введение в воду первых порций элек тролита вызывает особенно большое возмущающее действие) Однако было бы неправильным считать, что все сво дится к взаимодействию заряженных частиц со средой к действию электростатических сил. Так, может происхо дить частичный или полный перенос электронов от ионов к молекулам растворителя, приводящий к перераспределению заряда между ионом и его сольватной оболочкой. При больших концентрациях растворенного вещества, а для [c.175]

    Присутствие дипольных моментов в молекулах приводит к усилению их электростатического взаимодействия как между собой, так и с молекулами других веществ или поверхностями твердых тел, атомы которых тоже имеют несимметричное расположе1й1е электрических зарядов. Такое взаимодействие, ведущее, например, к поглощению молекул жидкостей или газов поверхностью твердых тел, называется адсорбцией. Так, вода и ее пары поглощаются на поверхности угля или руды. Явление адсорбции играет больщую роль в ряде технически важных процессов (флотация, измельчение и разрушение горных пород и др.). [c.157]

    При использовании метода Хартри—Фока—Рутаана главной характеристикой расчетной модели является выбор базиса орбита-лей. Чем полнее этот базис, тем точнее воспроизводится полная энергия молекулы. Однако способность расчета предсказывать другие молекулярные свойства не всегда монотонно зависит от выбранного базиса и учета корреляционных эффектов. Наглядный пример — расчет дипольного момента (/х) молекулы воды при минимальном базисе /i = 1,82 D, в расширенном почти до хартри-фоковского предела 6ii3H e ц = 2,57 D, в расширенном базисе с наложением конфигурационного взаимодействия ц=1,99 D, в эксперименте /i=l,85 D. Аналогичные примеры можно найти и для некоторых других характеристик. Важно знать, какие ряды базисных орбита-лей следует использовать для получения надежных результатов в расчетах различных характеристик молекул. [c.205]

    Основные методы расчета аЬ initio в настоящее время основаны на схеме Хартри — Фока — Рутаана с различными базисными рядами (см. также раздел 4.3). Способность расчета предсказывать молекулярные свойства существенно и, что важно, не всегда монотонно зависит от выбранного базиса и учета корреляционных эффектов. Наглядный пример — расчет дипольного момента ([i) молекулы воды при минимальном базисе p,= l,82D, в расширенном почти до хартри-фоковского предела базисе х = 2,57 D, в расширенном базисе с наложением конфигурационного взаимодействия x=l,99D. Экспериментальная величина (i=i,85D [аналогично для ц(СО), см. с. 131J. [c.359]

    Общие химические свойства кремния и германия определяются положением этих элементов в таблице Менделеева. Кремний и германий находятся в четвертой группе таблицы, располагаясь соответственно в третьем и четвертом периодах. Во всех своих соединениях кремний и германий выступают как четырех- или двухвалентные элементы. При умеренных температурах (до 700 " К) и в особенности во влажных средах они образуют, как правило, четьЕрехвалентные соединения. Наоборот, нри высоких температурах (порядка 1300 " К) и в сухой атмосфере более типичными являются двухвалентные соединения рассматриваемых элементов. Химические связи в соединениях кремния и германия с элементами крайних групп таблицы Менделеева — полярные и обладают существенным дипольным моментом. Типичным для таких соединений является их взаимодействие с полярными молекулами других веществ и, в первую очередь, с молекулами воды. Соединения с чисто ионной связью для кремния и германия не известны. Следует, однако, иметь в виду, что некоторые полярные соединения рассматриваемых элементов могут частично диссоциировать на соответствующие положительные и отрицательные ионы. [c.92]

    Последние представляют собой бесцветные жидкости с т. пл. —25 (Мп) или +13 С (Не), малорастворимые в воде, но смешивающиеся со многими органическими растворителями. Разложение их на [Э2(СО)ю и Н2] идет прн обычных условиях лишь крайне медленно, а кислотные свойства выражены очень слабо (для производного марганца констарта диссоциации равна 8-10" дипольный момент молекулы ц = 0,70). Силовые константы связей Н—Мп и Н—Не равны соответственно 1,9 и 2,0, Для длины связи Н—Мп дается значение 1,43 А. При замене водорода на метильную группу устойчивость соединений сильно повышается получаемые взаимодействием СНз1 с ЫаЭ(С0)5 производные типа СНзЭ(СО)5 представляют собой устойчивые на воздухе бесцветные кристаллы с т. пл. 95 (Мп) или 120°С (Не). Дипольный момент СНзМп(СО)5 равен 0,7-9 (в бензоле). [c.516]

    Здесь х — дипольный момент, Ом — поляризуемость молекул И — постоянная Планка vo — характерная частота колебаний зарядов, с которыми связано взаимодействие молекул величина Ьуо является минимальной энергией взаимного возбуждения молекул (отвечает инфракрасной, видимой или ультрафиолетовой области в спектре поглощения). Дисперсионные взаимодействия обусловлены притяжением между флуктуационно возникщим диполем в одной молекуле и наведенным им дипольным моментом другой молекулы. При взаимодействии отдельных молекул первое слагаемое в выражении (I—19) может составлять от О (для неполярных молекул) до —50% и более (для молекул с большим дипольным моментом, например воды) второе слагаемое обычно не превышает 5—10%, тогда как третье, отражающее наиболее универсальное дисперсионное взаимодействие, составляет во многих случаях более половины всей энергии притяжения, вплоть до 100% для неполярных углеводородов. [c.26]

    Вторая стадия растворения, обусловленная силами межмолекулярного взаимодействия, зависит от строения молекул растворяемого вещества и растворителя. В табл. 34 были приведены некоторые данные по растворимости различных газов в воде. Растворимость неполярных газов Hj, N2, 02(ц=0) в воде очень мала, так как между ними и полярными молекулами воды могут возникать лишь дисперсионные силы взаимодействия, что приводит к малой энергии связи. Молекулы двуокиси углерода 02 ( ji = 0) обладают полярными связями и при взаимодействии с молекулами воды могут приобрести большой индуцированный дипольный момент — растворимость СО2 в воде значительная. Полярные газы НО (jj = l,07D) и NH3 х = 1.46D) в воде растворяются очень хорошо и ориентационные силы межмолекулярного взаимодействия не только создают услоЕ ия для растворения, но и меняют строение молекул газов, растворенных в воде (диссоциация). [c.193]

    На предложенной Снайдером треугольной диаграмме растворители разбиты на восемь групп, различающихся по типу селективности (рис. 6.1). Крайние группы I, II, V я VIII имеют наиболее ярко выраженную селективность в группу I ходят акцепторы протонов (простые эфиры, амины), в группу VIII—доноры протонов (хлороформ, вода, м-крезол), в группу II—доноры-акцепторы (спирты) и в группу V—растворители, предпочтительно взаимодействующие с веществами, имеющими большой дипольный момент (метиленхлорид, дихлорэтан). Растворители группы VII (ароматические соединения, нитроалканы) характеризуются повышенным взаимодействием с акцепторами электронов. Принадлежность растворителя к определенной группе также указана в приложении 2. [c.131]

    Взаимодействие между молекулами воды. Структура кои-деисироваииых фаз. Молекулы В., обладая значит, дипольным моментом, сильно взаимод. друг с другом и полярными молекулами др. в-в. При этом атомы водорода могут образовывать водородные связи с атомами О, N, F, I, S и др. В водяном паре при невысоких т-рах и умеренных давлениях присутствует небольшое кол-во (ок. 1% при т-ре кипения и атм. давлении) димеров В, (для них ДЯ бр 15 кДж/моль), расстояние между атомами кислорода 0,3 нм. В конденсиров. фазах каждая молекула В. образует четыре водородные связи две-как донор протонов и две-как акцептор протонов. Средняя длина этих связей в кристаллич. модификациях льда и кристаллогидратах ок. 0,28 нм. Угол О—Н...О стремится к 180°. Четыре водородные связи молекулы В. направлены приблизительно к вершинам правильного тетраэдра (рис. 2). [c.395]


Смотреть страницы где упоминается термин Вода, дипольный момент взаимодействий: [c.131]    [c.93]    [c.265]    [c.30]    [c.341]   
Химия протеолиза Изд.2 (1991) -- [ c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие дипольное

Взаимодействия момент

Дипольные моменты, взаимодействие

Дипольный момент



© 2025 chem21.info Реклама на сайте